
Constraint Solving for Verifying Modal
Specifications of Workflow Nets with Data

Hadrien Bride1,2, Olga Kouchnarenko1,2, and Fabien Peureux1

1 Institut FEMTO-ST – UMR CNRS 6174, Univ. Bourgogne Franche-Comté
16, route de Gray, 25030 Besançon, France
{hbride,okouchna,fpeureux}@femto-st.fr
2 Inria Nancy Grand Est – CASSIS Project

Campus Scientifique, BP 239, 54506 Vandœuvre-lès-Nancy cedex
{hadrien.bride,olga.kouchnarenko}@inria.fr

Abstract. For improving efficiency and productivity companies are used
to work with workflows that allow them to manage the tasks and steps
of business processes. Furthermore, modalities have been designed to al-
low loose specifications by indicating whether activities are necessary or
admissible. This paper aims at verifying modal specifications of coloured
workflows with data assigned to the tokens and modified by transitions.
To this end, executions of coloured workflow nets are modelled using con-
straint systems, and constraint solving is used to verify modal specifica-
tions specifying necessary or admissible behaviours. An implementation
supporting the proposed approach and promising experimental results
on an issue tracking system constitute a practical contribution.

Keywords: Workflows, Modalities, Coloured Petri Nets, Constraint System.

1 Introduction

To improve efficiency and productivity companies are used to work with work-
flows describing the set of possible runs of a particular system/process. The de-
velopment of such workflows has become a crucial part of companies effort since
they define the organisational core of these companies by increasing their busi-
ness agility, flexibility and efficiency. Major Key Performance Indicators (com-
pliance with respect to regulations and directives, end-user acceptance and con-
fidence, etc.) are often directly determined by the quality of the workflows in
use, and therefore much of the companies successes depends on them. From this,
it requires workflow specifications to be properly designed and carefully verified
to ensure they comply with the expected and needed workflows properties. How-
ever, the increasing complexity of such workflows makes them error-prone and
the verification of the related models still remains a tough task [1].

Many modelling languages and related tooling to describe workflow systems
have been proposed [2]. Among them, workflow Petri nets (WF-nets for short) [3]
are well suited for modelling and analysing discrete event systems exhibiting be-
haviours such as concurrency, conflict, and causal dependency between events.

They represent finite or infinite-state processes, and several important verifica-
tion problems, such as reachability or soundness, are known to be decidable.
However, due to the growing complexity of modeled processes, WF-nets describ-
ing them tend to be too complex and extremely large [4]. Moreover, WF-nets do
not model the data often relevant to address realistic processes [5]. To handle
data, workflows can be modelled by coloured Petri nets where data are assigned
to the tokens and can be modified by transitions based on their contents [6].

Within refinement approaches for workflow development, modal specifica-
tions [7] have been designed to allow loose specifications by imposing restric-
tions on the possible refinements by indicating whether activities–transitions in
the case of WF-nets–are necessary or admissible. Modalities provide a flexible
tool for workflow development as decisions can be delayed to later steps of the
development life cycle, when performing workflow refinements.

The paper first presents modal specifications with additional constraints on
the initial state of the workflow as well as with conditions on coloured transitions
and their causalities, i.e. on activities. Second, it defines a formal framework
based on constraint systems to model executions of CWF-nets, which, in turn,
enables the automated verification of modal specifications. Third, it reports on
an implementation of the approach, which is successfully experimented on a
concrete case study to validate an issue tracking system.

After providing preliminaries on Petri nets, coloured Petri nets and modal
specifications in Sect. 2, Sect. 3 introduces the Questions and Answers Portal
motivating example and specifies it as a CWF-net. The main contribution in
Sect. 4 consists of a formal framework based on constraint systems to model
executions of CWF-nets and their structural properties, as well as to verify their
modal specifications. An implementation supporting the proposed approach and
promising experimental results constitute a practical contribution in Sect. 5.
Finally, Sect. 6 concludes the paper by discussing related work and future work.

2 Background

This section presents preliminaries on Petri nets, coloured Petri nets [8] and
introduces modal specifications based on proposals in [9] and [10].

2.1 Petri Nets

Petri nets are a basic model of parallel and distributed systems defined as follow.

Definition 1 (Petri net). A Petri net is a tuple (P, T, F) where P is a finite
set of places, T is a finite set of transitions (P∩T = ∅), and F ⊆ (P×T)∪(T×P)
is a set of arcs.

A Petri net with arcs of weight 1 (i.e. every element of F is unique) is called
an ordinary Petri net. Let g ∈ P ∪ T and G ⊆ P ∪ T . We use the notations:
g• = {g′|(g, g′) ∈ F}, •g = {g′|(g′, g) ∈ F}, G• = ∪g∈G g•, and •G = ∪g∈G •g.
These definitions allow characterizing structural features such as siphons and
traps.

Definition 2 (Siphon/Trap). Let N ⊆ P such that N 6= ∅: N is a trap if and
only if N• ⊆ •N , and N is a siphon if and only if •N ⊆ N•.
Lemma 1 ([11]). A marked trap cannot be unmarked, and an unmarked siphon
cannot be marked.

Theorem 1 ([11]). An ordinary Petri net without siphon is live.

Coloured Petri nets [8] are high-level Petri nets where data assigned to the
tokens can be modified by transitions based on their contents. Let Ξ be a non-
empty set of data-types (called colours), where each data-type is a set of data-
values. We denote here L(V,W) the space of linear maps from V to W, and O
the zero map.

Definition 3 (Coloured Petri net). A coloured Petri net (CPN) is a tuple
(P, T,C,W) where:

– P is a finite set of places, T is a finite set of transitions, such that P ∩T = ∅,
– C : P ∪ T → Ξ is the colour-function,
– W− : P × T → L(Ξ,Ξ) is the pre-incidence function,
– W+ : P × T → L(Ξ,Ξ) is the post-incidence function.

A marking of a CPN is a function M defined on P , such that ∀p ∈ P,M(p) ∈
C(p) → N. Two markings Ma and Mb are in relation Ma ≥ Mb if and only if
∀p ∈ P,∀c ∈ C(p),Ma(p)(c) ≥Mb(p)(c).

A weighted set of transitions is a function x defined on T , such that ∀t ∈
T, x(t) ∈ C(t)→ N. From now on, let ~ denote the generalized matrix-multipli-
cation where each product is replaced by a function composition. With this
notation, a transition defined by x(t) ∈ C(t)→ N is enabled in a marking Ma if
and only if Ma ≥ W−(t) ~ x(t). When x(t) is enabled, it may fire. If x(t) fires,
a new marking Mb = Ma + (W+ −W−)(t) ~ x(t) is reached. Mb is said to be

directly reachable from Ma by transition x(t), written Ma
x(t)−−→Mb. Let reacha-

bility relation be the reflexive and transitive closure of the direct reachability.

Let σ = x1(t1), .., xn(tn) be a sequence of transitions, i.e. ∀i ∈ 1..n, xi(ti) ∈
C(ti) → N, we say that σ is a valid sequence of transitions with respect to the
weighted set of transitions x, denoted σ |= x, if ∀t ∈ T, x(t) =

∑
i|ti=t

xi(ti).

Fig. 1. Example of a CPN

For example, let Ξ = {C1, C2} where C1 =
{1, 2, 3, 4, 5, 6} and C2 = {1, 2, 3}. For the CPN1

of Fig. 1, let C(P0) = C1 and C(t0) = C2. Let
be x ∈ C2 and t0(x) a transition such that ∀e ∈
C2 \ {x}, t0(x)(e) = 0 and t0(x)(x) = 1. When tran-
sition t0(x) fires, it consumes a token x and pro-
duces a token x ∗ 2 in P0. Let MCPN1(x) be the marking such that ∀e ∈
C1 \ {x},MCPN1(x)(P0)(e) = 0 and MCPN1(x)(P0)(x) = 1. For σ = t0(1), t0(2),

we have MCPN1(1)
t0(1)−−−→ MCPN1(2)

t0(2)−−−→ MCPN1(4). Let wt be the weighted
set of transitions such that wt(t0)(1) = wt(t0)(2) = 1 and wt(t0)(3) = 0, we
have σ |= wt.

2.2 Coloured Workflow Nets

From the framework of coloured Petri nets, we now define coloured workflow
nets (CWF-nets for short).

Definition 4 (CWF-net). A coloured Petri net (P, T,C,W) is a CWF-net if
and only if: PN have two special places i and o where •i = ∅ and o• = ∅, and
for each node n ∈ (P ∪ T) there exists a path from i to o passing through n.

In the rest of the paper, the following notations are used:

– Mi: the set of initial markings of a CWF-net where ∀Ma ∈ Mi,Ma(i) 6= O
and ∀p ∈ P \ i,Ma(p) = O,

– Mo: the set of final markings of a CWF-net where ∀Ma ∈ Mo,Ma(o) 6= O
and ∀p ∈ P \ o,Ma(p) = O,

– M1
σ−→ Mn: for σ = x1, x2, ..., xn−1, there are markings such that M1

x1−→
M2

x2−→ ...
xn−1−−−→Mn,

– Ma
∗−→Mb: there exists σ such that Ma

σ−→Mb.

In our approach, constraints over markings and weighted sets of transitions
are expressed using Presburger arithmetic [12] in order to remain within the
realm of decidability. Let Ma(p) be the marking of a place p, and fp a first-order
formula over Presburger arithmetic with free variables over C(p). We denote by
Ma(p) |= fp the fact that Ma(p) satisfies fp, i.e. (

∧
d∈C(p) d = Ma(p)(d)) ∧ fp

is satisfiable. Similarly, let xa(t) be the weighted set of transitions t, and ft a
first-order formula over Presburger arithmetic formulae with free variables over
C(t). We write xa(t) |= ft when xa(t) satisfies ft, i.e. (

∧
d∈C(t) d = xa(t)(d))∧ ft

is satisfiable.

To illustrate this notation on CPN1 of Fig. 1, let fP0
= (C1(1) = 1) be

a formula over Presburger arithmetic with free variables over C(P0). We have
MCPN1

(1) |= fP0
, which expresses the fact that the marking MCPN1

(1) contains
exactly 1 token of value 1. Likewise, let ft0 = (C2(2) = 1) be a formula with free
variables over C(t0), and wt the weighted set of transitions such that t0(2) |= wt.
We have wt |= ft0 expressing the fact that wt is valid with respect to a sequence
of transitions containing a transition x(t0) where x(t0)(2) = 1.

An execution between markings Ma and Mb of a CWF-net is a sequence of
transitions σ such that Ma

σ−→ Mb. An execution is a correct execution if and
only if Ma ∈ Mi and Mb ∈ Mo. The behaviour of a CWF-net is defined as the
set Σ of all its correct executions.

2.3 CWF-nets with Modalities

Modal specifications permit specifiers to indicate that a transition is necessary
or just admissible. In the context of CWF-nets, it usually means that there are
two kinds of transitions: the must-transitions and the may-transitions. A may-
transition (resp. must-transition) is a transition fired by at least one correct
execution (resp. by all the correct executions) of a CWF-net.

We extend this concept to allow specifiers to indicate modal properties on
several transitions and on their causalities. We also add the possibility to pa-
rameterize transitions as well as the initial marking, to permit a precise modal
specification of desired behavior.

Definition 5 (Well-formed modal formula). Let CPN = (P, T,C,W) be a
CWF-net. The language S of well-formed modal specification formulae is defined
by the following grammar of axiom A, where t ∈ T and p (resp. q) is a first-order
formula over Presburger arithmetic formulae [12] with free variables over C(t)
(resp. C(i)): A→ [q]B , B → (B ∧B)|(B ∨B)|(¬B)|t[p] .

These formulae allow specifiers to express modal properties about CWF-nets’
correct executions. Any modal specification formula [q]m ∈ S can be interpreted
as a may-formula or a must-formula. Given a CWF-net, a may-formula (resp. a
must-formula) describes a behaviour constrained by m that has to be ensured
by at least one (resp. all) correct execution of initial state satisfying q. Formally,
the semantics of a formula m generated from B, where the semantics of ¬,∨ and
∧ is standard, is defined by:

– wt |=may t[p] iff ∃σ = x1, x2, ..., xn−1 ∈ Σ. σ |= wt ∧ ∃k. xk(t) |= p,
– wt |=must t[p] iff ∀σ = x1, x2, ..., xn−1 ∈ Σ. σ |= wt ∧ ∃k. xk(t) |= p.

Furthermore, given a may-formula (resp. must-formula) [q]m ∈ S, its seman-
tics is inductively defined by:

– CPN |=may q[m] iff ∃σ ∈ Σ,Ma ∈Mi,Mb ∈Mo. Ma
σ−→Mb ∧ Ma(i) |= q ∧

σ |= wt ∧ wt |=may m,

– CPN |=must q[m] iff ∀σ ∈ Σ,Ma ∈ Mi.Ma(i) |= q.(∃Mb ∈ Mo. Ma
σ−→

Mb ⇒ (σ |= wt ∧ wt |=must m)).

Definition 6 (Modal Specification). A modal specification is defined by a
tuple (Mmay,Mmust) where Mmay ⊂ S is a finite set of may-formulae, and
Mmust ⊂ S is a finite set of must-formulae.

A CWF-net CPN satisfies a modal specification MS = (Mmay,Mmust), written
CPN |= MS, iff ∀m ∈Mmay. CPN |=may m ∧ ∀m′ ∈Mmust. CPN |=must m

′.

2.4 Constraint System

A constraint system is defined by a set of constraints (properties), which must
be satisfied by the solution of the problem it models. Such a system can be
represented as a Constraint Satisfaction Problem (CSP) [13]. Formally, a CSP
is a tuple Ω =< X,D,C > where X is a set of variables {x1, . . . , xn}, D is a
set of domains {d1, . . . , dn}, where di is the domain associated with the variable
xi, and C is a set of constraints {c1(X1), . . . , cm(Xm)}, where a constraint cj
involves a subset Xj of the variables of X. It is such that each variable appearing
in a constraint should take its value from its domain. Hence, a CSP models NP-
complete problems as search problems where the corresponding search space is
the Cartesian product space d1 × . . .× dn.

The solution of a CSP Ω is computed by a labelling function L, which pro-
vides a set v (called valuation function) of tuples assigning each variable xi of X
to one value from its domain di such that all the constraints of C are satisfied.
More formally, v is consistent—or satisfies a constraint c(X) of C—if the pro-
jection of v on X is in c(X). If v satisfies all the constraints of C, then Ω is a
consistent or satisfiable CSP. In the present paper, we propose to use Constraint
Logic Programming over Finite Domains, written CLP(FD) [14], to solve the
CSP representing the modal specifications to be verified.

3 Motivating Example

Let us consider a business process workflow of a Question and Answer portal,
which is a part of a proprietary issue tracking system used to manage bugs
and issues requested by the customers of a tool provider company3. It allows
company’s customers to ask questions that are then answered by the company’s
sellers. To use the system, users have to be registered. Three types of users can
log-in: clients, sellers and administrators. Clients can ask questions that are then
answered by sellers. Once the answer to a question has been validated by the
client who asked it, the administrator archives the question. An execution of the
workflow is complete once all users have been logged-out and unregistered. We
present one of the several refinements of the workflow modelled by a CWF-net.
For clarity, this CWF-net is described by several sub-CWF-nets where the places
with the same name are the same, as, e.g., HomeQA place in Fig. 3 and 2(a).

(a) Create Question (b) Answer Question

(c) (Un)Valid Answer (d) Archive Question

Fig. 2. sub-CWF-nets of the Question and Answer CWF-net

In this refinement, there are three colours. The first colour models a set
U = {u1, .., ut} of t user names representing the different users of the system.

3 For confidentiality reasons, the details about this case study are not given.

The second colour is used for a set R = {client, seller, admin} of roles, which
are assigned to users. Finally, to represent the question states, the third colour
Q = {unanswered, answered, validated} is a set of statuses. Table 1 shows the
colours associated with places of the Question and Answer CWF-net, and Tab. 2
shows the colours, inputs, outputs and guards (u, u1, u2 ∈ U, r ∈ R, q ∈ Q).

An execution of the Question and Answer CWF-net starts with at least three
users (a client, a seller, and an administrator). To illustrate how this CWF-net
works, let us consider the following execution with u1, u2 and u3 as initial mark-
ing: each user is registered, then logs in and navigates to the QA’s Home(Fig. 3):

– Register(u1, client), Login(u1, client), HomeToQA(u1, client)
– Register(u2, seller), Login(u2, seller), HomeToQA(u2, seller)
– Register(u3, admin), Login(u3, admin), HomeToQA(u3, admin)

The client creates a new question (Fig. 2(a)):
– CreateQ(u1, client), CommitQ(u1, client, unanswered, u1)

The seller selects the question and the answer (Fig. 2(b)):
– SelectQ(u2, seller, unanswered, u1), CreateA(u2, seller, unanswered, u1)
– CommitA(u2, seller, answered, u1)

The client selects the question, reads the answer and validates (Fig. 2(c)):
– SelectQ(u1, client, answered, u1), V iewA(u1, client, answered, u1)
– AcceptA(u1, client, answered, u1)

The administrator selects the question and archives it (Fig. 2(d)):
– SelectQ(u3, admin, validated, u1),ArchiveQA(u3, admin, validated, u1)

The users navigate to Home and then log-out and are unregistered (Fig. 3):
– QAtoHome(u1, client), Logout(u1, client) UnRegister(u1, client)
– QAtoHome(u3, seller), Logout(u3, seller) UnRegister(u2, seller)
– QAtoHome(u3, admin), Logout(u3, admin) UnRegister(u3, admin)

Regarding this business process, the goal is to verify, at the specification or design
stage of the development, some required behavioural properties derived from
textual requirements and business analyst expertise. We consider the following
properties, denoted pi for later references (nbUsers denotes the number of users

in the initial marking: nbUsers =
t∑

r=1
Mi(i)(r)).

p1: QA |=must [true]Register[u = u1]∧ ..∧Register[u = ut]: all users must register;
p2: QA |=may [true]V iewA[r = admin]: an admin may view an answer;
p3: QA |=may [true]CreateQ[r = client, u = ux] ∧RefuseA[r = client, u1 = ux]: ux

client may create a question and refuse the answer;
p4: QA |=must [true]CommitQ[u2 = ux] ⇒ CommitA[u2 = ux] ∧ ArchiveQA[u2 =

ux]: when ux asks a question it must be answered and archived;
p5: QA |=must [true]¬CreateA[r = client]: a client must not answer a question;
p6: QA |=may [nbUsers > 3]CreateQ[u = ux] ∧ ¬CreateQ[u = uy]: there may be an

user ux who asks a question while another (i.e. uy) does not;
p7: QA |=must [nbUsers < 3]¬CreateQ[true]: if there is less than three users, no

question is asked;
p8: QA |=must [true]CreateQ[true] ⇒ (Register[r = client] ∧ Register[r = seller]

∧Register[r = admin]): if a question is asked then the system must have
registered a client, a seller and an administrator.

Let us emphasize that these properties could not be expressed without taking
colours into account because data are necessarily involved.

F
ig
.
3
.

L
o
g
in

a
n
d

N
av

ig
a
ti

o
n
su
b-

C
W

F
-n

et

T
a
b
le

1
.

C
o
lo

u
rs

o
f
Q
u
es
ti
o
n
a
n
d
A
n
sw

er
C

W
F

-n
et

’s
P

la
ce

s

C
o
lo

u
rs

P
la

ce
s

U
i,
o

U
×

R
P
0
,H

om
e,
H
om

eQ
A
,H

om
eS

R
U
×

R
×

Q
×

U
D
is
p
la
y
Q
,D

is
p
la
y
A
,P

1
,P

3

Q
×

U
Q
u
es
ti
on

s

T
a
b
le

2
.

C
o
lo

u
rs

,
In

p
u
ts

,
O

u
tp

u
ts

,
a
n
d

G
u
a
rd

s
o
f
Q
u
es
ti
o
n
a
n
d
A
n
sw

er
C

W
F

-n
et

’s
T

ra
n
si

ti
o
n
s

T
ra

n
si
ti
o
n

C
o
lo
u
rs

In
p
u
ts

O
u
tp

u
ts

G
u
a
rd

R
e
g
is
te
r

U
×
R

u
(u
,
r
)

T
r
u
e

U
n
R
e
g
is
te
r

U
×
R

(u
,
r
)

u
T
r
u
e

L
o
g
in
,
L
o
g
o
u
t
U
×
R

(u
,
r
)

(u
,
r
)

T
r
u
e

H
o
m
e
T
o
Q
A

U
×
R

(u
,
r
)

(u
,
r
)

T
r
u
e

Q
A
to
H
o
m
e

U
×
R

(u
,
r
)

(u
,
r
)

T
r
u
e

H
o
m
e
T
o
S
R

U
×
R

(u
,
r
)

(u
,
r
)

T
r
u
e

S
R
to
H
o
m
e

U
×
R

(u
,
r
)

(u
,
r
)

T
r
u
e

C
r
e
a
te
Q

U
×
R

(u
,
r
)

(u
,
r,
′
u
n
a
n
s
w
e
r
e
d
′ ,
u
)

r
=
′
c
li
e
n
t′

E
d
it
Q

U
×
R
×
Q
×
U

(u
1
,
r,
q
,
u
2
)

(u
1
,
r,
q
,
u
2
)

T
r
u
e

C
o
m
m
it
Q

U
×
R
×
Q
×
U

(u
1
,
r,
q
,
u
2
)

(u
1
,
r
)
a
n
d

(q
,
u
2
)

T
r
u
e

S
e
le
c
tQ

U
×
R
×
Q
×
U

(u
1
,
r
)
a
n
d

(q
,
u
2
)
(u
,
r,
q
,
u
)

T
r
u
e

C
r
e
a
te
A

U
×
R
×
Q
×
U

(u
1
,
r,
q
,
u
2
)

(u
1
,
r,
′
a
n
s
w
e
r
e
d
′ ,
u
2
)

r
=
′
s
e
ll
e
r
′
∧
q
=
′
u
n
a
n
s
w
e
r
e
d
′

E
d
it
A

U
×
R
×
Q
×
U

(u
1
,
r,
q
,
u
2
)

(u
1
,
r,
q
,
u
2
)

T
r
u
e

C
o
m
m
it
A

U
×
R
×
Q
×
U

(u
1
,
r,
q
,
u
2
)

(u
1
,
r
)
a
n
d

(q
,
u
2
)

T
r
u
e

V
ie
w
A

U
×
R
×
Q
×
U

(u
1
,
r,
q
,
u
2
)

(u
1
,
r,
q
,
u
2
)

u
1
=
u
2
∧
q
=
′
a
n
s
w
e
r
e
d
′

A
c
c
e
p
tA

U
×
R
×
Q
×
U

(u
1
,
r,
q
,
u
2
)

(u
1
,
r
)
a
n
d

(′
v
a
li
d
a
te
d
′ ,
u
2
)

T
r
u
e

R
e
f
u
s
e
A

U
×
R
×
Q
×
U

(u
1
,
r,
q
,
u
2
)

(u
1
,
r
)
a
n
d

(′
u
n
a
n
s
w
e
r
e
d
′ ,
u
2
)
T
r
u
e

A
r
c
h
iv
e
Q
A

U
×
R
×
Q
×
U

(u
1
,
r,
q
,
u
2
)

(u
1
,
r
)

r
=
′
a
d
m
in
′
∧
q
=
′
v
a
li
d
a
te
d
′

B
a
c
k
T
o
H
o
m
e
U
×
R
×
Q
×
U

(u
1
,
r,
q
,
u
2
)

(u
1
,
r
)
a
n
d

(q
,
u
2
)

T
r
u
e

4 Modelling Executions of CWF-nets

This section aims to model the correct executions of a CWF-net by a constraint
system, which is then solved to validate or invalidate properties of interest.

Theorem 2 (State equation [8]). Let CPN = (P, T,C,W), if a marking Mb

is reachable from Ma then there exists x a weighted set of transitions such that:

Mb = Ma + (W+ −W−) ~ x. (1)

To illustrate (1), let us consider the CWF-net described in Sect. 3. Let M1

be a marking such that M1(i) = {u1},∀p ∈ P \ {i}.M1(p) = O, and M2 be
a marking such that M2(o) = {u1},∀p ∈ P \ {i}.M2(p) = O. The marking
M2 is reachable from M1 by the transition sequence α = Register(u1, client),
Unregister(u1, client). Let x1 denote the weighted set of transitions in α, then
we have M2 = M1 + (W+ −W−) ~ x1.

The set of solutions of the state equation (1) of a CWF-net, where Ma ∈Mi

and Mb ∈Mo, defines an over-approximation of the set of its correct executions.
A solution of the state equation (1) is called spurious if it does not correspond to
an execution of the considered CWF-net. For example, let us now consider the
weighted set x2 of the transitions Register(u1, client), Unregister(u1, client),
and EditQ(u1, client, unanswered, u1). In this case we have M2 = M1 + (W+−
W−)~x2, however the weighted set of transitions x2 does not correspond to any
correct execution, i.e. x2 is a spurious solution. This is because of the transition
EditQ, which produces and consumes the same token in place P1.

To dismiss spurious solutions, this over-approximation can be refined by con-
sidering structural properties of the places and transitions involved in the consid-
ered executions. To this end, we introduce the notion of the subnet of a CWF-net
associated with a solution of its state equation (1).

Definition 7. Let CPN = (P, T,C,W) a CWF-net, Ma, Mb two markings of
CPN , and x a weighted set of transitions such that Mb = Ma+(W+−W−)~x.
We define the subnet sCPN(x) = (sP, sT, sF) where:

– sP = {p ∈ P \ {p ∈ P |Ma(p) 6= O ∨Mb(p) 6= O} | ∃t ∈ T,W+(t, p) ~ x(t) >
0 ∨W−(p, t) ~ x(t) > 0}

– sT = {t ∈ T | x(t) > 0}
– sF = {(a, b) | a ∈ (sP ∪ sT) ∧ b ∈ (sP ∪ sT) ∧ (W+(a, b) ~ x(a) > 0 ∨
W−(a, b) ~ x(b) > 0)}

Among various structural properties of CWF-nets, the existence of a siphon
and a trap in the subnet of a CWF-net, associated with a solution of its state
equation (1), is relevant (Lemma 1). Moreover, any subnet of a solution of (1)
that contains a siphon or a trap is a spurious solution. Theorem (3) defines a
constraint system for determining the presence of a siphon in a Petri net.

Theorem 3 ([10]). Let θ(PN) be the following constraint system associated
with a Petri net PN = (P, T, F): ∀p ∈ P,∀t ∈• p.

∑
p′∈•t ξ(p

′) ≥ ξ(p) ∧∑
p∈P ξ(p) > 0 where ξ : P → {0, 1} is a valuation function. PN contains a

siphon if and only if there is a valuation satisfying θ(PN).

In this way, checking the existence of traps and of siphons can be done si-
multaneously thanks to the following theorem.

Theorem 4. Let CPN = (P, T,C,W) a CWF-net, Ma, Mb two markings, and
x a weighted set of transitions such that Mb = Ma+(W+−W−)~x. If sCPN(ν)
contains a trap (resp. siphon) N then N is also a siphon (resp. trap).

Fig. 4. Subnet of x2

Structural properties (the siphon existence) can
be exploited to refine the state equation (1) over-
approximation. Let us consider the above-mentioned
spurious solution x2. The subnet of x2 is shown in
Fig. 4. We can see that in this subnet formed by
the solution x2, place P1 is a siphon as the valua-
tion ξ, such that ξ(P1) = 1 and ξ(P0) = 0, satisfies
θ(sCPN(x2)).

Theorem 5 uses the state equation (1) together with the constraint system of
Theorem 4 to provide a constraint system for modeling executions of CWF-net
without spurious solutions.

Theorem 5. Let CPN = (P, T,C,W) a CWF-net, Ma, Mb two markings of
CPN , x a weighted set of transitions, and sCPN(x) = (sP, sT, sF) the subnet
associated to CPN and the weighted set of transitions x. Let φ(CPN,Ma,Mb, x)
be the following constraint system:

– Mb = Ma + (W+ −W−) ~ x,
– there is no valuation satisfying θ(sCPN(x)), and
– ∀p ∈ sP, |• p |≤ 1∧ | p• |≤ 1,

If φ(CPN,Ma,Mb, x) is satisfiable then there exists σ |= x such that Ma
σ−→Mb.

Let CPN = (P, T,C,W) be a CWF-net, Ma, Mb two markings of CPN , the
set of solutions of φ(CPN,Ma,Mb, x) is an under-approximation of the set of
correct executions reaching Mb from Ma in CPN . Any execution modelled by
the constraint system φ is called a segment. Any correct execution of CPN can
be modelled by a finite number of segments.

Theorem 6. Let CPN = (P, T,C,W) a CWF-net, Ma, Mb two markings of
CPN . Let ψ(CPN,Ma,Mb, X,K) be the following constraint system:

– ∀k ∈ 1..K, φ(CPN,Mk−1,Mk, xk),
– M0 = Ma ∧MK = Mb, and
– X = {x1, .., xK}.

There exists σ = σ1, .., σK such that ∀i ∈ 1..K, σi |= xi and Ma
σ−→ Mb if and

only if ∃K ∈ N such that ψ(CPN,Ma,Mb, X,K) is satisfiable.

The constraint system of Theorem (6) allows modelling any correct execution
of a CWF-net composed of at most K segments. This naturally leads us to
consider two decision problems.

The first decision problem, called the K-bounded validity of a modal formula,
only considers executions formed by K segments, at most. The second one,
called the unbounded validity of a modal formula, generalizes the first problem
by considering executions formed by an arbitrary number of segments.

To verify the K-bounded validity of a modal [q]m may-formula determining
the existence of a correct execution modelled by K segments starting from an
initial marking satisfying q where the behaviour of m is satisfied, is enough.
Similarly, determining the K-bounded validity of a modal [q]m must-formula
can be done by determining the non-existence of a correct execution modelled
by K segments starting from an initial marking satisfying q where the behaviour
of ¬m is satisfied.

Let x be a weighted set of transitions, and [q]m a modal formula. We de-
note P (x,m) the constraint corresponding to the formula m. To construct this
constraint, every terminal symbol t[p] of the formula m is replaced by the cor-
responding constraint obtained by replacing every free variable of p in C(t) by
the corresponding variable over x. To illustrate this construction, let us consider
m = CreateQ[r = client, u = ux] ∧ RefuseA[r = client, u1 = ux]. The cor-
responding constraint P (x,m) is x(CreateQ)(r) = client ∧ x(CreateQ)(u) =
ux ∧x(RefuseA)(r) = client∧x(RefuseA)(u) = ux. We say that x |= m (i.e. x
satisfies m) if and only if x∧P (x,m) is satisfiable. Let X = {x1, .., xn} be a set
of weighted sets of transitions, X |= m if and only if x1 |= m ∨ .. ∨ xn |= m.

Theorem 7. Let CPN be a CWF-net and M = (Mmay,Mmust) be a modal
specification of CPN . CPN satisfies the modal specification M if and only if:

– ∀[q]m ∈Mmay ∃k ∈ N, Ma ∈Mi and Mb ∈Mo such that
Ma(i) |= q ∧ ψ(CPN,Ma,Mb, X,K) ∧X |= m is satisfiable.

– ∀[q]m ∈Mmust ∃k ∈ N, Ma ∈Mi and Mb ∈Mo such that
Ma(i) |= q ∧ ψ(CPN,Ma,Mb, X,K) ∧X |= ¬m is not satisfiable.

Theorem (7), with k ≤ K, defines a constraint system, which allows to de-
termine the K-bounded validity of a modal specification.

Theorem 8. Let CPN be a CWF-net where Ξ is composed of finite data-types,
R̄must the set of all well-formed must-formulae not satisfied by CPN , and Rmay
the set of all well-formed may-formulae satisfied by CPN . There exists Kmax

such that:
– ∀[q]m ∈ R̄must ∃k ≤ Kmax, Ma ∈Mi and Mb ∈Mo such that

Ma(i) |= q ∧ ψ(CPN,Ma,Mb, X,K) ∧X |= ¬m is satisfiable.
– ∀[q]m ∈ Rmay ∃k ≤ Kmax, Ma ∈Mi and Mb ∈Mo such that

Ma(i) |= q ∧ ψ(CPN,Ma,Mb, X,K) ∧X |= m is satisfiable.

Theorem (8) states that for any CWF-net where Ξ is composed of finite
data-types, there exists Kmax such that the Kmax-bounded validity of a modal
specification is equivalent to the unbounded validity of a modal specification.
However this is not true for CWF-net where Ξ is composed of infinite data-
types. This is consistent with the fact that reachability of CPN with infinite
colours is undecidable as they can, for example, simulate a Minsky 2-counter
machine [15].

5 Implementation and Experiments

This section describes the tool chain developed to experimentally validate this
paper’s proposals, and illustrates its use on the motivating example from Sect. 3.

5.1 Overview of the Prototype Architecture and Procedures

In order to assess our work, especially regarding its feasibility and efficiency,
we have implemented our approach within the Eclipse platform on a trial basis.
The process starts using a graphical CWF-net editor created within the Sirius
framework4, which is an EMF-based open source project to create customized
graphical modeling workbench by leveraging Eclipse Modeling technologies. Ba-
sically, it provides a generic workbench for model-based architecture engineering
that could be easily tailored to fit the specific needs of a given Domain Specific
Language, e.g., CWF-nets in our context. Hence the developed CWF-net editor
allows producing an XML file corresponding to the designed CWF-net model. It
is completed by the modal specification, which is manually designed using a ded-
icated XML format. Once syntactically and semantically validated by a modal
checker, these inputs are translated into constraint systems that are handled by
the CLP(FD) library of Sicstus Prolog5. Finally, a report is generated.

To verify a may-formula (resp. a must-formula) [q]m, the tool first checks if
there exists a solution x of the over-approximation, given by the state equation
(Theorem (2)) for which the subnet (Theorem (7)) does not contain siphons,
such that the modelled execution satisfies (resp. does not satisfy) [q]m (we denote
this constraint system ϕ). If such an execution exists, it then tries to find an
execution modelled by K segments (Theorem (6)), which satisfies (resp. does not
satisfy) [q]m (we denote this constraint system φ(K)). It then reports about the
K-bounded validity of a given modal formula m. To cope with the complexity
raised by Kmax, K can be fixed to a manageable value. When fixing K to Kmax

(or greater than Kmax), the algorithm enables deciding the unbounded validity
of the must-formula m. The results given in Sect. 4 ensure its soundness and
completeness. Finally, solving a CSP over a finite domain being an NP-complete
problem with respect to the domain size, this algorithm inherits this complexity.

Modellers often use, in the context of workflow development, infinite colours
(e.g., strings, integers) to represent data (e.g., usernames of a system, identifiers
of files), even if these data are usually not directly manipulated by the control
flow. However, CWF-nets with infinite colours cannot be directly handled due
to the nature of the constraint solver over finite domains. Fortunately, abstrac-
tion techniques help to tackle the problem entailed by this restriction and can
therefore cope with infinite colours. [16] proposes an algorithm to construct a
finite state abstract program from a given, possibly infinite, state program (e.g.,
a CWF-net) by means of a syntactic program transformation starting with an
initial set of predicates from a specification (e.g., modal specification).

4 http://projects.eclipse.org/projects/modeling.sirius
5 https://sicstus.sics.se

Table 3. Experimentation Results

Formula ϕ K φ(K) Result

p1 QA |=must [true]Register[u = u1] ∧ .. ∧ Register[u = ut] TRUE - - TRUE
p2 QA |=may [true]V iewA[r = admin] FALSE - - FALSE

p3
QA |=may [true]CreateQ[r = client, u = ux] TRUE

5 FALSE -
∧RefuseA[r = client, u1 = ux] 7 TRUE TRUE

p4
QA |=must [true]CommitQ[u2 = ux]⇒ CommitA[u2 = ux] TRUE - - TRUE∧ArchiveQA[u2 = ux]

p5 QA |=must [true]¬CreateA[r = client] TRUE - - TRUE
p6 QA |=may [nbUsers > 3]CreateQ[u = ux] ∧ ¬CreateQ[u = uy] TRUE 12 TRUE TRUE
p7 QA |=must [nbUsers < 3]¬CreateQ[true] TRUE - - TRUE

p8
QA |=must [true]CreateQ[true]⇒ (Register[r = client]

TRUE - - TRUE∧Register[r = seller] ∧ Register[r = admin]

This method is shown to be sound (the abstract program is always guaran-
teed to simulate the original one) and complete (the algorithm can produce a fi-
nite simulation-equivalent, resp. bisimulation-equivalent, abstract program if the
concrete program has a finite abstraction with respect to simulation, resp. bisim-
ulation, equivalence). On the one hand, in the case of a bisimulation-equivalent
abstract program, the abstracted modal specification can be verified using our
method, and the (in)validity of the modal specification can be directly inferred.
On the other hand, for simulation-equivalent abstract program, only the validity
of a may-formula and the invalidity of a must-formula can be inferred.

To handle infinite colours, another approach is to consider only a finite num-
ber of data of an infinite colour according to control-flow selection criteria (e.g.,
decision or condition coverage) [17]. However, this approach is not complete.

5.2 Experimental Results

The approach and the corresponding implementation have been applied to the
industrial issue tracking system described in Sect. 3. Since the properties have
initially been defined by the business analysts involved in the project, we assume
that they are representative of properties that should be verified by engineers
when they design and implement such business processes. Furthermore, the ob-
tained verification results have been shared and discussed with them. Table 3
shows an extract of the experimental results focusing on the properties p1 to
p8 from Sect. 3. In Tab. 3, the modal formula associated with each property
is specified, and the computation result is given by its final verdict (valid or
not) as well as the internal evaluation of ϕ. The input K and the corresponding
computed value of φ(K) are also precised when it makes sense, i.e. when the
algorithm cannot conclude without this bound.

On the one hand, we observe that when verifying must-formulae that are
satisfied by the CWF-net (e.g., p1, p4), or may-formulae that are not satisfied
by the WF-net (e.g., p2), the over-approximation ϕ is usually enough to con-
clude. On the other hand, when verifying may-formulae that are satisfied by the
CWF-net (e.g., p3), or must-formulae that are not satisfied by the WF-net, the
decomposition into K segments is needed. We empirically show that this decom-
position is very effective since values of Kmax are usually moderate (Kmax = 12
for p6, less than 30 on all the experiments conducted on this case study).

Thanks to the experiments conducted using this proof-of-concept prototype,
we can conclude that the proposed method is suitable and efficient, and can
therefore gain benefits within business process design and verification. Notably,
these experiments highlighted that the approach is able to conclude about the
(in)validity of the studied properties in a very short time (less than 5 seconds).

6 Conclusion and Related Work

This paper presents an approach based on constraint systems to model execu-
tions of CWF-nets in order to verify modal specifications. It allows managing
realistic and complex specifications that manipulate and manage data types.
This approach, supported by an Eclipse-based prototype, has been successfully
experimented on a non-trivial case study to validate an issue tracking system.
These promising results show the relevance and the effectiveness of the approach
to validate complex business processes using modal specifications.

Modal specifications–originally introduced in [9]–allow loose or partial spec-
ifications in a process algebraic framework. Adapted to Petri nets, they allow
defining relations between generated modal languages to decide specifications
refinement and asynchronous composition [18]. In [10], modal specifications lan-
guage over WF-nets expresses requirements on several activities and on their
causalities. To handle CWF-nets, we extend modal specifications with additional
conditions on initial state as well as on coloured transitions.Unlike [18], to verify
modal specifications, our approach focuses on correct executions of CWF-nets.

A lot of results have been provided to model and to analyse Petri nets by
using equational approaches [19]. Among popular resolution techniques, con-
straint programming has been successfully used to analyse properties of Petri
nets. In [20], an SMT-based approach to the coverability problem using the state
equation and traps is presented. Our CSP-based approach also takes advantage
of trap and siphon properties in pursuance of modelling correct executions of
CWF-nets. Furthermore, constraint programming makes it possible to tackle
one of the major verification problems–the reachability problem, as shown in [21]
where a decomposition into step sequences, i.e. segments, was modelled by con-
straints. Our approach is almost similar, but the constraints on step sequences
are much stronger in our case because we address not only the reachability of a
given marking, but also the transitions involved in the path reaching it.

As a future work, we plan extensive experiment to increase the scalability of
our verification approach based on constraint systems. To improve its readiness
level and to foster its use by business analysts, we plan to propose user-friendly
modal properties patterns. On the theoretical side, investigating modal specifi-
cations preservation through refinements is a further research direction.

References

1. Cardoso, J., Mendling, J., Neumann, G., Reijers, H.A.: A discourse on complexity
of process models. In: 2nd Workshop on Business Process Intelligence (BPI’06).
Volume 4103 of LNCS., Vienna, Austria, Springer (September 2006) 117–128

2. Dumas, M., ter Hofstede, A.H.M.: UML Activity Diagrams As a Workflow Specifi-
cation Language. In: 4th Int. Conf. on The Unified Modeling Language (UML’01),
Toronto, Canada, Springer-Verlag (October 2001) 76–90

3. van der Aalst, W.M.P.: Three Good reasons for Using a Petri-net-based Workflow
Management System. Journal of Information and Process Integration in Enter-
prises 428 (December 1997) 161–182

4. van der Aalst, W.M.P., Van Hee, K.M., Houben, G.J.: Modelling and analysing
workflow using a Petri-net based approach. In: Workshop on Computer-Supported
Cooperative Work, Petri nets and related formalisms. (June 1994) 31–50

5. Ellis, C.A., Nutt, G.J.: Modeling and enactment of workflow systems. In: 14th

Int. Conf. on Application and Theory of Petri Nets (Petri Nets’93). Volume 691 of
LNCS., Chicago, IL, USA, Springer (June 1993) 1–16

6. Liu, D., Wang, J., Chan, S.C.F., Sun, J., Zhang, L.: Modeling workflow processes
with colored Petri nets. Computers in Industry 49(3) (December 2002) 267–281

7. Larsen, K.G.: Modal Specifications. In: Int. Workshop on Automatic Verifica-
tion Methods for Finite State Systems. Volume 407 of LNCS., Grenoble, France,
Springer-Verlag (June 1989) 232–246

8. Jensen, K.: Coloured Petri nets. In: Petri Nets: Central Models and Their Prop-
erties. Volume 254 of LNCS. Springer (1987) 248–299

9. Larsen, K.G., Thomsen, B.: A modal process logic. In: 3rd Annual Symp. on Logic
in Computer Science (LICS’88), Edinburgh, UK, IEEE CSP (July 1988) 203–210

10. Bride, H., Kouchnarenko, O., Peureux, F.: Verifying modal workflow specifications
using constraint solving. In: Int. Conf. on Integrated Formal Methods (IFM’14).
Volume 8739 of LNCS., Bertinoro, Italy, Springer (September 2014) 171–186

11. Murata, T.: Petri nets: Properties, analysis and applications. IEEE 77(4) (April
1989) 541–580

12. Presburger, M.: Über die vollständigkeit eines gewissen systems der arithmetik
ganzer zahlen, in welchem die addition als einzige operation hervortritt. In: Spra-
wozdanie z I Kongresu metematykw slowiaskich, Warszawa, Poland (1929) 92–101

13. Macworth, A.K.: Consistency in networks of relations. Journal of Artificial Intel-
ligence 8(1) (1977) 99–118

14. van Hentenryck, P., Dincbas, M.: Domains in logic programming. In: Nat. Conf.
on Artificial Intelligence (AAAI’86). (August 1986) 759–765

15. Minsky, M.L.: Computation: finite and infinite machines. Prentice-Hall, Inc. (1967)
16. Namjoshi, K.S., Kurshan, R.P.: Syntactic program transformations for automatic

abstraction. In: 12th Int. Conf. on Computer Aided Verification (CAV’00). Volume
1855 of LNCS., Chicago, IL, USA, Springer (July 2000) 435–449

17. Vilkomir, S., Bowen, J.: Formalization of software testing criteria using the Z nota-
tion. In: 25th Int. Conf. on Computer Software and Applications (COMPSAC’01),
Chicago, IL, USA, IEEE CSP (October 2001) 351–356

18. Elhog-Benzina, D., Haddad, S., Hennicker, R.: Refinement and asynchronous com-
position of modal Petri nets. In: Transactions on Petri Nets and Other Models of
Concurrency V. Volume 6900 of LNCS. Springer (2012) 96–120

19. Desel, J.: Basic linear algebraic techniques for place/transition nets. In: Lectures
on Petri Nets I: Basic Models. Volume 1491 of LNCS. Springer (1998) 257–308

20. Esparza, J., Ledesma-Garza, R., Majumdar, R., Meyer, P., Niksic, F.: An SMT-
based approach to coverability analysis. In: 26th Int. Conf. on Computer Aided
Verification (CAV’14), Vienna, Austria, Springer (2014) 603–619

21. Bourdeaud’huy, T., Hanafi, S., Yim, P.: Incremental Integer Linear Programming
Models for Petri Nets Reachability Problems. Petri Net: Theory and Applications
(February 2008) 401–434

