
A SysML Formal Framework to Combine
Discrete and Continuous Simulation for Testing

Jean-Marie Gauthier, Fabrice Bouquet,
Ahmed Hammad, and Fabien Peureux

Institut FEMTO-ST – UMR CNRS 6174, Univ. Bourgogne Franche-Comté
16, route de Gray, 25030 Besançon, France

{jmgauthi,fbouquet,ahammad,fpeureux}@femto-st.fr

Abstract. The increasing interactions between huge amount of software
and hardware subsystem (hydraulics, mechanics, electronics, etc.) lead to
a new kind of complexity that is difficult to manage during the validation
of safety-critical and complex embedded systems. This paper introduces a
formal SysML-based framework to combine both discrete and continuous
simulation to validate physical systems at the early stage of development.
This original modelling framework takes as input a SysML model anno-
tated with Modelica code and OCL constraints. Such a model provides a
precise and unambiguous description of the designed system and its en-
vironment, involving both discrete and continuous features. This formal
framework enables to automatically generate Modelica code to perform
real-time simulation. On the basis of a constraint system derived from
the discrete SysML/OCL modelling artefacts, it also makes it possible to
automatically generate black-box test cases that can be used to validate
the simulated system as well as the corresponding physical device. This
framework has been validated by conclusive experiments conducted to
prototype a new energy manager system for aeronautics.

Keywords: SysML, Model-Driven Engineering, Real-Time System, Discrete &
Continuous Simulation, Modelica, Constraint Solving, Model-Based Testing.

1 Introduction

Due to increasing behavioural complexity and growing technology heterogene-
ity combined with still higher expectations, checking that a software embedded
system meets its specifications becomes more and more complex, expansive and
time-consuming. Moreover, in the traditional development of such systems, the
Verification and Validation (V&V) activities begin only after implementation
and integration are completed. Under these conditions, discovered problems are
particularly more difficult and more expensive to fix, what is a major concern
especially when the systems are critical, such as lots of system for aeronautical,
railway, automotive, nuclear or telecommunication domains. In these contexts,
such systems indeed require to be as trusty as possible because the most lit-
tle failure could lead to financial as well as human losses, and even so to an
irreversible damage of the whole system including its environment.



2 J-M. Gauthier et al.

To mitigate these issues, Model-Based Software Engineering (MBSE) ap-
proaches have emerged for several years as a way to improve and automate
design, analysis, development, verification and validation of the software embed-
ded in high technology products. Basically, MBSE aims to achieve these software
life cycle activities using models that describe the system under development.
This kind of approach is mostly supported using (semi-)formal modelling arte-
facts, which are enough precise to achieve formal verification, but also simulation
and testing that provide early practical feedback to validate requirements [1].
Simulation code generation from formal model is increasing as it reduces the gap
between high level of abstraction modelling and rapid prototyping, as demon-
strated in [2]. Finally, using formal model also enables to apply Model-Based
Testing (MBT) approaches [3] that aim to cross-check a model against an imple-
mentation, and hence make it possible to provide early validation of functional
as well as non-functional properties, such as performance and resource use.

In addition, applying iterative and incremental approaches has also helped
the development of critical embedded systems, especially within real-time do-
main. Such typical approaches are known as In-the-Loop processes, and can
be performed at different levels: Model-in-the-loop (MIL), hardware-in-the-loop
(HIL), processor-in-the-loop (PIL), and software-in-the-loop (SIL) [4]. Simula-
tion and testing are at the core of all these system design processes. For example,
within MIL process, at the early stages of the design process, the system (or
subpart of the system) and its environment are modelled and simulated using
languages such as Modelica1 or Matlab-Simulink2 to ensure that the designed
(sub)system conforms to its requirements [5]. Another level of simulation and
testing concerns the HIL process and consists to test the real hardware platform
in combination with its simulated environment (called the plant model) [6].

This paper describes an original SysML-based formal framework for simu-
lation and testing of multi-physical and critical systems, that bridges the gap
between high-level design model, starting point of MBSE approaches, and real-
time execution platform, keystone of the In-the-Loop approaches. In this way,
this framework allows system engineers to stay as close as possible of the initial
design specifications when achieving all the steps of the development life-cycle.
Moreover, it takes advantage of both approaches by ensuring a model centric
process enabling validation, simulation and testing from the earliest stage of de-
sign. To achieve that, the architecture and the discrete behaviour of the system
are described by a Systems Modeling Language (SysML) [7] model, which is
annotated with OCL and Modelica code to specify its discrete and continuous
features. This model is used to automatically generate real-time Modelica pro-
gram for simulation, and black-box test cases for validation. The generated test
cases can be simulated using the generated Modelica program to validate the
design model as well as the the physical system itself. Therefore, the proposed
framework can contribute both to MIL process (model against simulated envi-
ronment), and to HIL process (physical system against simulated environment).

1 https://www.modelica.org/documents/ModelicaSpec33.pdf
2 http://www.mathworks.fr/products/matlab/



A SysML Framework to Combine Discrete and Continuous Simulation 3

Fig. 1: Overview of the Validation Process from SysML Models

The validation process supporting this formal framework is depicted in Fig. 1.
The process starts on the top left with the SysML model that specifies both the
system and the plant. This model is expressed using a dedicated subset of the
SysML language, which integrates as a whole SysML constructs, Modelica code
and OCL annotations. From such a model, a first transformation automatically
produces an executable Modelica program to perform real-time simulation. A
second transformation allows deriving a set of constraints describing the dis-
crete and abstract behaviours of the system. This set of constraints can be
solved to achieve (in a discrete manner) animation of the system as well as test
case generation by selecting a subset of trace executions. These abstract test
cases are concretized into executable test scripts that can be executed both on
Modelica simulation model (within MIL and HIL processes) and physical test
bench (within HIL process). During MIL testing, simulation results are manually
compared with the initial system requirements and may also be assessed by the
domain experts. Once the model is validated, it becomes the test oracle within
the HIL testing process: it computes the expected values of the test cases and
allows systematic comparison with the real values obtained on the physical test
bench (a synchronization step between simulation and test bench environments
is required to automate the comparison and the verdict assignment).

The paper is organized as follows. Section 2 introduces the background of
the framework to achieve modelling, animation, simulation and test generation
from SysML models, and motivates the work presented in the paper. In Sect. 3,
we detail the SysML and OCL subset supported by the framework for discrete
specifications, and we describe how it is natively combined with Modelica for
real-time simulation. Section 4 reports on the conclusive results obtained on a
real-life case-study about an helicopter Energy Manager System. Finally, after
discussing related work in Sect. 5, we conclude and outline future work in Sect. 6.

2 Background and Motivation

This section clarifies our motivation by introducing preliminaries on the SysML
modelling language and the Modelica simulation code, and presents the standard
SysML4Modelica that specifies the way to combine them. We also describe the
test engine that enables to animate SysML models and apply MBT strategies.



4 J-M. Gauthier et al.

2.1 SysML Modelling Language

The SysML Modelling Language [7], developed within the Object Management
Group (OMG) since 2001, enables system engineers to specify all aspects of a
complex system using graphical constructs. SysML is a UML profile that adapts
the UML semantics to the system engineering field. The semantics of UML,
through class and composite structure diagrams, has been moved to the system-
level in SysML by the definition of the Block Definition Diagram (BDD) and
Internal Block Diagram (IBD). The BDD is based on the UML class diagram. It
enables to define component using blocks and their relationships such as associ-
ations, generalizations and dependencies. These blocks are instantiated as parts
in the IBD, which is a system-level version of the UML composite structure dia-
gram. It specifies the internal organization of a block by describing its parts and
the connections between them. Usually, parts are connected through flow ports.

Using SysML allows engineers to achieve MBSE approach to specify, develop
and maintain complex systems, notably in the aerospace industry as shown in [8].
In previous work [9], we have proposed to use SysML models to apply MBT
strategies to automatically generate functional black-box test cases. To reach
this goal, subsets of SysML and OCL, called SysML4MBT and OCL4MBT, have
been defined to precisely model the expected behaviour of the System Under Test
(SUT) [10]. It contains BDD and IBD to specify the static structure of the SUT
and its environment, and state machines with OCL constraints to specify, in a
discrete way, behavioural features. Such models are complete and precise enough
to automatically derive black-box test cases using the CLPS-BZ test engine.

2.2 Model Animation and Test Generation using CLPS-BZ

CLPS-BZ [11] is a constraint solver that augments the capabilities of (and co-
operates with) the integer finite domain solver of SICStus Prolog3 by handling
constraints over sets, relations and mappings. Initially built to animate and gen-
erate test cases from B and Z set-oriented formal specifications [12], it has been
extended to manage object-oriented specifications, such as UML/SysML models
with OCL constraints [13]. Basically, such models are translated into an internal
Prolog-readable syntax, called BZP, which provides special constructs for defin-
ing SysML diagrams and OCL expressions as constraints over sets. CLPS-BZ
makes it possible to efficiently execute on discrete domains the BZP code, both
for model animation and for test computation. Test computation consists to look
into the graph of reachable states of the system described by the constraints to
achieve classical test coverage criteria including transition-based, decision-based
and data-oriented criteria [9]. Afterwards, a set of execution traces, that define
the test cases, is computed by solving the constraints to find the sequences of
operation invocations that ensure the given criteria. To achieve that, CLPS-BZ
animates the model and computes a reachability graph, whose nodes are the
constrained states built during the animation, and whose transitions define an
operation invocation. Using constraint solving dramatically reduces the search
space during test generation, which allows the method to scale to larger systems.

3 https://sicstus.sics.se



A SysML Framework to Combine Discrete and Continuous Simulation 5

The constraint system, described using the BZP format, obviously defines
a Constraint Satisfaction Problem (CSP) [14], i.e. a set of constraints, which
must be satisfied by the solution of the problem it models. Formally, a CSP
is a triplet < V,D,C > where V is a set of variables {v1, . . . , vn}, D is a set
of domains {d1, . . . , dn}, where di is the domain associated with the variable vi,
and C is a set of constraints {c1(V1), . . . , cm(Vm)}, where a constraint cj involves
a subset Vj of the variables of V . Within CLPS-BZ, which is able to manage
sets and integer finite domains, variables of V can be either an atom, or a set of
atoms (set(atom)), or a set of (nested) pairs of atom (set(pair(atom, atom))).
However, the CLPS-BZ technology is only able to handle constraints on discrete
domains and thus can execute neither animation nor test generation based on
continuous formula to efficiently address real-time systems. Therefore, CLPS-
BZ enables to derive test cases, as sequences of operation invocations, but an
other and independent model or program is necessary to execute them in the
continuous domain to gather the real and expected results. Moreover, SysML
is natively not executable: it does not include an action language, which could
allow to simulate SysML model, and even less if equations occur. To overcome
this lack, the OMG has proposed an extension to SysML to allow clarifying such
mathematical properties into SysML models using Modelica code. Hence, we
propose to use this extension to adapt and complete the existing approach to
be able to manage in a single model both high-level discrete requirements and
low-level continuous behaviours for test generation purpose.

2.3 Modelica and SysML4Modelica

Modelica is an object-oriented and equation-based language adapted to com-
plex physical systems modelling. Indeed, Modelica is built on acausal modelling
with mathematical equations and object-oriented constructs, and is designed
to support effective library development and model exchange. Since 2012, the
OMG promotes a dedicated SysML-Modelica Transformation specification4 to
integrate Modelica semantics into SysML and to provide a bi-directional trans-
formation between the both languages. The specification gives an extension to
SysML, called SysML4Modelica, which proposes matching semantics between
the SysML constructs and the Modelica code. The integration of Modelica con-
cepts into SysML is based on profiling: the SysML4Modelica constructs enable
to stereotype elements, which are parts of the BDD and the IBD of SysML.

Hence, to describe complex and heterogeneous systems, the SysML4Modelica
profile enables to bring together, in a single model, the non executable graphical
high-level SysML modelling and the real-time and continuous Modelica specifi-
cations. However, no theoretical framework is given to provide a practical way
to combine the architecture and discrete behaviours of SysML models with the
continuous aspects described by Modelica formula. This paper bridges this gap
by defining such a framework to bring them back together to achieve model-
based testing. It integrates constraint solving to address discrete animation and
black-box test generation, and Modelica simulation to address continuous needs.

4 http://www.omg.org/spec/SyM/



6 J-M. Gauthier et al.

This proposed framework aims (1) to avoid managing several models (at least
one for high-level discrete design and one for low-level continuous features) that
require to be manually synchronized, (2) to increase the automation level of the
model-based testing approach by minimizing the number of testing artefacts and
by providing a native link between abstract data (from SysML structures) and
executable structures (derived from Modelica code), and (3) to foster the use of
MBSE approach by supporting in the same modelling framework all design steps
of the real-time system life-cycle activities. The next section precisely introduces
the modelling framework we define to efficiently combine discrete and continuous
features in a single model for simulation and model-based testing purposes.

3 Combining Continuous and Discrete Modelling

Fig. 2: Overlap of
the SysML subsets

This section gives a formal description of the SysML mod-
elling framework unifying discrete and continuous points
of view. As depicted in Fig. 2, the resulting framework
is defined by the intersection of the SysML subset for
discrete modelling with the one dedicated to continuous
modelling. In this section, these both SysML subsets are
detailed and we show how the combination of them defines
a formal SysML modelling framework for simulation and
testing activities. Afterwards, the next section will intro-
duce a proof-of-concept integrated tool chain implement-
ing this theoretical framework. However, this framework
defines a generic way to combine discrete and continuous
SysML modelling, and therefore it can be used and imple-
mented using another similar tooled approaches.

NOTE: in the rest of the paper, to dispel any ambiguity and avoid misunder-
standing, animation is defined as a discrete evaluation of the model (variables
belong to finite domains or sets), i.e. an execution of the model based on con-
straint solving restricted to the SysML data that belong to finite domains or sets,
whereas simulation means real-time simulation of the model, i.e. an execution
of the Modelica code describing the system in a continuous-time process.

3.1 SysML Subset for Simulation

The SysML subset for simulation purpose focuses on the following diagrams:
BDD, IBD and state machine. The structural view of the system is specified in
the BDD with blocks, which are connected each other using flow ports that
are depicted in the IBD. The behaviour of each system component may be
described using state machines. We thus define a SysML model for simulation as
a model Ms comprising two kind of blocks (blocks for component definition and
blocks that type flow ports) and enumerations. A block that types flow ports
only contains properties (no behaviour). SysML enumerations enable declaring
abstract types that can be used during a Modelica simulation.



A SysML Framework to Combine Discrete and Continuous Simulation 7

Definition 1 (Model for simulation). Let Ms, the model for simulation, be
given by Ms =< η, ΓBs, ΓBf , ΓEnum >, where η is the name of the model, ΓBs is
the set of SysML blocks that defines components, ΓBf is the set of SysML blocks
that types flow ports and ΓEnum is the set of enumerations.

A component is defined with attributes and may be composed of other com-
ponents. Thus, it may have different typed elements (properties, parts and flow
ports). Its behaviour may be specified by a state diagram with Modelica code.

Definition 2 (Block for component definition). We define β ∈ ΓBs to be
the tuple β =< η, ΓAtt, ΓPart, ΓFP , ΓCnt, ΓCons, ΓSM >, where:
1. η is the unique name of the block,
2. ΓAtt is the set of attributes,
3. ΓPart is the set of parts,
4. ΓFP is the set of flow ports,
5. ΓCnt is the set of connectors,
6. ΓCons is the set of constraints,
7. ΓSM is the set of parallel state machines.

Each attribute, each part and each flow port shall be typed with primitive types
(real, integer and Boolean, respectively noted R, Z and B) or with user-defined
type (block for part, block for flow port and enumeration, respectively noted
ΓBs, ΓBf and ΓEnum). The set of types ΓT by ΓT = {ΓBs, ΓBf , ΓEnum,R,B,Z}
are defined as follows. Concerning attributes of ΓAtt, we have to distinguish
several cases: an attribute may be a constant, an equation’s unknown or a pa-
rameter that defines the initial condition of the simulation. Within Modelica,
an equation’s unknown, which needs to be solved by integration, can be either
continuous or discrete.

Definition 3 (Attribute). Let α ∈ ΓAtt be defined by α =< η, ω, υ, t > where:
1. η is the name of the attribute,
2. ω is variability such as ω ∈ {constant, parameter, discrete, continuous},
3. υ is the value of the attribute,
4. t is the type of the attribute (ΓEnum, R, B, or Z).

If an attribute is discrete or continuous, then it is necessarily a state variable.

A block that types ports can only have properties, i.e., attributes that describe
what flows between ports. Then, the following is the definition of such blocks:

Definition 4 (Block for flow ports typing). We define βf ∈ ΓBf to be the
tuple: βf =< η, ΓAtt >, where η is the unique name of the block and ΓAtt is the
non-empty set of attributes.

We need also to formalize the connection between parts of a SysML model. Con-
nections are always between two flow ports, and a flow port has to be connected
at least to one other flow port. Then, we define the surjective connecting function
as follows:

Definition 5 (Connecting function). Let fc, the surjective connecting func-
tion, be defined by fc : ΓFP × ΓFP � ΓCnt.



8 J-M. Gauthier et al.

The continuous behaviour of the system is specified by equations over contin-
uous state variables. The SysML constraints (ΓCons) are written using a subset
of the Modelica language that expresses equations. Numerical solvers (embed-
ded in all Modelica frameworks) are able to rewrite such constraints into a set
of first-order differential equations in order to compute integration over time.

Finally, state machine diagrams enable to describe the life-cycle of a com-
ponent. For instance, one may specify several component states depending on
time, state variables or user behaviours. The formal definition is given below (it
excludes join, fork and history pseudo-states that are not supported).

Definition 6 (State machine). State machine for simulation is described with
its classical definition SM =< s0, Σ, ΓE ,Ls, δ >, where:
1. s0 is the initial state,
2. Σ is a finite non-empty set of states composed of three disjoint sets: simple

states Σss, compound states Σcs and eventually final states Σfs,
3. ΓE is the set of trigger events,
4. Ls is the alphabet for specifying guard and effect of a transition,
5. δ : Σ × ΓE ×Ls → Σ is the transition function.

The language Ls, used for specifying guards and effects, is a subset of the Mod-
elica language. A guard is a Modelica Boolean expression and an effect is a
Modelica statement such as assignment, if-statement, while-statement or for-
statement. Moreover, each state may have onEntry and onExit actions, which
are respectively executed at the entry and the exit of the state. These are defined
using Modelica statements. Concerning trigger events ΓE , we only consider call
events, i.e representing an operation call. The called operations have to be de-
fined in the block that the state machine specifies. However, we do not consider
the operations of the blocks for components definition because operations are
not translated into Modelica code, only trigger events are.

The above presented subset (summarized in Table 1 in Sect. 3.3) is sufficient
to perform Modelica code generation and simulation. This subset enables to
validate a system at the earliest stage of a design process by automating the
derivation of Modelica code. To provide a modelling framework that enables to
perform both simulation and testing from a single SysML model, discrete aspects
of the system have also to be integrated in order to use the CLPS-BZ solver for
animation and test case generation purposes.

3.2 SysML Subset for Animation and Test Generation

The SysML subset for animation (SysML4MBT with OCL4MBT [9]) enables to
formally specify the system to perform a constraint evaluation. Such a SysML
model describes the system from an abstract and discrete point of view. The
model is abstract in the way that the domain of a variable in R is discretized using
enumeration classes since CLPS-BZ only manages integers, Booleans and finite
sets. The behaviour of the model is also discrete as, during animation, we do not
know what happen between two stable states of the state machines. Of course,
simulation gives us some information about it, but during model animation, each
state transition is executed as an atomic and non-breaking computation.



A SysML Framework to Combine Discrete and Continuous Simulation 9

Definition 7 (Model for animation). The model for animation Ma is defined
by Ma =< η, ΓBa, ΓEnum, ΓAsso >, where η is the name of the model, ΓBa is the
set of SysML blocks that defines components, ΓEnum is the set of enumerations
and ΓAsso is the set of associations between blocks.

Associations of ΓAsso are translated into relations between instances of classes.
The multiplicities of the association determine whether the relationship is a func-
tion, and if so, the type of this function (partial or total, and possibly injective,
surjective or bijective). Hence, the associations are translated into structures of
type ΓPart × ΓPart.

A block for component definition comprises attributes, parts and operations,
which are used to describe actions from the environment.

Definition 8 (Block for component definition). We define β ∈ ΓBa to be
the tuple β =< η, ΓAtt, ΓPart, ΓOp, ΓSM >, where:
1. η is the unique name of the block ,
2. ΓAtt is the set of attributes,
3. ΓPart is the set of parts,
4. ΓOp is the set of operations,
5. ΓSM is the set of parallel state machines.

Blocks define variables of the CSP and their domains are defined by the set of
instances (ΓPart) of these blocks. With CLPS-BZ, each block is associated with
information concerning its instances: the set of instances that can potentially
be created (all instances as a set(atom)), the set of currently created instances
(instances as a set(atom)), and the current instance, which is the last created
instance or treated by an operation (currentInstance as an atom). Among all the
possible instances all instances, a fictitious none instance is created. It is used in
the case to formalize the absence of current instance. Concerning enumerations,
they are translated into set(atom), where the atoms are the literals defined in
the enumeration. Thus, enumerations define domains in the CSP.

For animation, the set of types ΓTa is defined by ΓTa = {ΓBa, ΓEnum,B,Z}.

Definition 9 (Attribute). Let α ∈ ΓAtt be defined by α =< η, ω, υ, t > where:
1. η is the name of the attribute,
2. ω ∈ {constant, variable}, and if ω = variable then ω is a state variable,
3. υ is the value of the attribute during the animation,
4. t is the type of the attribute (Z, B or ΓEnum).

Each attribute α ∈ ΓAtt, belonging to a block β, is translated into a total
function between all instances of the block β and the domain of α. Considering
for example that α is an integer, α is translated into a structure of type ΓPart×Z.

The operations have a name and optional parameters (in, out, inout, return).
For animation purpose, we only take into account in and return parameters. In
addition, operations can also have OCL4MBT precondition and postcondition.

Definition 10 (Operation). Let o ∈ ΓOp defined as o =< η, ΓPar, pre, post >
where: η is the name of the attribute, ΓPar is the set of parameters, pre is the
precondition of the operation and post is the postcondition of the operation.



10 J-M. Gauthier et al.

State machines are used to specify discrete component behaviours and ex-
ternal, physical or human, actions. For animation purpose, state machines are
defined as expressed in the definition 6. However, we define La, based on the
OCL4MBT subset, as the alphabet for specifying guard and effect of a transition.

Each state (single, composite, initial or final state) of a state machine is
translated into a specific context of the CSP. For each state, a variable status
stores the current state(s) of a block instance: it is a function associating each
instance of the block to a Boolean (the function is partial due to the presence of
the fictitious none instance in its domain). At the beginning of the animation,
each instance is in the initial state. In addition, two operations are declared to
each state to formalize the possible onEntry and onExit effects.

Each state machine is associated with the block it specifies the behaviour.
Operations of this block can be used as triggers for some transitions of the state
machine. To avoid unmanageable infinite loop during animation, three types
of transitions are allowed: external (reflexive or not) with trigger, internal with
trigger and guarded external or automatic (not reflexive). A variable opCalled ∈
ΓE , declared to store the last executed operation, enables to fire, from the current
state, transition triggered by this operation. We finally add a precondition for all
guarded and automatic transitions, expressing that no operation has been called
(opCalled = none). This ensures that the UML “run-to-completion” semantic
is satisfied. To sum up, each state gives rise to a variable status and constraints
related to the onEntry and onExit actions. Each transition is translated into
constraints in the CSP that are defined by its guard and effect. Finally, trigger
events of ΓE define a set of operation triggers set(atom) that defines the domain
of the variable opCalled.

The above formalized subset (summarized in Table 1 in Sect. 3.3) enables
to animate a discrete and abstract SysML model by translating it into a CSP.
This CSP is defined by a Prolog-readable BZP file such that it is now possible to
specify the continuous and discrete behaviour of a complex and critical system for
simulation, animation and testing purpose. In the next subsection, we combine
these subsets to adress both continuous and discrete features.

3.3 Combined Formalism for Simulation and Animation

Table 1 summarizes the SysML subsets for simulation and animation. Each
combined SysML element are derived both to Modelica element and to CSP
element (variable V , domain D or constraint C). To propose a unified modelling
framework, blocks and enumerations for simulation have to be used for ani-
mation. Then, the model for validation Mv is defined as Mv = Ms ∩ Ma =
{ΓBv, ΓEnum} where ΓBv = ΓBs ∩ ΓBa. Blocks for flow port typing (ΓBf )
are not used for animation. Considering now β1 ∈ ΓBs and β2 ∈ ΓBa, then
β1 ∩ β2 =< η, ΓAtt, ΓPart, ΓSM > where each attribute of ΓAtt is defined as
proposed in definition 9. Indeed, Modelica is able to process discrete and con-
tinuous variables whereas the CLPS-BZ solver is not able to manage continuous
state variables. Concerning SysML parts, they enable to instantiate Modelica
components and to declare block instances in the constraint system.



A SysML Framework to Combine Discrete and Continuous Simulation 11

Table 1: SysML for Modelica Simulation and CSP Animation
SysML elements Modelica elements CSP <V,D,C>

Model Mv Root Modelica model CSP model
Blocks ΓBv Model ΓBv ∈ V
Blocks ΓBf Connector -
Enumerations ΓEnum Enumeration type ΓEnum ∈ D
Attributes ΓAtt Value property ΓAtt ∈ V
Constraints ΓCons Equation -
Parts ΓPart Component ΓPart ∈ D
FlowPorts ΓFP Port -
Connectors Connect equation -
Op. Precondition pre ∈ ΓOp - pre ∈ C (La)
Op. Postcondition post ∈ ΓOp - post ∈ C (La)
Op. parameters ΓParam - ΓParam ∈ D
State-Machines SM Algorithm section -
States Σ Boolean variable status variable ∈ V
State Entry Statement (Ls) Entry ∈ C (La)
State Exit Statement (Ls) Exit ∈ C (La)
Event triggers ΓE Boolean variable ΓE ∈ D
Transition δ When statement -
Transition guard Boolean expr (Ls) guard ∈ C (La)
Transition effect Statement (Ls) effect ∈ C (La)

Finally, state machines for simulation and animation are not totally com-
bined. The language for specifying guard and effect of transitions, as well as
onEntry and onExit actions of states, is indeed not fully equivalent. In one
case, the language Ls is a subset of Modelica and in the other case, the lan-
guage La is a subset of OCL. However, states, transitions and events are used for
both simulation and animation. Thus, every state machines are translated both
into Modelica code (using formula of Ls) and CSP (using OCL code of La). It
should be noted that state machines without OCL code and event trigger are
not translated into CSP because it would not impact the CSP solving and could
even give a under-constrained CSP (and make it non deterministic).

4 Implementation and Case-Study Evaluation

This section discusses the proposed modelling framework regarding an indus-
trial case-study about a large and complex Energy Manager System (EMS)
that delivers energy to a new type of helicopter. Figure 3 shows the architec-
ture of our simulation, animation, and testing environment from SysML mod-
els. This Eclipse-based tool chain, that instantiates the intended process given
in Fig. 1, strongly relies on Model-Driven Architecture (MDA) approach since
model transformation and code generation procedures enable to automatically
derive the simulation and testing artefacts from the SysML models [15]. There-
fore, the SysML model is translated into Modelica simulation code and into a
pivot meta-model, named UML4TST, and next into BZP file. Finally, Papyrus5

is used to support the SysML modelling, OpenModelica6 computes the simula-
tions, and CLPS-BZ (included as a plugin in our Eclipse environment) generates
the test cases that are exported as UTP sequence diagrams in the SysML model.

5 https://www.eclipse.org/papyrus/
6 https://www.openmodelica.org



12 J-M. Gauthier et al.

Fig. 3: Overall Architecture of the Simulation and Testing Tool Chain

This tool chain has been tested out during the prototyping phase of the EMS
system within HIL process. Hence, we distinguish the system under design (the
EMS) and its environment called the plant system (a simulation model of some
helicopter’s instruments). The objective of our experiment was to assess the suit-
ability and the reliability of the combined formalism to perform simulation and
test generation. The experiment started from requirement specifications given
in natural language. They describe the EMS and the physical limit of its com-
ponents, and the instruments of the helicopter with their energy request over
time during the activation period. We now describe the main results obtained
from this experimentation, which was divided into five stages: (1) EMS and
plant modelling (using SysML subset for simulation), (2) simulating the sys-
tem components using a scenario example, (3) adding abstraction and discrete
behaviours (using SysML subset for animation), (4) animating the model and
generating test cases, and (5) executing test cases on the simulation model.

SysML Modelling for Simulation. The EMS, depicted in Fig. 4, is com-
posed of an energy source that emulates a permanent power source, an accu-
mulators battery, a battery of super-capacitors, and a bus that connects the
energy sources. Each source is described by a specific IBD, which specifies the
source and its controller for managing strategies. The helicopter energy requests
go through the flow port Icharge modelled at the top of the IBD.

«block»

EMS

«modelicaPart»
«part»

permanentSource: PermanentSource

«modelicaModel»

inout Ibus_sp: RealOutput

inout Vbus: RealInput

«modelicaPart»
«part»

accumulatorBattery: AccumulatorBatteryC...

inout Vbus: RealInput

inout Ibus_acc: RealOutput
«modelicaPart»

«part»
bus: BusConfig2

inout Ibus_scap_ref: RealOutput

inout Ibus_scap: RealInput

inout Icharge: RealInput

inout Ibus_sp: RealInput

inout Vbus: RealOutput

inout Ibus_acc: RealInput

«modelicaPart»
«part»

superCapacitor: SuperCapacitor

inout I_bus_SCAP_ref: RealInput

inout Vbus: RealInput

inout Ibus_SCAP: RealOutput

inout Icharge: RealInput

Fig. 4: IBD of the Energy Manager System



A SysML Framework to Combine Discrete and Continuous Simulation 13

The plant model comprises 14 helicopter’s instruments that all require energy
during a mission. For confidentiality reason, we cannot cite these components and
provide more details about the EMS and the plant. However, the IBD of Fig. 5
shows 4 instruments that require energy over time. Each of them is connected to
a bus that sums the energy demand. The outP lant flow port enables to connect
the plant to the Icharge flow port of the EMS. The functional and continuous
modes of the instruments are specified with state machines and equations.

«block»
«modelicaModel»
HelicopterPlantSystem

«part»
«modelicaPart»

i1: Instrument1

inout out: RealOutput

«part»
«modelicaPart»

i2: Instrument2

inout out: RealOutput

«part»
«modelicaPart»

i3: Instrument3

inout out: RealOutput

«part»
«modelicaPart»

i4: Instrument4

inout out: RealOutput

«part»
«modelicaPart»
busPlant: BusPlant

inout in1: RealInput inout in2: RealInput inout in3: RealInput inout in4: RealInput

inout outSignal: RealOutput
inout outPlant: RealOutput

Fig. 5: IBD of the Plant Model

Overall information about the SysML model is provided in Tab. 2. Note that
the bold numbers are the same for the EMS and the plant. This means that the
EMS and the plant are specified in the same SysML model (Ms = 1) and that
blocks for flow port typing (ΓBf = {RealInput,RealOutput}) are used both in
the EMS and in the plant. From this SysML model, 626 lines of Modelica code
have been automatically generated for the plant, and 412 lines for the EMS.

Table 2: Metrics about the SysML Model
SysML elements # for the EMS # for the plant Total

Model Ms = Ma 1 1 1
Blocks ΓBs = ΓBa 19 16 35
Blocks ΓBf 2 2 2
Enumerations ΓEnum 0 1 1
Attributes ΓAtt 41 48 89
Constraints ΓCons 39 15 54
Parts ΓPart 34 15 49
FlowPorts ΓFP 66 30 96
Connectors 76 15 91
State-Machines SM 3 2 5
States Σ 10 21 31
State Entry 0 0 0
State Exit 0 1 1
Event triggers ΓE 0 15 15
Transition δ 11 47 58
Transition guard 8 16 24
Transition effect 0 47 47

Model Animation and Test Generation. The EMS and the plant were
translated into a CSP using the BZP format. In this model, no operation pre-
conditions and postconditions were used. The discrete behaviour of the helicopter
has been specified only using state machines with OCL4MBT and event triggers.



14 J-M. Gauthier et al.

Plant_StateMachine

InitialState
Final1

«mode»
Mode2

«mode»
Mode1

«mode»
Mode3

«mode»
Mode4

«mode»
Mode5

«mode»
Mode6

T2

T6
T3 T5

T4

T1

T_init

T7

T3

activateMode1
[Guard]/Effect

activateMode2
[Guard]/Effect

activateMode3
[Guard]/Effect

activateMode4
[Guard]/Effect

activateMode5
[Guard]/Effect

activateMode5
[Guard]/Effect

activateMode6
[Guard]/Effect

rest of the
state machine

Fig. 6: Excerpt of Plant System State Machine

Basically, a mission of the helicopter is composed of a sequence of several
modes. Each mode is an activation of one or more instruments over time that
are done by the pilot during the flight. All the possible mode activations have
been specified with a state machine, as shown in Fig. 6. The complete state
machine contains 17 modes and 55 transitions. Among these 55 transitions, ev-
eryone has an event trigger, 17 have OCL4MBT guard and 18 have OCL4MBT
effect. OCL4MBT enables to guide the CLPS-BZ solver during test case gen-
eration to produce sequences verifying the system requirements. For instance,
OCL4MBT code has been added on several transitions to satisfy the following
requirement: the mode Mode9 (not depicted in Fig. 6) may be activated twice
only if the mode Mode6 has been activated just before. In addition, each transi-
tion effect is completed with Modelica code in order to simulate the instruments
during the continuous simulation. From this model, the CLPS-BZ solver has gen-
erated 154 test cases to cover all the transitions of the state machine. Each test
case is a sequence of 10 to 20 operation invocations. Finally, the concretization
step consisted in automatically publishing test cases as sequence diagrams, next
translated into Modelica procedures to be simulated.

Feedback and Lessons Learned. First of all, it should be noted that these
experiments have been conducted by an engineer with a huge expertise in SysML
modelling and model-based testing approach, but without any initial knowledge
about real-time simulation and EMS specifications. In this way, it might bias us
to have an objective view of the scalability of the process, but it does not affect
the suitability of the formal framework we aim to evaluate. Moreover, case-study
results have been evaluated with scientists specialized in smart energy systems,
who are therefore familiar with development and continuous simulation of such
complex systems. This enables us to get a solid feedback regarding the relevance
of the framework and the related tool-supported overall approach.

Thanks to these experiments, we can conclude that the proposed modelling
framework, combining both discrete and continuous features of the designed
system, is relevant to achieve efficient model-based testing. On the one hand,
the selected SysML formalism is expressive and precise enough to describe the
system, generate relevant abstract test cases, and enable early simulation of the
system. On the other hand, the framework offers a concrete benefit regarding
the model writing and maintenance since the discrete and continuous features
are natively mapped and kept consistent within the SysML model, and they can
be automatically checked using test case generation and simulation.



A SysML Framework to Combine Discrete and Continuous Simulation 15

As a consequence, the supporting implementation offers a relevant execu-
tion platform for a rapid prototyping and an early validation of the real-time
designed system. These experiments have also highlighted the high level of au-
tomation regarding test case concretization, which is known to be tricky and
time-consuming, especially when real-time constraints occur, as observed in pre-
vious work [9] where discrete model and continuous program were distinctly and
separately managed and synchronized. This benefit stems again from the native
link between discrete model elements (basis of the test generation) and the Mod-
elica code (basis of the simulation). Regarding the process, deeper investigations
are required to provide a complete report about scalability and efficiency of the
overall approach, in particular w.r.t. industrial practices on large-scale systems.

5 Related Work

To the best of our knowledge, there is no reported approach in the literature that
supports continuous and discrete SysML modelling for simulation and testing
purposes. However, combining discrete and continuous modelling is not a recent
topic. The integration of continuous and discrete aspects for modelling and simu-
lation introduced by Zeigler et al. in [16], which defines a coupled Discrete Event
and Differential Equation Specified System formalism (DEV&DESS), is close to
our proposal. Basically, a such a coupled model is a model, which contains con-
nected components. Components are defined as atomic DEV&DESS. We first
tried to map our SysML modelling framework with this coupled DEV&DESS
formalism. But this formalism does not support both discrete and continuous
states into a coupled model, so a SysML block with parts cannot support a
state machine. Some other results have been provided recent years to achieve
similar continuous and discrete modeling for simulation. The approach in [17]
proposes to combine superdense time, modal models, generalized functions and
constructive semantics to get a rigorous approach for modelling discrete physical
phenomena that occur on cyber-physical systems. Nevertheless, this approach
does not consider test generation for model and physical system validation.

We have to point out that similar black-box testing approaches exist for real-
time systems. For instance, Iqbal et al. [18] propose a modelling methodology
based on UML and MARTE, in which the UML model is automatically trans-
lated into environment simulators implemented in Java. However, this modelling
approach does not deal with continuous aspects, and differential and algebraic
equations (DAEs) are hidden to the engineers.

About generation of simulation code from UML and SysML models, in [19],
the authors propose to derive VHDL specifications from UML classes and state
diagrams. Vanderperren et al. [20] propose to translate SysML models into
Matlab-Simulink. Other work [21] focuses on generating SystemC from UML
models. Each of these approaches enables to simulate a system specified with
UML or SysML, but discrete and abstract aspects of such models are not con-
sidered for model-based testing. Moreover, our work is original as we propose to
combine continuous and discrete modelling in a single model.



16 J-M. Gauthier et al.

6 Conclusion and Future Work

This paper presented a SysML framework that combines continuous features for
simulation and discrete aspects for model-based testing. We formally described
the SysML subsets for Modelica simulation and CSP solving, and the way to
combine them in a single SysML model. This combined approach aims to be
used within model-in-the-loop and hardware-in-the-loop processes. In these con-
texts, the simulation respectively plays two key roles: simulating a component
based system and providing test cases and oracles for the model and its concrete
product. While preserving the V cycle to address complex and critical system de-
velopment, we promote a more iterative and incremental approach driven by the
early validation and verification activities. Experiments give a conclusive feed-
back about the suitability and the reliability of this framework, and highlighted
its higher automation ability for early design validation of real-time systems.

As future work, we plan to conduct extensive experiments and to extend
CLPS-BZ to handle continuous domain in order to investigate new test gener-
ation criteria based not only on discrete features, but also on continuous ones.
It would be possible to use the CLPQR library. This library considers real val-
ued variables and enables to perform linear equations solving. Furthermore, we
have some insights concerning the combined use of CLPS-BZ with a numerical
solver. More precisely, the use of interactive simulation, driven by a numerical
solver, would enable to explore the continuous state space between two spec-
ified discrete states. This combination requires each solver to manipulate the
same object, and requires establishing a communication protocol to propagate
deductions made by a solver in the other. Such protocol would not only raise
issues about concurrency or synchronization: it would obviously require further
investigation about more complex algorithms regarding state reachability issues,
including meta-heuristics, patterns recognition, fuzzing, etc. These issues open
new research topics combining parallel and distributed fields with formal V&V.

References

1. A. Qamar, C. During, and J. Wikander, “Designing mechatronic systems, a model-
based perspective, an attempt to achieve SysML-Matlab/Simulink model integra-
tion,” in Int. Conf. on Advanced Intelligent Mechatronics (AIM’09). Singapore,
Republic of Singapore: IEEE CS, Jul. 2009, pp. 1306–1311.

2. A. Sindico, M. Di Natale, and G. Panci, “Integrating SysML with Simulink using
open-source model transformations,” in 1st Int. Conf. on Simulation and Modeling
Methodologies, Technologies and Applications (SIMULTECH’11). Noordwijker-
hout, The Netherlands: SciTePress, Jul. 2011, pp. 45–56.

3. M. Utting and B. Legeard, Practical Model-Based Testing: A Tools Approach. Mor-
gan Kaufmann Publishers Inc., 2007, ISBN 978-0-08-046648-4.

4. B. M. Broekman, Testing Enbredded Software. Addison-Wesley Longman Pub-
lishing Co., Inc., 2002, ISBN 0321159861.

5. R. Matinnejad, S. Nejati, L. Briand, and T. Bruckmann, “MiL testing of highly con-
figurable continuous controllers: Scalable search using surrogate models,” in 29th

ACM/IEEE Int. Conf. on Automated Software Engineering (ASE’14). Vasteras,
Sweden: ACM, Sep. 2014, pp. 163–174.



A SysML Framework to Combine Discrete and Continuous Simulation 17

6. A. Benigni and A. Monti, “Development of a platform for hardware in the loop
testing of network controller,” in 2011 Grand Challenges on Modeling and Sim-
ulation Conference (GCMS’11). Hague, Netherlands: Society for Modeling And
Simulation Int., Jun. 2011, pp. 124–128.

7. S. Friedenthal, A. Moore, and R. Steiner, A Practical Guide to SysML: The Systems
Modeling Language. Morgan Kaufmann, 2009, ISBN 978-0-12-374379-4.

8. H. Graves and Y. Bijan, “Using formal methods with SysML in aerospace design
and engineering,” Annals of Mathematics and Artificial Intelligence, vol. 63, no. 1,
pp. 53–102, Sep. 2011.

9. F. Ambert, F. Bouquet, J. Lasalle, B. Legeard, and F. Peureux, “Applying a def-
use approach on signal exchange to implement SysML model-based testing,” in 9th

Europ. Conf. on Modeling Foundations and Applications (ECMFA’13), ser. LNCS,
vol. 7949. Montpellier, France: Springer, Jul. 2013, pp. 134–151.

10. F. Bouquet, C. Grandpierre, B. Legeard, F. Peureux, N. Vacelet, and M. Utting,
“A Subset of Precise UML for Model-based Testing,” in 3rd Int. Workshop on
Advances in Model-based Testing. (A-MOST’07). ACM, July 2007, pp. 95–104.

11. F. Bouquet, B. Legeard, and F. Peureux, “CLPS-B: A constraint solver to ani-
mate a B specification,” International Journal on Software Tools for Technology
Transfer, STTT, vol. 6, no. 2, pp. 143–157, Aug. 2004.

12. F. Ambert, F. Bouquet, S. Chemin, S. Guenaud, B. Legeard, F. Peureux,
N. Vacelet, and M. Utting, “BZ-TT: A Tool-Set for Test Generation from Z and B
using Constraint Logic Programming,” in Formal Approaches to Testing of Soft-
ware (FATES’02). Rob Hierons and Thierry Jéron, August 2002, pp. 105–120.

13. J. Lasalle, F. Peureux, and F. Fondement, “Development of an automated MBT
toolchain from UML/SysML models,” Innovations in Systems and Software Engi-
neering, vol. 7, no. 4, pp. 247–256, Dec. 2011.

14. A. K. Macworth, “Consistency in networks of relations,” Journal of Artificial In-
telligence, vol. 8, no. 1, pp. 99–118, Feb. 1977.

15. J. Gauthier, F. Bouquet, A. Hammad, and F. Peureux, “Tooled process for early
validation of SysML models using Modelica simulation,” in 6th Int. Conf. on Fun-
damentals of Software Engineering (FSEN’15), Tehran, Iran, Apr. 2015.

16. B. P. Zeigler, H. Praehofer, and T. Kim, Theory of Modeling and Simulation:
Integrating Discrete Event and Continuous Complex Dynamic Systems, 2nd ed.
Elsevier Science, 2000, ISBN: 0-12-778455-1.

17. E. Lee, “Constructive Models of Discrete and Continuous Physical Phenomena,”
Access, IEEE, vol. 2, pp. 797–821, Aug. 2014.

18. M. Iqbal, A. Arcuri, and L. Briand, “Environment modeling and simulation for au-
tomated testing of soft real-time embedded software,” Software and System Mod-
eling, vol. 14, no. 1, pp. 483–524, Feb. 2015.

19. W. E. McUmber and B. H. C. Cheng, “UML-based analysis of embedded systems
using a mapping to VHDL,” in 4th Int. Symposium on High-Assurance Systems
Engineering (HASE’99). Washington, DC, USA: IEEE CS, Nov. 1999, pp. 56–63.

20. Y. Vanderperren and W. Dehaene, “From UML/SysML to Matlab/Simulink: Cur-
rent state and future perspectives,” in 9th Int. Conf. on Design, Automation and
Test in Europe (DATE’06). Munich, Germany: EDAA, Mar. 2006, pp. 93–93.

21. F. Boutekkouk, “Automatic SystemC code generation from UML models at early
stages of systems on chip design,” Int. Journal of Computer Applications, vol. 8,
no. 6, pp. 10–17, 2010.


