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Unsupervised consensus clustering of acoustic
emission time-series for robust damage sequence

estimation in composites
Emmanuel Ramasso, Vincent Placet, M. Lamine Boubakar

Abstract—This paper suggests a new approach for unsuper-
vised pattern recognition in acoustic emission (AE) time-series
issued from composite materials. The originality holds in the
development of a clustering ensemble method able to emphasize
sudden growths of damages in composites under sollicitations.
The method combines multiple partitions issued from different
parametrizations, initial conditions and algorithms. A first stage
automatically select multifarious subsets of features based on
the entropy of sequences of damages detected by clustering. A
polygonal representation of the sequences is suggested in order
to emphasize the kinetics of fracture events. The second stage
allows to estimating the optimal number of clusters necessary
to represent the structure of the AE data stream. The data
structure is estimated by consensus clustering with boostrap
ensembles, which allows to estimating the uncertainty envelopes
of each cluster and giving access to an interval of cumulated
loading thresholds necessary to activate a particular damage. A
qualitative evaluation phase is proposed on simulated datasets
to statistically assess and underline both the robustness and
accuracy of the proposed clustering fusion method, compar-
ing Kmeans, Gustafson-Kessel algorithm and Hidden Markov
Models. An application is then presented for the detection of
early signs of failure in high performance carbon fibre-reinforced
thermoset matrix composites dedicated to severe operating con-
ditions. Despite the complexity of the configuration (ring-shaped
specimens, high emissivity), it is demonstrated that the method
emphasizes damage onsets and kinetics (fibre tow breakage, hoop
splitting and delamination) within the unevenly-spaced AE time-
series recorded during loading.

Index Terms—acoustic emission, composite materials, cluster-
ing fusion, number of cluster estimation, feature selection, un-
certainty quantification, structural health monitoring, unevenly-
spaced time-series.

I. INTRODUCTION

The health monitoring of critical components in engineering
systems is of paramount importance to ensure equipment
safety and availability. Those components are subjected to the
action of external stimuli which may be recorded by different
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chemin de l’Epitaphe, 25000 Besançon, France. Email: vincent.placet@univ-
fcomte.fr. Phone: +33.03.81.66.60.55.

M.L. Boubakar is with the Department of Applied Mechanics,
FEMTO-ST, 26 chemin de l’Epitaphe, 25000 Besançon, France. Phone:
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non-destructive techniques (NDT). This paper is focused on
health monitoring based on acoustic emission (AE), a tech-
nique particularly well suited for real-time monitoring of the
transient elastic waves produced by the sudden redistribution
of stress in materials due to local fractures propagating to
the surface [1]. The AE technique was used in many applica-
tions such as civil structures [2], storage in tanks [3], pipes
corrosion [4], gears in helicopters, wind turbines and other
rotational machines [5], [6], bearings [7], cutting tools [8],
electronics [9] and medical diagnosis [10]. This paper is
particularly focused on the detection of damages in composite
structures. Structural health monitoring (SHM) based on AE is
of paramount importance for the transportation and aerospace
industries with the aim to reduce energy comsumption while
improving equipment performance.

AE-based SHM involves to face one important difficulty that
is to discriminate, precisely and with robustness, AE signals
generated by a specific damage from other AE sources. In
composite materials, three main families are generally con-
sidered, namely matrix cracking, fibre breakages and interface
failures [11], [12]. Among these families, sub-families can also
be distinguished. External sources are also generally present
generating mixed transients due to actuating systems and to
the testing environment that can generate electromagnetic and
mechanical noise, rubbing and friction [13], [14], [15]. The
discrimination of AE sources based on AE signals is generally
performed by data mining techniques. Usual approaches for
mining AE data are either based on supervised [16], [17],
unsupervised [18], [19], [12], [20] or partially-supervised
[21] classification tools according to the amount of prior
information available.

In non-trivial experimental configurations similar to in-
dustrial in-service conditions, the monitoring of a particular
damage mode using AE is particularly challenging. This is the
case with highly emissive composite materials that produce
a massive amount of AE signals under sollicitations [20].
Non-planar geometry such as tubular structures [22] used in
energy storage and underwater applications have both complex
stress state and damage process involving complicated AE
waveforms. In-service conditions also involve non-stationary
noise which is superimposed on AE signals leading complex
AE signals [23]. In addition, cumulated damage in composites
and the associated discontinuities, also induces a distortion of
transients propagating in the material [24], [25]. Therefore,
even if the prototypes of damages are initially compact, their
characteristics can evolve in the feature space and their shape
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may change as a function of damage level. For such non-trivial
configurations, unsupervised data mining techniques are more
suitable.

From a clustering point of view, the first difficulty concerns
the scattering in clustering results that can be induced by
algorithm parametrization. Indeed, only a single set of pa-
rameters are generally used in existing algorithms to estimate
the clusters from complex AE datasets. The second difficulty
concerns the scattering of AE features within clusters due to
the aforementioned causes.

The algorithms developed in the literature for unsupervised
AE-based SHM generally do not take into account the kinetics
of damages. It relies on the application of standard algorithms
(Kmeans, Fuzzy-C-means, Gaussian Mixture Models, Self-
Organising Maps, Gustafson-Kessel algorithm) [26] that only
allow point-wise evaluation of clusters without explicit corre-
lation between points in space or in time. The aim of those
algorithms is generally stated as finding the most compact and
separated clusters [27], [12], [28].

Although most of damages in composite materials occur
sequentially or in cascade [29], only a few clustering methods
proposed in the literature were focused on the temporal
evolution of clusters estimated from AE data. In [27], the
authors were specifically interested in the triggering of specific
damages and the evolution in time of the different damage
mechanisms in composites. For that, they studied distance
measures to discover compact clusters. In [30], the shape
of the frequency spectrum was used to create libraries of
damages. Those libraries allowed to classifying AE data,
and the evolution in time of clusters was correlated to the
cumulated number of AE counts and to the distribution
of amplitudes. The Kmeans algorithm was used in [31] to
build a noise model in order to discriminate between both
fatigue signal noise and acoustic emission signals emitted
from crack initiation and crack growth during delamination.
Evolving clustering methods were proposed in [28], [32], [20]
where new clusters can be added dynamically according to
the characteristics of AE hits observed during quasi-static
and fatigue loading. Statistical modelling of AE time-series
based on Hidden Markov Models (HMM) was suggested to
estimate the temporal evolution of clusters [33]. The problem
is that AE time-series are unevenly-spaced, as encountered
in geoscientific measurements [34], meaning that the spacing
between AE hits is not constant. Therefore specific algorithms
may be required for the post-treatment of the partitions into
relevant clusters [21].

This paper suggests a new approach for the clustering of
AE time-series with an attempt to estimate the sequence of
damages without assumption about the compacity of clusters.
For that, a method is proposed which has the following char-
acteristics: 1) Optimally select the number of clusters without
using additional distance measures for partition evaluation
but using a probabilistic formulation; 2) Combine multiple
clusterings obtained from multifarious subsets instead of a
single subset of features; 3) Represent the uncertainty around
the estimation of both the damage onsets and the loading
thresholds necessary to activate those damages. Robustness-
to-parameterization of the proposed method is attained by

clustering fusion, also called clustering ensemble or consensus
clustering in the literature [35]. A particular attention is paid
to the Gustafson-Kessel clustering algorithm [36] to cope with
data scattering which is of particular importance for SHM
applications [37].

Section II is dedicated to the presentation of the method.
Section III is focused on illustrations of each step of the
method and to a comparison with other methods. The appli-
cation on a ring-shaped composite specimen made of carbon
fibres and thermoset resin is then described in Section IV.

II. ENSEMBLE METHOD FOR ACOUSTIC EMISSION
CLUSTERING

The method is decomposed in two phases (Figure 1), each
illustrated in the section dedicated to results. The first phase
(Section II-A) is dedicated to the selection of multifarious sub-
sets; The second phase (Section II-B) to the optimal selection
of the number of clusters and to uncertainty quantification
about the sequence of fracture events.

Fig. 1: Plot chart.

A. Selection of subsets of feature with K fixed (Phase 1)

The method considers a set of L parameterizations (such
as subsets of features or algorithms) S1, S2 . . . SL generating
hard partitions with K clusters.

1) Cumulated activity of AE sources (Step 1A): Given a
hard partition Pt ∈ {1 . . .K}, t = 1 . . . T , the logarithm of
the Cumulated Sum of a Cluster Appearance of a cluster j
over time (or loading), CSCAjt, is computed to emphasize
the dynamics of the activity of an AE source:

Ljt = log

t∑
t′=1

IP
t
′=j , t = 1 . . . T (1)

where the indicator function IPt=j ≡ 1 if cluster j is activated
at time t. The set of K CSCA curves is called damage profile.

For a given K, the clusters are sorted with report to the final
value Lj,T for each subset. Sorting allows fast co-association
without computing a T×T co-association matrix [35] that can
be huge according to the emissivity of the material considered.
By sorting, two clusters Ci in a partition Pa and Cj in a
partition Pb are co-associated if both clusters have the same
rank.
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The parameterizations that lead to clusters with different
kinetics are prefered. For that, the area between two consec-
utive curves Lj,1:T and Lj+1,1:T , j = 1 . . .K is used to dis-
criminate clusters in terms of kinetics. The couples (t1,Ljt1),
(t2,Ljt2), . . . (tT ,LjT ), (tT , 0), (tT−1, 0), . . . (t2, 0), (t1, 0),
(t1,Ljt1) are considered as ordered pairs of vertices listed
counterclockwise and representing a polygon (the last point
allows to closing it) [38], [39]. The polygonal representation
P(j) of the j-th cluster has a measurable area that can be
computed efficiently using the Shoelace formula [40]. The area
A(j, j + 1) between two curves related to two clusters j and
j+ 1 is then given by the difference between the area of both
polygons:

A(j, j + 1) = P(j)− P(j + 1), j = 1 . . .K − 1 (2)

The aforementioned procedure is applied for each parameter-
ization S1 . . . Sl, . . . SL.

2) Outlier removal (Step 1B): An outlier removal procedure
is developed to decrease the number of potential parameteri-
zations used further in the fusion process. For that, the trend
of successive areas between clusters (sorted by descending
order according to the number of AE signals) is estimated
by a polynomial of degree 2 that best fits the areas A(1, 2),
A(2, 3), . . . A(K − 1,K) in a least-squares sense:

A(j, j + 1) ≈ p2 · j2 + p1 · j + p0, j = 1 . . .K − 1 (3)

Coefficient p2 represents the shape of the parabola and gives
the trend of the areas (increasing or decreasing). The outlier
removal thus consists in keeping only the parameterizations
belonging to the set of statistically relevant ones, Srelevant,
estimated by the range of percentiles (IPR) around the median:

Srelevant = {Sl | pl2 ∈ IPR}, l = 1 . . . L (4)

with

IPR =
[
Q0.5−β(p1:L2 ), Q0.5+β(p1:L2 )

]
, 0 < β < 0.5 (5)

whereQn(p1:L1 ) represents the quantile for probability n of the
values of the parabolas’ shape (p2) for all parameterizations
(n = 0.5 corresponds to a median). In experiments, β = 0.25
leading to the interquartile range.

3) Entropy-based parameterization ordering (Step 1C):
The redundancy of clusters’ kinetics obtained with the l-th
parameterization (l = 1 . . . L, L = |Srelevant|) is estimated by
the entropy of the areas:

El = −
K−1∑
k=1

Al∗(k, k + 1) log2Al∗(k, k + 1), l = 1 . . . L (6)

where Al∗ is the normalised area given by:

Al∗(k, k + 1) =
Al(k, k + 1)∑K−1

k′=1
Al(k′ , k′ + 1)

, l = 1 . . . L (7)

Following the Principle of Maximum Entropy, the least com-
mitted probability distributions over possible clusters are
selected by considering those above the 90-th percentile
(Q0.90(E1:L)):

Sfinal = {Sl ∈ Srelevant, l = 1 . . . L | El ≥ Q0.90(E1:L)} (8)

The threshold (here the 90-th percentile) can be adjusted
to obtain about 20 − 50 partitions which can be practically
sufficient for fusion [35].

4) Partition fusion (Step 1D): The clusters have a similar
semantic on all partitions due to sorting and co-association
(Section II-A1). It follows that the majority voting rule can
be applied that assigns to an AE signal the cluster receiving
the highest number of votes. Given the partitions P lt ∈
{1, . . .K}, t = 1 . . . T, l = 1 . . . L, L = |Sfinal|, the number
of votes for a cluster j is given by:

Nj =

L∑
l=1

IP l
t=j

, l = 1 . . . L (9)

The final decision on the cluster membership of a data point
xt (feature vector attached to an AE signal) is given by:

P ∗t = argmax
j=1...K

Nj (10)

B. Optimal choice of K and quantification of uncertainty
(Phase 2)

Each of the L parameterizations selected in the previous
section (Sfinal) leads to one partition P l,K , and the fusion
to one additional combined partition P ∗K , each made of K
clusters.

1) Optimal number of clusters (Step 2A): It is assumed that
the selected subsets of features obtained for K are relevant
whatever the number of clusters. Therefore, the “optimal”
number of clusters can be selected in three steps:

1) Vary the number of clusters k from kmin to kmax and
compute the partitions P l,k, l = 1 . . . L ;

2) Apply the fusion process and compute P ∗k ;
3) Select the “best” partition P ∗kkk

∗
and deduce the value of

k∗.
The optimality criterion proposed in [41], [35] is used to
select the optimal value of k and to quantify the robustness of
the fusion process with report to small changes in the initial
set of partitions. The method considers that the clustering
ensemble P = {P l,k, k ∈ [kmin, kmax] , l = 1 . . . L} is
disturbed by a bootstrap. A set of B bootstrap clustering
ensembles PB = {Pb1 ,Pb2 . . .PbB} is created by sampling
with replacement from P. The corresponding set of combined
data partitions obtained by the fusion process is denoted as
P∗B = {P ∗b1 , P ∗b2 . . . P ∗bB}. Then, the consistency of a k-
cluster combined partition P ∗

kkk
B with PB can be estimated

by the median value of the Normalized Mutual Information
(NMI):

mNMI
(
P ∗

kkk
B , PB

)
=

B

median
i=1

NMI
(
P ∗

kkk
bi , Pbi

)
, (11)

and the NMI between two partitions P a and P b is given by
[35]:

NMI(P a, P b) =

−2
∑ka
i=1

∑kb
j=1 n

ab
ij log

(
nab
ij ·T
na
i ·nb

j

)
∑ka
i=1 n

a
i log

(
na
i

T

)
+
∑kb
j=1 n

b
j log

(
nb
j

T

) ,
(12)
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that is different from [41] in the normalisation. Coefficient nabij
is the number of shared patterns between clusters Cai ∈ P a
and Cbj ∈ P b, nai (resp. nbj) represents the number of patterns
in cluster Cai ∈ P a (resp. Cbj ∈ P b). The NMI is bounded
such that 0 ≤ NMI(., .) ≤ 1.

By maximising the median NMI over the number of clusters
as follows:

k∗ = argmax
kkk

{
mNMI

(
P ∗

kkk
B , PB

)}
, (13)

the number of clusters k∗ can be selected, yielding a “con-
sensus partition” that shares the most information with the
clustering ensemble:

P ∗ ≡ P ∗
kkk∗
B . (14)

The robustness to small variations in the clustering ensemble
can be quantified by the interquartile range of NMI values:

IQRk = Q0.75

(
NMI

(
P ∗

kkk
B , PB

))
−Q0.25

(
NMI

(
P ∗

kkk
B , PB

))
(15)

where Q0.25 and Q0.75 are the first and third quartile respec-
tively of the NMI values.

It is important to notice that the average NMI (in place
of the median in Eq. 11) was used in [41] for the optimal
choice of the clusters, whereas the variance (in place of IQR
in Eq. 15) was prefered in [35]. In the latter publication, the
authors empirically shown, using some simulated datasets, that
the average NMI was biased towards the average number of
clusters in the clustering ensemble. This behavior was not
observed (in practice) in the present publication, therefore the
method proposed in [41] was chosen.

Compared to usual criterion used in pattern recognition of
AE signals such as validity indices, the NMI does not require
additional distance measures over features and clusters, en-
hancing its applicability to various datasets and using different
clustering techniques.

2) Uncertainty representation and quantification (Step 2B):
The uncertainty of the assignment of clusters applied to pattern
discovery in AE signals was investigated recently in [42]
using a supervised method based on a ground truth supplied
by the end-user. The proposed clustering consensus method
makes it possible to represent the uncertainty on clusters in an
unsupervised manner. The first way is to estimate the envelope
around each cluster represented in the log-CSCA space:

Ejt =

[
inf

l=1...L
Lljt , sup

l=1...L
Lljt
]

(16)

By superimposing the CSCA of the j-cluster in the final
partition P ∗ onto this envelope, it is possible to evaluate the
uncertainty of the kinetics. The envelope also gives access to
an estimation of an interval ICLT j of the Cumulated Loading
Threshold (CLT) necessary to activate cluster j:

ICLT j = CLTj,1:L ± std (CLTj,1:L) (17)

where CLTj,1:L = {CLTj,l : l = 1 . . . |Sfinal|} is the set of
damage onsets of cluster j estimated for each parameteriza-
tion, CLTj,1:L is the average and std the standard deviation
of CLT values given all parameterizations.

The second way to represent uncertainty is to consider
accumulated evidence on clusters in a reduced feature space
such as the amplitude (in dB) versus duration of AE hits
(in µs) [43], or the second partial power (PP2, in %) versus
weighted peak frequency (WPF, in kHz) [12]. For a two-
dimensional reduced feature space, F1(t) versus F2(t), t =
1 . . . T , we can proceed as follows: 1) Apply a quantization
on both features (for instance by considering fixed intervals
with U and V values for each feature) yielding F q1 (u) and
F q2 (v), u = 1 . . . U, v = 1 . . . V ; 2) For the j-th cluster, count
the number of times a region u× v contains a point assigned
to cluster j, leading to a map defined by:

Mj(u, v) =

T∑
t=1

IC1∩C2∩C3

C1 : xt ∈ F q1 (u), C2 : xt ∈ F q2 (v), C3 : P ∗t = j

(18)

III. RESULTS ON SIMULATED DATA

The original dataset used subsequently, with the kind per-
mission of M.G.R. Sause, was first published in [12].

A. Damage sequence generation

A data sequence generator is proposed to obtain clusters
and AE data constrained by some kinetics. It allows to getting
a ground truth used for quantitative evaluation. It is mathe-
matically represented by a three states probabilistic generative
model, where each state is supposed to represent one of the
three following failure modes: Matrix cracking (s1), interface
failure (s2) and fibre breakages (s3). The probability mass
assigned to a failure mode at a given time is given up to a
constant by:

p(si) ≈
1

1 + exp (−ai · (t− bi))
(19)

where ai and bi determine the shape and the position of
the sigmoid functions, normalised to get probability masses.
Each sequence is made of 100 data points generated using the
following parameters:

ai = 0.4; i = 1, 2, 3; b1 = 5; b2 = 25; b3 = 55; t = 1, 2 . . . 100

For the sake of simplicity, the points are assumed equally
spaced (which is not the case for the real data presented in the
next Section). The probability mass function is represented in
Figure 2.

Given each state si, the data x = [x1;x2; . . . ;xt; . . . ;xT ],
with xt ∈ <n a n-dimensional feature vector, are assumed to
follow a multivariate Gaussian distribution so that

p(xt|si) ∼ N (µi,Σi) (20)

The parameters µi,Σi were estimated using the results pre-
sented in [12] where the authors studied the degradation of
composite plates under four-point bending. The three main
failure modes were detected based on AE signals and the
Kmeans algorithm. The dataset called B with the 85-th
combination (see [12] for details) was used and the partition
was considered as a ground truth so that µi and Σi were
estimated using the sample mean and covariances in cluster
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Fig. 2: Probability mass assigned to each failure mode with
report to time. The damage level is gradually increasing yield-
ing similar probability of occurrence of all failure modes (for
instance matrix cracking, interface failures or fibre breakages).

i. From AE signals obtained in [12], the following n = 14
features were used: the partial power 1 to 6 (PP1 to PP6, in %),
representing the proportion of the FFT power spectrum falling
in frequency bands [0, 150] kHz, [150, 300] kHz, [300, 450]
kHz, [450, 600] kHz, [600, 900] kHz, [900, 1200] kHz, the
average frequency, the reverberation frequency, the initiation
frequency, the frequency centroid, the peak frequency, the
weighted peak frequency, the absolute energy and the ampli-
tude.

A total amount of 100 datasets were generated by using this
generative model. For each dataset, Eq. 19 is first applied in
order to obtain the state sequence; Then, given the states, the
data are generated by sampling using Eq. 20. The generated
state sequence is kept in memory to be used as a ground truth
(during comparison). Figure 3 represents one dataset in the
feature space made of the weighted peak frequency (WPF)
and second partial power (PP2). It shows a good agreement
between simulated and real data [12]. The true points (a total
amount of 1408) are also shown as well as the position of the
centers representing the prototypes of failure modes.
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Fig. 3: Data simulated using the proposed model (WPF:
Weighted Peak Frequency, in kHz; PP2: Second Partial Power,
in %, both defined in [12]). The real data obtained in [12]
are depicted using small gray dots. The figure shows a good
agreement between simulated and real data.

B. Illustration of each step of the algorithm

A state sequence (Eq. 19) drawn randomly using the gen-
erative model is illustrated in Figure 4(a) using the CSCA
representation as described by Eq. 1 (continuous bold lines).
One specificity of this representation of clusters concerns the
fact that each assignment to a cluster is represented by a step.
Multiple consecutive assignments to a cluster may thus repre-
sent a sudden growth (avalanche or cascade) of damages which
can be observed on composites under sollicitations [29]. The
aforementioned sequence is accompanied by a 14-dimensional
dataset drawn from Eq. 20. All subsets made of 4 and 5
features (3003 subsets representing parameterizations) were
considered for clustering using the Gustafson-Kessel algo-
rithm [36]. The latter was initialised with a Gaussian Mixture
Model with 3 components. The fuzziness parameter was set to

1.5 and the j-th cluster volume to ρj =
√
|Σj |1/n as suggested

in [44] where Σj is the covariance matrix estimated by the
GK algorithm. Each resulting partition was transformed into
a CSCA representation (Eq. 1) and the areas were computed
(Eq. 2). The polygonal representation and the associated areas
of this state sequence is depicted in Figure 4(b). The CSCA
obtained for different subsets of features are also represented
(grayscale dotted lines) in Figure 4(a).
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Fig. 4: State sequence drawn from the model and the estimated
sequences represented in the CSCA space. The continuous
lines with markers represent the CSCA of the sequence
obtained by the final step of the proposed algorithm. (b)
Polygonal representation and areas estimation under the CSCA
curves for each cluster in the ground truth shown in (a).

For each subset, the trend of areas between consecutive
clusters was estimated by fitting a second degree polynomial
(Eq. 3). The 3003 resulting coefficients p2 are plotted in
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Figure 5 for all subsets (points) and for the subsets selected
by the interquartile range proposed in Eq. 5 with β = 0.25
(circles). Here, only positive values were selected by the
algorithm meaning that parabolas mainly opened upward.
It means that the areas globally decreased as illustrated in
Figure 4(b).
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Fig. 5: Values of coefficients p2 for the 1001 combinations of
4 features among 14 followed by the 2002 combinations of 5
features in binary order (points).

Figure 5 pictorially represents the coefficients p2 selected
after sorting and entropy maximization as described in Eq. 6, 7
and 8 (square markers). Grayscale lines in Figure 4(a) repre-
sent the sequences obtained by the related subsets. The 90-th
percentile (Eq. 8) was here equal to 0.99.

The sequence resulting from the fusion process is illustrated
in Figure 4(a). The related partition was compared to the
ground truth (continuous bold lines) using the corrected-for-
chance version of the Rand index called Adjusted Rand Index
(ARI) [45] (equals 0 on average for a random partition, and 1
when comparing two identical partitions) yielding 89% for this
sequence. The errors (11%) are mainly due to some confusions
between state 2 and 3 in [25, 55]-th time unit.

Figure 6(a) shows the median of NMI values (Section II-B1)
for 100 simulated datasets with report to several number of
clusters, using B = 50 boostrap ensembles and 25 subsets
of features for each ensemble (drawn randomly from the set
Sfinal). The optimal value (highest median NMI) generally
equals 3 which corresponds to the ground truth and the results
are robust to variations on features over boostrap ensembles.
The performance is evaluated by the number of times the
optimal number of clusters is correct, yielding a classification
rate of 97% (over 100 datasets). Figure 6(b) depicts the
evolution of the IQR of NMI values to estimate the number
of clusters yielding 53%. These figures show that the median
of NMI is better than IQR to estimate the number of clusters.
Moreover, both average and variance proposed in [41] and
[35] led to lower classification rates with 93% and 26%
respectively.

The uncertainty is illustrated using the weighted peak fre-
quency feature (WPF, in kHz) and the second partial power
(PP2, in %) which were discretized by considering fixed
interval of size 10 kHz and 5% respectively. The contours of
clusters are represented in Figure 7 by accumulating evidence
over a) all subsets of features selected before fusion in phase
1 (left), and b) after fusion with number of clusters optimised
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Fig. 6: Boxplot of NMI and IQR values against the number
of clusters for all simulated datasets. The central mark is
the median, the edges of the box are the 25-th and 75-th
percentiles, the whiskers extend to the most extreme data
points, and the outliers are plotted individually (red crosses).

in phase 2 (right). A good agreement can be observed between
both the result of the fusion and the model used for generating
the data (Fig. 3).

C. Quantitative evaluation

The 100 datasets used in the previous examples are used for
comparison purposes. For each dataset, the partitions estimated
by three different algorithms were compared to the ground
truth using the ARI:

1) The “voting algorithm” proposed in [12] focusing on the
selection of a single subset of features on the number of
clusters for AE signals ;

2) The proposed method using the Gustafson-Kessel (GK)
algorithm for clustering [36] ;

3) The proposed method using Hidden Markov Models
(HMM) for clustering [46].

In the following tests, the main goal was to evaluate the
algorithms in subset selection so that K was set to 3 clusters.
All subsets made of 4 and 5 features (3003 subsets) were con-
sidered. The GK was parameterized as explained previously
and the HMM was tuned with 3 states, 1 Gaussian per state and
10 Kmeans-based initialisations [47]. Several initialisations are
used to quantify the amount of variance in the performance.

Concerning the method proposed in [12], all combinations
of 5 features were considered and the Kmeans was applied
(using 10 different initialisations and keeping the one minimis-
ing the sum of the squared-distances over data points). Seven
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(a) Uncertainty on cluster 1 before fusion. (b) Uncertainty on cluster 1 after fusion. (c) Uncertainty on cluster 2 before fusion.

(d) Uncertainty on cluster 2 after fusion. (e) Uncertainty on cluster 3 before fusion. (f) Uncertainty on cluster 3 after fusion.

Fig. 7: Uncertainty on clusters in WPF/PP2 feature space before and after fusion. The fusion is in agreement with the model
(Fig. 3).

clustering performance measures were then calculated [48]:
the Partition Index, the Separation index, the Xie and Beni’s
index, the Davies and Bouldin index, the Calinski-Harabasz
index, the Krzanowski-Lai index and the Hartigan index. A
score was then assigned to each partition for each index as
proposed in [12]: The best partition received 25 points, the
second one 24 points and the third one 23 points. The final
score was obtained by summing the scores over all indices,
the ideal partition was thus expected to receive 7× 25 points.

Figure 8 illustrates the performances over all subsets using a
box plot representation for the three algorithms. On average,
the best performance (96%) was obtained for the proposed
method using the GK algorithm. When using the HMM,
the performance in terms of precision was lower (90%) as
well as for the robustness (interquartile range equals 22% for
HMM against 9% for GK). The Kmeans-based method led
to 12%. The important difference between the two methods
(voting based on Kmeans with single feature against multiple
clusterings) in terms of performance holds in the fact that the
Kmeans optimises the compacity and the circularity of clusters
[49] which is not relevant for this dataset. On the opposite, the
proposed method looks for sequence of clusters. The use of the
GK algorithm allows to coping with AE data scattering, where
clusters can take the form of ellipsoids, through the use of a
Mahalanobis-like distance [36]. In addition, the Mahalanobis
distance is known to be robust to outliers [50]. The proposed
method is thus more appropriate when the dynamics follow
a sequence of states, when the distribution of features in
each state is not globular-shaped and when the number of
elements in each cluster is different. It is important to point
out that some individual sequences obtained by some subsets
of features led to erroneous sequence using the GK clustering
algorithm as shown in Figure 4 and in Figures 7(a), 7(c)
and 7(e). However, those errors were compensated by the
fusion process that draws benefits from multiple clusterings
(Figure 7(b), 7(d) and 7(f)).
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Fig. 8: Performance assessement: Box plot of the adjusted
rand index (ARI) that has to be maximised. The GK coupled
with the proposed method for feature selection and estimation
of the number of clusters yields the best results in terms of
precision (96%) and variation (9%).

IV. EVALUATING THE KINETICS OF DAMAGES ON A
RING-SHAPED CFRP COMPOSITE DURING TENSILE TEST

Data and results collected on ring-shaped CFRP composite
structures tested under quasi-static loading up to failure (total
ruine of the material) were investigated and analyzed in this
section. Such structures are used in applications related to
transportation systems (high-speed rotors, flywheels) under
severe operating conditions (involving high and multiaxial me-
chanical stresses combined with relatively high temperature).
The rings were obtained by cutting 6-layers filament wound
carbon tubes with lay-up configuration [(90o)2/±45o/(90o)2].
The split-disk test specimens were machined with respect to
the ASTM D2290 standard geometry and dimensions. Each
specimen had a width of 23 mm and involved two sections of
reduced area with a width of 14 mm. These notches were
located 180o apart from each other with internal diameter
equal to 60 mm. Tensile tests were performed using an Instron
8501 testing machine (100 kN) where the specimens were
subjected to a displacement control with a 5 mm.min-1 moving
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crosshead speed.
The transient elastic waves were recorded during test at the

material surface using a multi-channels data acquisition system
from EPA (Euro Physical Acoustics) corporation (MISTRAS
Group). Two miniature piezoelectric sensors (µ-80) were used,
characterized by a range of resonance of 250 − 325kHz,
preamplifiers with a gain of 40 dB, a 20−1000kHz filter, a PCI
card with a sampling rate of 2 MHz and the AEWin software
for real-time feature extraction with an amplitude threshold
at 45 dB. The calibration of the system was performed after
installation of the transducers on the specimen and before each
test using a pencil-lead break (PLB) procedure. The features
defined in [51] were used: Average frequency (Afreq, in kHz),
reverberation frequency (Rfreq, in kHz), initiation frequency
(Ifreq, in kHz), absolute energy (in aJ), PAC energy (in µV.s),
amplitude (AdB in dB), root mean square (mV), Average Signal
Level (ASL, in dB), signal strength (in pV.s) and counts-to-
peak.

For the sake of simplicity, the results on only one specimen
are presented in details below. Similar results were observed
on multiple composite materials with different shapes (plate,
rings) and configuration of layers, and with different matrices
(thermoset, thermoplastic) and fibres (carbon and natural).

The number of AE data recorded until failure was 41606.
The proposed algorithm was run on all subsets of 4 features
(for a total of around 210 subsets) considering 2, 3 . . . 7
clusters. The optimal number of clusters was found to be equal
to 4 using the NMI-based criterion.

Figure 9(a) represents the sequences of those four clusters
in the CSCA space. Both the individual partitions selected
by the algorithm (in gray level) and the result of the fusion
(bold lines) are depicted with report to loading. The cumulated
energy released during loading is superimposed. From the
sequences, it can be observed that:
• The two first clusters started at the beginning of load-

ing. They were the most frequent and characterised by
amplitudes around 50 dB and 70 dB (Figure 10(a)).

• The third cluster occurred after some occurrences of
the two first clusters around 1 kN. This cluster was
characterised by relatively high amplitudes (80− 95 dB,
Fig. 10(a)). Until 6 kN, it was made of a few appearances
represented by a few steps in the CSCA curve. Around 6
kN, it presented a slope change corresponding to a sudden
multiple assignments of AE hits to this cluster. This
change was synchronised with a slope change observed
on the fourth cluster.

• The fourth cluster concerned AE hits with the highest am-
plitudes (above 90 dB, Fig. 10(a)). From 5.5 kN and until
failure, theses steps were regularly spaced (with report to
loading) meaning that a few AE hits were assigned to this
cluster. Some cascades (multiple assignments) occurred
around 8.3 kN, 9.7 kN and 13.6 kN.

This behavior (order of occurrence and cascades) was observed
on different types of composites, with particular kinetics
according to the shape, the lay-up configuration and the type
of matrix and fibres.

Figure 10(b) shows the number of times each feature was
considered in the fusion process. The ASL and the RMS are

the most frequent closely followed by the PAC energy, the
reverberation frequency, the signal strength and the absolute
energy. It can be seen that all features were selected at least
once by the algorithm which seems to indicate that all features,
represented by multiple subsets, may be necessary to represent
the sequence of damages.

(a) IR images emphasizing hoop split-
ting of 90o layers and delamination.
The points 1 . . . 4 represents the loca-
tion of the measurements to establish
the evolution of the temperature (de-
picted in Fig. 11(b)).

(b) Evolution of the relative increase in temperature at the
four points depicted in Fig. 11(a), hoop stress and cumulated
acoustic energy as a function of loading time.

Fig. 11: IR images obtained with a Mid-Wavelength InfraRed
camera with 3-5 m spectral response (MWIR3 JADE from
CEDIP Company).

During loading, the snapshots obtained from the infrared
camera (Figures 9(b) and 11) allowed to showing a link
between the evolution of the fourth cluster and high re-
leases of heat which are typical of fibre tow breakages. This
damage family was observed both during loading by optical
observations (Fig. 12) and after the ruine by fractography
(Fig. 13). The lay-up configuration implies ply delamination
and hoop splitting in 90o layers that were observed by the
optical camera (Fig. 12). The third cluster is likely to be
associated to these damages related to interface failures. The
second cluster may be related to matrix cracking and also to
fretting between the specimen and the clamps of the testing
machine (observed post-mortem). The first cluster is attributed
to electromechanical noise characterised by AE hits with short
duration and low amplitude.
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Fig. 9: Sequences of clusters and infrared images obtained for the real composite.
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(b) Feature representativeness in the selected individual partitions used in
the fusion process.

Fig. 10: Distribution of amplitudes in clusters estimated after fusion, and feature representativeness in the fusion process.

It is important to point out that the proposed method uses
multifarious subsets of features with the aim to distinguish
between families of damages (clusters) characterised by dif-
ferent kinetics. The chronology is obtained by assigning AE
hits into clusters characterised by an order of occurrence in
time. Therefore, those families of damages may be composed
of multiple elementary damages such as matrix cracking,
delamination and fibre breakages. It is in accordance with
[52] who showed that acoustic emission signals due to those
elementary damages may have overlapping characteristics.
Those overlaps may be accentuated by the degradation of
the composites during the sollicitations since the Lamb-wave
modes can interact with the discontinuities created during the
damaging process or due to manufacturing [24].

V. CONCLUSION

Unsupervised pattern recognition in AE time-series issued
from composite materials was tackled by the use of multiple
clusterings. An automatic feature selection was proposed cou-
pled with an optimisation of the number of clusters. Accuracy
and robustness were quantified on simulated datasets by using

the Gustafson-Kessel algorithm in comparison to two other
techniques. The tests demonstrated the importance of using
different kinds of features which depict complementarity. Fea-
tures in both the frequency and the time domain were selected
illustrating that the “diversity” brought by those subsets can
be beneficial for clustering acoustic emission time series. It is
also shown that the methodology is general enough to be used
with different clustering methods (Kmeans, Gustafson-Kessel,
Hidden Markov Models).

The damage profile estimated by the proposed method also
gives access to the main thresholds of damage onsets and
kinetics with a quantification of the uncertainties. As illustrated
for a real composite, when complex damages occur involving
different sources (matrix cracking, fibre-matrix debonding and
fibre breakage), the sensitivity of the detection with report to
the features can be expectedly high. The proposed method
based on clustering fusion allowed to coping with this sensi-
tivity while capturing damage kinetics and onsets.

The coupling of the proposed method with AE source
numerical models is under study.
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Fig. 12: Optical observation of the edge just before the total
ruine, showing different damage types (obtained by a CCD
Ueye 1MPixel camera with a frame rate of 1 frame per
second): A) Ply delamination, B) 45o fibres failure, C) 90o

fibres failure.

Fig. 13: Fracture facies (using an optical microscope Nikon
Eclipse LV 150) after specimen failure: 1) Hoop splitting of
the 90 layers at the edge of the notch; 2) Ply delamination; 3)
Fibres breakage.
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