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Abstract: Piezoelectric micromanipulators are used in applications with precise and high dynamics 

positioning. This recognition is thanks to their high resolution, bandwidth and stiffness. Its nonlinear 

behavior, however, complicates the design of robust control laws with respect to no or imprecise sensing. 

In this context, this work presents the identification of a piezoelectric micromanipulator through 

nonlinear black-box neural networks with data acquired in a laboratory setup. A comparison is made 

regarding the model complexity. The results show the accuracy of the models, their statistical validity 

and that they were able to capture the dynamics of the micromanipulator adequately. 
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1. INTRODUCTION 

Micromanipulation has received great deal of attention in the 

last two decades. It provides tools for various fields in 

science in order to actuate in the micrometer scale, such as 

positioning of objects for microscopic devices, driving tools 

in microsurgery and actuating in microelectromechanical 

systems (MEMS).  In the biomedical engineering field, 

examples are in vitro fertilization and gene abnormalities 

identification (Gordon and Laufer, 1988; Cohen et. al., 1993). 

Piezoelectric actuators were widely used for the purpose of 

micromanipulation, due to their quick time for response, 

stiffness and the total amplitude of force it is able to exert 

(Cao and Chen, 2014; Agnus et al, 2013). Among the most 

used micromanipulators are piezoelectric micromanipulators. 

They offer a very high resolution of positioning (down to 

nanometers is possible), a high bandwidth (up to tens of kHz) 

and a high stiffness and thus a high manipulation force. 

However some difficulties are faced by the designer 

whenever building control systems to accurately drive 

piezoelectric actuated micromanipulators. Indeed, the 

presence of hysteresis, creep and badly damped vibration 

render difficult the synthesis of the controllers (Xie et al 

2009; Rakotondrabe et al 2008). Therefore, these phenomena 

are undesirable features when considering piezoelectric 

devices for the high precision control of such devices. 

Among them, hysteresis is the principal source of 

nonlinearity and the most studied for piezoelectric 

manipulators (Devasia, Eleftheriou and Moheimani, 2007; 

Hassani, Tjahjowidodo and Do, 2014). The nonlinearity 

problem with modeling piezoelectric actuators becomes more 

salient when one considers the environment at a micrometer 

scale, where a priori one has to resort to open loop control to 

actuate on such devices as sensing is either not possible due 

to the lack of space. In this scenario, a good model may be 

employed and can provide good estimates of the position of 

the tip for control purposes and avoid the shortcomings of 

sensing. In this case, the model should be precise enough as 

to account for the dynamical changes of the actuators during 

operation. 

However, due to the nonlinear behavior of piezoelectric 

actuators, obtaining a good mathematical abstraction is a 

difficult task. Estimating nonlinear systems is a very broad 

problem as it is impossible to propose a structure able to 

describe efficiently every possible nonlinear system. Hence, 

the scope is often reduced to focus on nonlinear model 

structure with black box setup. Models based on the 

computational intelligence approaches, such as fuzzy systems 

(Takagi and Sugeno, 1985) and artificial neural networks 

(Haykin, 2009) may present a good approximation for 

nonlinear plants. These methods have the property of 

universal approximation and are thus good choices for 

nonlinear mappings in the context of system identification 

(Hartman, Keeler and Kowalski, 1990; Hunt, Haas and 

Murray-Smith, 1996). 

Among these computational intelligence techniques reported 

in system identification applications, the artificial neural 

network, or more specifically, dynamic neural network based 

on Nonlinear AutoRegressive models with eXogenous inputs 

(NARX models) model structure, has been widely adopted 

due to its proven record of performance especially for 

nonlinear, complex systems (Han, Wang and Qiao, 2013; Kar 

et. al., 2014).  



 

 

     

 

On the other hand, according to the specific literature on the 

area, piezoelectric actuator modelling may be classified into 

(i) mathematical models or (ii) system identification models 

(Hassani, Tjahjowidodo and Do, 2014). The first category 

includes Preisach, Krasnosel’skii–Pokrovskii, Prandtl–

Ishlinskii, Maxwell-Slip and Bouc–Wen and Duhem models. 

They are composed by closed-form mathematical equations 

with a given number of parameters, which are adjusted to 

adhere to the dynamics of the system to be modeled. System 

identification stands for the techniques which are able to 

interpolate a flexible surface to the input and output data of 

the model. Among other criteria, these techniques may be 

classified into white and black-box models, depending on the 

knowledge of the system used in the modelling process. 

Grey-box models stand in between those two extremes 

(Ljung, 1999; Billings, 2013). 

In this paper, a nonlinear neural network black-box model for 

system identification with sigmoidal activation functions has 

been applied for identifying the unknown process parameters 

when applied to a hysteretic piezoelectric robotic 

manipulator. We consider to have no a priori knowledge 

about the system to be identified and use thus solely input 

and output data from experimentation in order to build a 

model. That is, we do not use any knowledge regarding the 

hysteresis, creep or any other nonlinear behavior of the 

actuator in the modeling process. This gives flexibility for the 

designer as he does not have to define a priori any kind of 

parameter related to any given type of nonlinearity. To this 

end, the unknown process is modeled as a NARX process 

and the parameters of this model are obtained using the 

approximation capabilities of the single layer neural network, 

which were illustrated by the results. We analyze several 

configurations in order to test linear against nonlinear 

models, where the later showed better statistical results. 

Specifically, the tests based on correlation of the residuals 

pointed that the nonlinear models were better able to capture 

the dynamics of the system, being so a better choice for the 

designer as the test indicated that the residuals were random 

at the end of the identification procedure. 

The rest of the paper is organized as follows. Section 2 gives 

the description of the piezoelectric actuator and the 

experimental setup. Basic knowledge regarding nonlinear 

black-box system identification and model validation are 

given in Section 3. The results and conclusion are depicted in 

Sections 4 and 5, respectively. 

2. PIEZOELECTRIC ROBOTIC MANIPULATOR 

The experimental setup employed in this paper is based on a 

piezoelectric robotic micromanipulator. The 

micromanipulator is a cantilever with rectangular section and 

has two layers one of which is based on PZT (lead zirconate 

titanate) piezoelectric material and the other one is based on 

non-piezoelectric layer (nickel). The piezoelectric layer is 

also called active layer and the non-piezoelectric one is called 

passive layer (Fig.1.(a)). When a voltage u(t) is applied to the 

active layer, it expands or contracts following the direct 

piezoelectric effect. Due to the interface between the two 

layers, this expansion/contraction generates a bending y(t) of 

the overall cantilever, as depicted in Fig.1.(b). The cantilever 

can therefore be considered as a system having an input u(t) 

and an output y(t). 

Piezoelectric cantilevers are widely employed for robotic 

micromanipulation or robotic microassembly thanks to the 

very high resolution (down to nanometers), the high 

bandwidth (in excess of the kHz) and the high stiffness they 

can offer to satisfy the requirements in these tasks (Agnus et. 

al., 2013; Rakotondrabe, 2013; Rakotondrabe et. al., 2010). 

Fig.1(c) pictures a photography of a piezoelectric robotic 

micromanipulator. This micromanipulator, which will be 

used for further experiments, has the following active 

dimensions (length, width, thickness): 15mm×2mm×0.3mm. 

The thickness of the piezoelectric layer is 0.2mm whilst that 

of the passive layer is 0.1mm. 

Fig. 1. The piezoelectric robotic micromanipulator. (a) and 

(b): principle. (c): a photography. 

3. NONLINEAR BLACK-BOX SYSTEM 

IDENTIFICATION 

The aim for the mathematical modelling is the construction of 

high fidelity models that could represent the real behavior for 

the real observed system. Classifying the model by the 

construction approach one can have models white-box, gray-

box and black-box. White-box models are used when there is 

access to the system natural laws (chemistry, physics) and 

there is no available experimental data. Black-box in other 

hand is used when there is no previous knowledge on the 

system natural laws or behavior, but the prerequisite for its 

usage is the availability of experimental information. Finally, 

the gray-box models are constructed partly by the white-box 

and part by the black-box approaches. 

The prerequisite to use the black-box approach is the 

availability of experimental data, which is obtained by 

exciting the system and acquiring output data useful for 

system identification. On the other hand, system 

identification is an area of knowledge focusing the study of 

alternative techniques for mathematical modeling. The 

characteristic for those techniques is that there is no or very 

low need of previous knowledge about the system to be 



 

 

     

 

modeled and consequently those methods are taken also as 

black-box modeling or empirical modeling (Ljung, 1999). 

The steps for a system identification can be represented as: i) 

dynamic test and data acquirement, ii) choice of mathematic 

representation and model structure, iii) structural parameter 

estimation, iv) model validation. 

Fig. 2. Artificial neuron (Haykin, 2009). 

 

Fig. 3. Network topology (Haykin, 2009). 

Fig. 4. Framework to apply ANN in system identification. 

3.2  NARX models 

The abbreviation NARX stands for non-linear auto regressive 

with exogenous input. Non-linear once the model shall deal 

with a non-linear system representation. Auto regressive due 

to the representation based on the latest system input/output 

status and with exogenous input to take the noise and 

uncertainties in consideration.  

Taking a discrete system where the inputs are represented by 

u(k) and the outputs are y(k). One NARX model which stand 

for this system will be in the form (Wang, 2014): 
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where k is the discrete time step, Nu ≥ 0 and Ny ≥ 0 are the 

input and the output orders used in the NARX model. The 

function f(.) stands for a non-linear function, in general. 

Using an artificial neural network, ANN, to approximate the 

non-linear function f(.), one can build a so called NARX 

neural network. ANNs like Jordan (Jordan, 1986) and Elman 

(Elman, 1990) are recurrent networks which can deal with 

non-linearity. The recurrence ability, that means some model 

outputs from latest discrete steps can be taken as a valid 

inputs, will bring the net the auto-regressive and exogenous 

parts. 

Fig. 5. Diagram of the experimental setup. 

3.3  Artificial neural networks 

An artificial neural network is a massively parallel-

distributed processor that has a natural propensity for storing 

experimental knowledge and making it available for use. It 

resembles the brain in two respects: i) knowledge is acquired 

by the network through a learning process, ii) interconnection 

strengths known as synaptic weights are used to store the 

knowledge, (Haykin, 2009). 

As a network, the ANN is based on a singular structure called 

neuron. Each neuron have 1 to m inputs, x(k), which are 



 

 

     

 

multiplied by unique synaptic weights, ω(km). All scaled 

inputs, by their respective weights, are then sum each other 

and with one bias factor, b(k). Finally, the result is applied to 

an activation function which gives the final neuron result, 

y(k). The artificial neuron representation is shown on figure 

2.     

The artificial neuron can be mathematically represented as: 
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The ANN is arranged in layers. Each layer can have its own 

number of neurons. The complexity of the system and the 

wanted accuracy will demand the number of needed neurons 

for each network layer and the number of neuron layers to the 

model. Figure 3 is presenting one network structure with one 

input layer, two hidden layers and one output layer. 

Despite the fact that the ANN have a good generalization 

ability, that means the capacity to deal with new stimuli 

different than the one used for learning, one shall be aware 

that once the model accuracy is structure dependant it is not 

possible to be sure all new situations will be handled 

correctly. The best rule is: a model which was trained to a 

system behavior can only deal with the known behavior and 

so if the real system is not properly mapped, then the 

representativeness will be defective. 

3.4  Artificial neural networks applied to system 

identification 

A common framework to use ANNs in the system 

identification shall follow the steps: i) plan and check the 

variables to acquire and carefully check the stimuli given to 

the system in order to capture the systems behavior; ii) 

experiment the system in order to record the database; iii) 

split the database in order to have a dataset for train the 

system and another dataset to validate the system; iv) select 

the best network structure, tune the constructive parameters 

and train the model; v) use the validation dataset and simulate 

the system; vi) compare the validation output with the real 

systems output and calculate a performance index.  Figure 4 

is presenting the framework.  

The last step on black-box modeling is the validation. Once 

the model was built using a portion of the original 

experimental data set, validation is then performed with the 

remaining part of the original set. The model validation 

output is evaluated using a performance index. There are 

some metrics available like mean squared error, MSE, mean 

absolute percentage error, MAPE, and multiple correlation 

coefficient, R
2
. This paper elected the multiple correlation 

coefficient to be used once it does not depend on scale to be 

interpreted.  

R
2 

is an index in the unitary range where the unity stands for 

a hundred percent of following and the null answer represents 

the worst case. It is calculated by: 














N

k kk

N

k kk

yy

yy
R

1

2

1

2

2

)(

)ˆ(
1                                                   (3) 

where k stands for the discrete time step, yk is the real output 

on time step k, 
k

ŷ  is the estimated output on time step k, and 

k
y  is the mean real output up to time step k.  

4. RESULTS 

The present section is devoted to report the results obtained 

when nonlinear black-box system identification with neural 

networks is applied to model the piezoelectric system. Both 

the methodology and the description of the system were 

given respectively in Sections 2 and 3. 

   
Fig. 6. Multiple correlation coefficients in the validation 

phase in simulation for the neural network model with 

varying orders on the input and outputs of the system. 

4.1  Data acquisition 

For the experimental tests, the piezoelectric robotic 

micromanipulator in Fig.1(c) has been integrated in a 

benchmark that contains the following materials: (i) the 

piezoelectric micromanipulator itself; (ii) a computer with 

Matlab-Simulink software for generating the driving voltage 

u(t) and for acquiring the measured signal y(t); (iii) a 

dSPACE board that serves as interface between the computer 

and the external (the dSPACE is a DS1104 capable of 

working at high frequency – in excess of 10MHz); (iv) a 

high-voltage (HV) amplifier that amplifies the voltage from 

the computer before sending it to the piezoelectric 

micromanipulator (the amplifier A400DI from FLC 

company, can furnish up to +/-200V); and (v) an optical 

displacement sensor (LK2420 from Keyence company) 

which is used to measure the deflection (displacement) y(t) of 

the micromanipulator. The sensor is set to have a 100 nm of 

precision and in excess of 2kHz of bandwidth, which are 

sufficient enough for the characterization carried out in this 

paper and sufficient to account for the dynamics of the 

micromanipulator.  

The sampling time for the whole acquisition system, i.e. the 

computer/Matlab-Simulink and the dSPACE board, is set to 



 

 

     

 

be 0.5 ms (2kHz of sampling frequency). Fig. 5 depicts the 

diagram of the whole experimental setup. We recorded in 

total 10 s, what generated 200,000 samples. Afterwards we 

processed the data and found that 50,000 data were enough 

for modelling the manipulator, which were split into 

estimation and validation datasets as we will discuss in the 

next subsection.  

       
Fig. 7. Residual statistical test in the case of Ny = Nu = 1 

(red) and Ny = Nu = 4 (black) (95% margin in dotted lines). 

4.2  Numerical experiments 

We tested NARX models with neural networks varying the 

order of the delays on both the input and the output in order 

to check the accuracy with the respect to the possible space of 

the inputs of the model. Namely, we set the number of lags 

on the input and the output from 1 to 4. The number of 

neurons was fixed at 10 neurons with sigmoidal activation 

function by experimenting on the data. The modelling 

procedure was implemented computationally on MATLAB 

with standard available functions. We split the 50,000 data 

into two datasets, namely estimation and validation datasets, 

in 50% ratio.  

For all possible pairs of number of lags on both the input and 

output of the system, the multiple correlation coefficient 

obtained were very close to one for the estimation and 

validation phases in prediction and simulation. In the case of 

validation phase and in simulation (usually the most difficult 

scenario), the metric returned 0.9999 for all pairs of lags on 

the input and the output, as illustrated in Figure 6.  

Even though the accuracy is very high in all cases tested, in 

simulation run and in the validation phase, the statistical 

properties of the residuals of the model with orders equal to 1 

are not adequate. Figure 7 shows the tests based on the 

autocorrelation of the residuals and on higher order 

correlation function between the input and the residuals 

(Billings, 2013; Chap. 5) for the models with orders equal to 

1 and 4. It is possible to see that the former model was not 

able to capture adequately the dynamics of the system, while 

the later gave adequate results for the correlation tests. Thus, 

the model with orders equal to 4 is more reliable in a 

statistical sense, as the tests shown in Figure 4 indicate that 

the dynamics have been adequately captured.  

 
Fig. 8. Measured output response, model simulation and 

respective residual in the validation phase (a) and zoomed 

around 1.35 sec (b), in the case of Ny = 4 and Nu = 4  

    
Fig. 9. Measured and simulated output versus the input for 

the model with Ny = Nu = 4. Note that the hysteretic 

behaviour has been adequately captured. 

The precision of the model with Ny = Nu = 4 can also be 

checked in Figures 8 and 9. The former picture shows the 

original data, simulated predictions (where the predictions are 

calculated based on previous predictions and the measured 

output data is used only to initialize the predictions) and the 

residuals. It is possible to see that the predictions are almost 

indistinguishable from the original output data. In Figure 9 

we have the plot of the output versus the input, in order to 

analyse the quality of the predictions with respect to the 

hysteretic behaviour of the system. One can see that the 

nonlinear characteristic of the system was properly captured 

by the model.  

It is important to note that we also tried linear ARX models 

with all possible sets of orders from 1 to 10 in the input and 

the output. However, even though the multiple correlation 

metrics indicated that the models were very accurate (they 



 

 

     

 

were similar as in the nonlinear models), the correlation tests 

were not satisfied by any of the models. Thus, we omitted the 

graphical results for the case of linear models as the tests 

indicated that the models are not valid in a statistical sense. 

5.  CONCLUSION 

In the present paper, we showed an experimental test bench 

to perform data acquisition for the purpose of acquiring data 

for system identification. Moreover, we employed black-box 

system identification techniques in order to define the quality 

of the models by varying their complexity. We found out that 

the nonlinear models were able to capture adequately the 

dynamics of the system. On the other hand, the linear models 

showed to be insufficient to capture the model dynamics. 

This happened in spite of the fact that the models are accurate 

enough in terms of the multiple correlation metric. We used, 

though, the tests based on the autocorrelation of the residuals 

and higher order cross-correlation between the residuals and 

the input to infer that there was still dynamics left in the 

residuals – a highly undesirable feature in a model – even 

though the predictions were accurate. Building accurate 

models is important in the scope of micromanipulators as we 

may use richer information when providing feedback for the 

positioning controllers with the models avoiding, thus, the 

use of expensive sensors in such scale. 

As future works, we shall focus on the improvement of such 

models by exploiting the universal approximation capabilities 

of the neural networks. Moreover, we shall employ also 

evolutionary algorithms in order to perform the search of the 

parameters with global search techniques and define as 

project parameters the inputs of the model and its complexity 

as well. Being so, the designer is not required to perform 

tedious and error prone procedures to build models. 
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