
Precision Prediction Using Interval Exponential Mapping of a Parallel
Kinematic Smart Composite Microstructure

Sergio LESCANO, Micky RAKOTONDRABE, member, IEEE, and Nicolas ANDREFF, member, IEEE

Abstract— In this paper, a method to predict the precision of
parallel microstructures made of carbon fibers, polyimide layers
and piezoelectric materials is proposed. To this aim, we propose
to combine the exponential representation of transformation
matrix with intervals to bound the uncertainties in each flexure
joint of the microstructures. Based on interval techniques and
algorithms, the derived model permits to guarantee a bound on
the precision value of the end effector. The method has been
demonstrated with a numerical example of parallel microrobot
devoted to orient the laser spot towards vocal fold during
phonomicrosurgery. This example considers the uncertainties
that occur in the compliant joints caused by the fabrication
technique.

I. INTRODUCTION

Phonomicrosurgery1 with laser was introduced by Jako [1]
in the 1970’s. Even though there exist a variety of laser tech-
nologies, the prevalent traditional methodology for remote
control of the laser is a mechanical manipulator. However,
many of the difficulties associated in using this classical
mechanical manipulator are rooted in the ergonomics of the
device, thereby decreasing the quality of the intervention.

Within the European µRALP project [2], a fiber guides
the laser from its external (proximal) source to the distal
tip of the laryngoscope, where a robotic micromanipulator
is placed to precisely orient the laser beams (Fig. 1a). The
laryngoscope diameter is 20 mm, and the space assigned
for the microrobot is 10×10×10 mm3. The distal tip of the
laryngoscope is introduced into the larynx, at a distance up
to 20 mm from the vocal fold as depicted in Fig. 1b. The
microrobot, which is proposed in this paper, is a parallel
kinematics manipulator (PKM) with two rotational degrees-
of-freedom (dof). A micromirror is placed on its mobile plat-
form in order to reflect the laser beam. The PKM microrobot
is specified to have a minimal bandwidth of 200 Hz and a
scanning resolution better than 100 µm in order to prevent
overheating and damaging of the healthy tissue. Piezoelectric
materials with cantilever structures (10×2 mm2) are used to
actuate the microrobot because of the very high resolution
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1Phonomicrosurgery: Set of medical procedures used to treat abnormali-
ties on the vibratory elements of the vocal fold in order to restore or improve
voice function.
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Fig. 1: (a) Endoscopic laser phonomicrosurgery (µRALP
project [2]). (b) Principle of the micro-PKM placed at distal
tip of the laryngoscope and steering the laser beam onto the
vocal fold [4].

(nanometric), the large bandwidth (up to several KHz) and
the high force density they can offer [3].

To create the complex three-dimensional (3D) structure
at small scale, we turned ourselves to the recent origami-
inspired techniques [5], where flexible and rigid materials
are combined in one monolithic flat structure which is then
folded in order to obtain a complex and stiff mechanical
structure. A specific origami-inspired technique called Smart
Composite Microstructure (SCM) permits to combine piezo-
electric materials, carbon fibers and polymer (polyimide)
materials at small sizes [6], [7]. The major advantages
of SCM microfabrication technology are its simplicity for
making small 3D mechanisms and its ability to create flexure
joints with larger range of motion than those made in silicon.
Moreover, SCM technique yields remarkable improvements
without causing either fracture or rapid fatigue on the oper-
ating structure. Several structures have been created using
this technique [8], [9], [10] including structures that can
spontaneously reach 3D shapes, called self-folding machines
[11].

Due to the SCM fabrication process and by the nature of
the materials used, uncertainties in angles, axis directions
and point positions are observed in the flexure joints. These
uncertainties greatly influence the precision of the end-
effector. In fact, a small uncertainty in one joint is amplified
and transmitted by the rest of the structure till the end-
effector (uncertainties propagation). One advantage to use
a parallel structure is that uncertainties generated by each
individual leg can be filtered out by the kinematic constraints
imposed by the other legs. Unfortunately, not all uncertainties
can be cancelled and a method for estimating the residual
end-effector uncertainty is needed.
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Fig. 2: (a) CAD model of a hinge using SCM fabrication
technique. (b) Pseudo-colored SEM image of a fabricated
hinge (by SCM) depicting the carbon fiber along with the
flexible polyimide (scale = 300 µm).

To do so, we chose to use interval analysis because it
is pessimistic in nature and does not require any statistical
model of the uncertainties. Interval analysis was applied to
parallel robots (e.g. in [12]) to solve the forward kinematic
problem and to ensure the reliability of the robot, among
others. Also, in [13][14] a methodology is explained to
ensure the precision of serial structures via interval analysis
using the exponential mapping for rigid motion.

The contributions of this paper are as follows. First, the
uncertainties caused by the SCM fabrication technique on
flexure joints are presented (Section II). Then, a methodology
to calculate the uncertainties at the end-effector is described
(Section III). Its novelty lies in the application to PKM
of the interval exponential mapping used in [13][14] for
serial structures. Finally, a novel microrobot is introduced
and its precision analysed to exemplify the methodology
(Section IV).

II. UNCERTAINTIES DUE TO THE SCM FABRICATION
TECHNIQUE

A simple flexure joint made with the SCM process is
shown in Fig. 2, where three parts are distinguished: rigid -
flexible - rigid, as depicted in Fig. 2a. Basically the flexible
part is used to fold the structure and the rigid part serves as a
link. A Scanning Electron Microscope image of a fabricated
sample at our facility is shown in Fig. 2b. It is based on one
polyimide layer that serves as a flexible element and two
carbon fiber layers to stiffen the structure. The thickness of
each carbon fiber layer and polyimide layer is 180 µm and
10 µm, respectively.

A bent joint of the fabricated SCM microstructure is
shown in Fig. 3a. As shown in Fig. 3b, the joint itself
generates undesired strains. Thus, in each joint, SCM micro-
fabrication results in an uncertain Euclidean transformation
built upon three components:

• uncertainties on the joint angle,
• uncertainties on the joint axis direction,
• uncertainties on the position of the joint axis.

that can be quantified from the dimensions of the flexible
hinge: the rigid-to-rigid distance for the position or the cone
defined by the hinge (Fig. 3b) for the direction.

Thanks to interval analysis, we do not need to push further
the modeling of the associated physics and can rely on
(interval) kinematic representations of the latter components.
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Fig. 3: (a) A hinge based on the flexibility of a polyimide
material. (b) Sprained kink dislocating the rotation axis in
position and direction.

III. UNCERTAIN KINEMATIC ANALYSIS OF SCM USING
INTERVAL ANALYSIS

A. Spatial rigid motion tools

In this section, we propose to combine the exponential
mapping and interval tools to highlight the uncertain motions
that cannot be directly handled by other representations. In
fact, exponential representation allows a global description
and a geometric handling of spatial rigid body motions
and is widely described in classically sized robotic systems
[15]. Thus, an exponential mapping representation for a rigid
motion in SE(3) (special Euclidean group) is used in order
to account for the uncertain motions present in the joints.

Remind that the motion generated by a rotational joint
is described by the homogeneous transformation Tjoint ∈
SE(3) obtained by the following matrix exponential:

Tjoint = eξ̂q (1)

where q is the joint variable and ξ̂ belongs to se(3), the Lie
algebra associated to SE(3). The latter is formed as

ξ̂ =

[
ω̂ −ω × pjoint
0 0

]
(2)

where pjoint is the joint position and

ω̂ =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 (3)

where ω̂ ∈ so(3) is built upon ω = [ω1 ω2 ω3]T the unitary
vector representing the direction of the joint axis.

B. Intervals as representation of the uncertainties

Let us express the joint variables, axis directions and
position coordinates by intervals as follows:

• a (scalar) joint variable q becomes Q = [q− δq, q+ δq];
• a joint axis direction ω = [ω1 ω2 ω3]T becomes

Ω =

ω1 − δω1 ,ω1 + δω1

ω2 − δω2 ,ω2 + δω2

ω3 − δω3 ,ω3 + δω3


• a joint position p = [px, py, pz]T becomes

P =

px − δpx
,px + δpx

py − δpy
,py + δpy

pz − δpz
,pz + δpz


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Fig. 4: Two links and a flexible hinge at B with uncertainties
due to the SCM fabrication technique.

where δi, with i ∈ {q, ω1, ω2, ω3, px, py, pz}, correspond to
the radius of uncertainties.

C. Transfering the uncertainties

Similar to Fig. 3b, Fig. 4 shows two rigid links attached
by the joint in B. Uncertainties due to the SCM fabrication
technique are exhibited at the joint B (uncertainties of angle,
axis direction and position).

Thus, the homogeneous transformation between the refer-
ence frame in A and the one in C is denoted by: TAC =
TAB ∗TBB′ ∗TB′C , where the homogeneous transformation
TBB′ takes into account the joint uncertainties in B. It is
explicitly denoted as:

TBB′ = eΞ̂BQB (4)

where Ξ̂B is an interval matrix that is compatible with the
structure of se(3):

Ξ̂B =

[
Ω̂B −ΩB × PB

0 0

]
(5)

QB is the interval representing the uncertain angle developed
at B. ΩB is the vector interval representing the uncertain
axis direction of the joint at B. PB is the vector interval
representing the uncertain position of the point B.

D. Methodology to evaluate uncertainties in parallel robots

Our methodology to find the uncertainties in the platform
follows the following steps.

• The analysis starts by solving the inverse kinematics
of the parallel robot, in a given configuration using
conventional arithmetics.

• Then, the uncertainties corresponding to each joint
(q → Q and ξ → Ξ) are introduced, using the interval
exponential matrices.

• Finally, the implicit kinematic constraint is solved for
the end-effector pose X , given the calculated uncertain-
ties.
a) Inverse Kinematics: It deals with computing the

joint variables q with respect to the operational angles x. In
[16], a methodology to calculate the inverse kinematics of a
parallel robot using the implicit equations of the structure
geometry was described. Initially, the coordinates of one
specific point on the robot are expressed as a function H1(x)
of the end-effector variables. Then, the same coordinates are
expressed as a function H2(q) of the joint variables. Thereby,

equating H1(x) and H2(q) yields the implicit kinematic con-
straint: H1(x) = H2(q). Finally, joint variables are expressed
in function of the end-effector variables (q = f(x)).

b) Exponential Interval Matrices: After taking into ac-
count uncertainties of the joint variables (position, direction
and angle), the evaluation of the overall precision is based
on exponential interval matrices.

Nevertheless, the counterpart of the easy representation
of uncertainties with intervals parameters is the numerical
calculation of the exponential of interval matrix. Goldsztejn
[17] proposed a computational method to calculate the expo-
nential of an interval matrix, based on the truncated Taylor or
Padé expansion (Horner-Taylor series) computed in double
precision. Among the three methods to calculate such an
exponential, this method minimizes the overestimation in the
results [17]. This method is therefore employed here as it is
well adapted to precision evaluation.

c) Solving the uncertain implicit kinematic constraint:
The problem which consists in finding the set X of variable
x such that f(x) ∈ Y , where Y is a given set, is a
set inversion problem. That is, find X such that X =
{x ∈ <n | f(x) ∈ Y } = f−1(Y ). Such a problem can
be solved by a set inversion algorithm, such as SIVIA (set
inversion via interval analysis)[18]. This algorithm is based
on interval techniques and operations and is summarized in
Table-1, where w([x]) is the width of the interval argument
[x] and ε is the accuracy of the computation. S and S
correspond to the upper and lower bounds of the set solution
S: S ⊆ S ⊆ S.

TABLE I: The SIVIA algorithm [18].

SIVIA(inputs: [x], ε ; outputs: S, S )
1 if [f]([x]) ∩ [Y] = ∅, [x] is non-solution;

2 if [f]([x]) ⊆ [Y], thus S := S ∪ [x] ; S := S ∪ [x] ;

3 if w([x]) < ε thus S := S ∪ [x] ;

4 otherwise bisect [x] into [x1] and [x2];
SIVIA(inputs: [x1], ε ; outputs: S, S) ;
SIVIA(inputs: [x2], ε ; outputs: S, S).

In practice, SIVIA is used here together with the implicit
kinematic constraints, that is a vector equation. Its interval
solution is therefore the intersection of the sets obtained by
solving each coordinate independently.

IV. IMPLEMENTATION OF AN EXAMPLE

In this section, we introduce a novel parallel kinematics
microrobot, fabricated by the SCM technique, and we per-
form its precision analysis.

A. Kinematic description

In a previous work [4], we performed the complete kine-
matic analysis of the proposed kinematic structure (Fig. 5)
using screw theory and considering perfect joints and un-
deformable links of the microrobot. The mobile platform
of the latter holds a micromirror used to reflect the laser



Fig. 5: Platform operated in parallel by two active legs and
constrained by an passive U-joint leg [4].

(a) CAD design. (b) Realization.

Fig. 6: Planar structure.

(c) CAD design. (d) Realization.

Fig. 7: Folded 3D mechanism

beam, which can rotate about the u-axis and the v-axis. The
end-effector is connected to the base by a passive U-joint at
point P (Fig. 5) allowing only 2 rotations. The end-effector
is actuated with two identical 6-dof RUS legs.

In the reference configuration, the angles of the mobile
platform are θ1 = θ2 = 0. Consequently, c1 =

−−→
PC1 is

parallel to u = i and c2 =
−−→
PC2 is parallel to v = j.

B. Fabrication

The SCM technique was used to make the parallel kine-
matic microrobot. A planar structure, as pictured in Fig.
6 (CAD model and photo of the fabrication), was first
fabricated. It contains the passive U-joints (points P and
Bj) and S-joints (points Cj). Then it is folded to obtain a 3D
structure. After folding, two piezoelectric cantilever actuators
are glued to the two extremities of the folded structure. The
two actuators correspond to the rods A1B1 and A2B2 of the
Fig. 5 whilst the folded structure corresponds to the platform
and the vertical legs. Fig. 7 depicts the CAD design and the
assembled and fabricated microrobot respectively. The base
and support were 3D printed.

C. Inverse kinematics

By observing Fig. 5 and given a feasible platform orienta-
tion, defined by the values of the passive-leg U-joint angles
(θ1, θ2), the mechanism configuration can be calculated by
finding the intersection of a sphere centered at the point Ci,
i = 1, 2, with radius |BiCi| and the circle with center Ai,
with radius |AiBi|, in a plane normal to the line A1A2. Thus,
to find the implicit equation of the PKM shown in Fig. 5 we
proceed as follows. On the one hand,

−−→
PCi =

[
R(θ1, θ2) 03×1

01×3 1

]
−−→
PCi|uvw = H1(θ1, θ2) (6)

where
−−→
PCi and

−−→
PCi|uvw are the homogeneous coordinates

representing the vectors linking P and Ci expressed in the
reference system fixed at the point P parallel to x, y, z and
u, v, w respectively, and R is the rotation matrix given by:

R(θ1, θ2) = Rx(θ1)Ry(θ2) =

 c2 0 s2
s1s2 c1 −s1s2
−c1s2 s1 c1c2


(7)

where c1 = cos θ1, s1 = sin θ1, c2 = cos θ2, s2 = sin θ2. On
the other hand,

−−→
PCi =

−−→
PAi +

−−−→
AiBi +

−−−→
BiCi = H2(qi) (8)

where
−−→
PAi,

−−−→
AiBi and

−−−→
BiCi are the homogeneous coordi-

nates representing the vectors linking the points P and Ai,
Ai and Bi, and Bi and Ci respectively, expressed in the
reference system fixed at the point P and parallel to x, y, z.
The vector qi contains the joint variables (passive and active)
of each leg i.

Combining (6) with (8) yields the implicit kinematic con-
straint that links the joint angles qi versus to the operational
angles θ1 and θ2:

H1(θ1, θ2) = H2(qi) (9)

from which the inverse kinematics can be extracted:

qi = Fi(θ1, θ2) (10)

D. Applying Uncertainties as Intervals

Evaluating (10) in a given end-effector configuration and
then imposing uncertainty intervals, our methodology yields
an interval formulation of (8):

[
−−→
PCi] = [

−−→
PAi] + [

−−−→
AiBi] + [

−−−→
BiCi] (11)

where square brackets denote interval vectors. Since the
uncertainties of the fabrication of the base are constant,

[
−−→
PCi] = T (Θ1,Θ2)

−−→
PCi|uvw (12)

where Θ1 and Θ2 are intervals denoting the uncertainties of
the mobile platform orientation and

T (Θ1,Θ2) =

[
R(Θ1,Θ2) 03×1

01×3 1

]
(13)

is the interval matrix associated to (7).
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Fig. 8: Result of the components of (11) by SIVIA algorithm (a) of the first component. (b) of the second component. (c)
of the third component. (d) Outcome of the intersection of all the three solutions shown above.

Furthermore, as
−−→
PAi are fixed points on the support of the

robot and are not prone to uncertainties, we trivially have:

[
−−→
PAi] =

−−→
PAi (14)

The remaining terms in (11) are expressed using the serial
kinematic chain from the base to the S-joint on the platform:

[
−−−→
AiBi] = [Bi]− [Ai] =T i

1eΞ̂1Q
i
1T i

2eΞ̂2Q
i
2eΞ̂3Q

i
3Bi|B

− T1Ai|A
(15)

[
−−−→
BiCi] = [Ci]− [Bi] =T i

1eΞ̂1Q
i
1T i

2eΞ̂2Q
i
2eΞ̂3Q

i
3Ci|B

− T i
1eΞ̂1Q

i
1T i

2eΞ̂2Q
i
2eΞ̂3Q

i
3Bi|B

(16)

where eΞ̂jQ
i
j is the interval matrix exponential which takes

into account the uncertainties in the joint angle (Qi
j) and in

the joint axis position and direction (Ξj), T i
1 (resp. T i

2) is a
constant homogeneous transformation between the reference
frames attached to points P and Ai (resp. Ai and Bi), Ci|B
are the homogeneous coordinates of the point Ci expressed
in the reference frame attached to point Bi.

E. Results

With (11), the process to find Θ1 and Θ2 by the intervals
Qi (intervals associated to variables qi) is directly addressed
and the SIVIA algorithm is employed for that. In our case,

we identify: x = {Θ1,Θ2}, Y = {Qi} and f−1 is the inverse
kinematic interval model. The INTLAB toolbox of Matlab
[19] is used to implement the model and the SIVIA algorithm
and to perform the interval calculations.

Fig. 8a, 8b and 8c show the solution of each of the
three components of (11) (see the black colored area of
the figures). Fig. 8d is the region that belongs to the
intersection of the three solutions of each component of
(11). This solution set (black colored area in 8d) contains
the kinematically admissible values of Θ1 and Θ2 around
the nominal configuration θ1 = 15◦, θ2 = −15◦. In Fig. 8d,
the uncertainties of the angle Θ1 and of the angle Θ2 are
intervals of amplitude 0.02◦ and 0.01◦ respectively. These
uncertainties in the angles of the microrobot platform will
directly affect the projection of the laser spot onto the vocal
fold. For instance, if the working distance is 20 mm, the
scanning uncertainties, i.e. error of the laser scanning on the
targeted fold, are in the order of 14 µm.

The results shown in Fig. 9 are obtained by running
the same algorithm for different sets of coupled angles
i.e., (15◦,15◦), (-15◦,15◦), (-15◦,-15◦) and (0◦,0◦). These
angles correspond to the other extreme tilts (minimum and
maximum angles) of the platform of the microrobot, as well
as in the central configuration. Each plot in the figure shows
the final solution set.

These results show that the uncertainties are large when



the platform is oriented at (0◦,0◦). These maximum uncer-
tainties are quantified as 0.10◦. When employing the platform
to orient a laser beam onto a vocal fold distanced at 20 mm,
the related scanning uncertainties are about 70 µm, which
remain acceptable for the targeted phonosurgery task.

Fig. 9: Algorithm performed to several angles (A) (θ1, θ2) =
(15◦, 15◦) (B) (θ1, θ2) = (−15◦, 15◦) (C) (θ1, θ2) =
(−15◦,−15◦) (D) (θ1, θ2) = (0◦, 0◦)

V. CONCLUSION AND FUTURE WORKS

This paper deals with the performances analysis of a novel
parallel kinematic microrobot, devoted to laser phonosurgery
tasks and capable of performing two orientation angles.
Fabricated with the smart composite microstructures (SCM)
technique, the microrobot has a complex 3D structure with
interesting dexterity performances, but inherits defects in
the joints due to the flexibility of the materials. These
defects generate uncertainties and imprecision at the output
displacements of the microrobot, which may compromise
its performances during the execution of the targeted tasks.
We therefore proposed to utilize intervals as bounds of
these uncertainties and combined interval techniques with the
exponential representation of the kinematic of the microrobot
to calculate the final imprecision of the latter. We have shown
that the maximal error on the angles of the microrobot is of
0.1o, which corresponds to about 70 µm of scanning error
during the laser phonosurgery task, which is acceptable for
the targeted surgery.

The full characterization of the microrobot fabricated with
the SCM technology is ongoing which will permit to further
verify experimentally the theoretical contribution of this
paper. On the other hand, the presented model and preci-
sion evaluation in this paper dealt with static performances.
Ongoing work also consists in evaluating the precision of the
microrobot when the frequency of the laser scanning is high,
i.e. when the microrobot is excited at high frequencies (i.e.
close to the expected mechanical bandwidth of 200 Hz).
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