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Abstract— This paper presents a new control
method devoted to improve the performances of
2-DOF piezoelectric actuator for precise position-
ing tasks. The piezoelectric actuator exhibits strong
cross-couplings between its two axes and strong hys-
teresis and creep nonlinearities. These unwanted phe-
nomena undeniably compromised therefore the final
precision of the targeted tasks (micromanipulation)
and should be conveniently accounted during the
controller synthesis. In this paper, we proposed a
combination of the discrete linear Kalman filtering
with a closed-loop scheme to suppress the effects of
the couplings and of the nonlinearities. The suggested
method permits to improve the performances of the
piezoelectric actuator without specific and detailed
characterization and knowledges on the hysteresis and
on the creep models. Extensive experiments were
carried out with complex desired trajectories and
demonstrate the efficiency of the novel approach.

Index Terms— Piezoelectric Cantilever, linear

Kalman filter, 2-DOF Micro-positioning, disturbance

Estimation/Compensation

I. Introduction

These last years, the advance of microrobotics has in-
creasingly enhanced different applications. Particularly,
in micromanipulation application, technologies based on
piezoelectric actuators represent a wide spectrum rang-
ing from walking actuators to multi-DOF positioning
systems to pick-and-place of micro-sized objects. The
advantageous performances profile provided by piezoelec-
trical actuators (PEAs), which offer high bandwidth and
high resolution, is degraded by static and dynamic dis-
turbances (hysteresis and creep). Hysteretic behavior of
PEAs is dependent on both current and past inputs. Hys-
teresis arises either in static regime (slow time-varying
inputs) or dynamic regime (fast time-varying). Further-
more multi-DOF micropositioning applications bring un-
wanted cross-couplings effects either for sequenced or
simultaneous motions. Robust control schemes are able
to mitigate such adverse nonlinear phenomena.

The control of PEAs has been addressed using feedfor-
ward and feedback control approaches, or a combination
of both. Feedforward-based schemes rely on the accuracy
of the PEA’s model so that its inverse can compensate
hysteresis allowing that actual position reaches desired
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displacement. In feedforward control of piezoelectric ac-
tuators, several approaches are available to model and
then to compensate for the hysteresis: the Preisach [1]
[2] [3], the Prandtl-Ishlinskii [4] [5] [6] [7] and the Bouc-
Wen approaches [8] [9]. In the two formers, a complex
hysteresis is modeled by the sum of many basic hysteresis
(hysterons). Both approaches can be very accurate with
the use of a high number of elementary hysteresis, which
represents a computational burden implementation. Al-
ternatively, the Bouc-Wen model of hysteresis, has an
interesting simplicity and is able to represent a large class
of hysteresis. Although the low cost and the high pack-
ageability (no sensors required) of the used feedforward
control approaches, their main limitation is the lack of
robustness face to model uncertainties and to external
disturbances.

Likewise, feedback control has been utilized to deal
with the motion control of PEAs. In this case, the
controller’s performances will be as good as the quality of
the measurements and/or the estimation of the system’s
states. Two control applicative categories might be dis-
tinguished based on the operational regime:

• Low-frequency operations
In this regime, hysteresis, creep and couplings
(multi-DOF PEAs) are considered as a constant dis-
turbance introducing a static error. Thus, classical
PID or event intelligent adaptive schemes can fullfil
the control objective [10] [11].

• High-frequency operations
The aforementioned parasitic disturbances become
dynamic. Therefore, robust control schemes are re-
quired to overcome significant uncertainties. Re-
cent works encompass sliding-mode control (SMC),
SMC+adaptive and H∞ schemes. Such controllers
are able to reject the effect of the aforementioned
disturbances [12] [13] [14] [15] [16].

State observers, either deterministic or stochastic, repre-
sent an interesting alternative for both operation profiles,
not only to estimate missing states (e.g. velocity) and/or
to improve state(s) measurement(s) (e.g. filtering [17] )
but also to estimate unknown inputs (1DOF unknown
input observers [18], [19])

In the present paper is addressed a multi-DOF micro-
positioning application. Simultaneous motion resulting
from the commanded trajectories generates nonlinear
dynamic disturbances (hysteresis, creep and couplings)
deteriorating significantly the motion objective. There-



fore, it is proposed and implemented in real-time an
estimation strategy based on the linear Kalman filter
(LKF) to estimate the such parasitic disturbance. It is
also presented a simple-to-implement closed-loop scheme,
whose successful application (i.e. canceling out unde-
sired/parasitic effects) validates the effectiveness of the
disturbance estimation algorithm.

Experimental result are provided to evaluate the per-
formance of the piezocantilever while tracking a circular
trajectory.

The paper is organized as follows: the description and
model of the piezocantilever is presented in section-II. In
section-III the characteristics of the experimental setup
are described. In section-IV is described the LKF-based
estimation algorithm as well as the closed-loop com-
pensation scheme. Experimental results are presented in
section-V. Finally, the conclusions and perspectives are
given in section-VI.

II. Modeling of the Piezocantilever

The actual paper considers as reference model for the
piezocantilever the Bouc-Wen model of hysteresis, which
corresponds to a cascade structure featuring a static hys-
teresis model plus a second order linear dynamic system
(see Fig. 1). Such model stands out for its simplicity
reagarding computation and implementation. Another
aspect, is the compatibility of the the Bouc-Wen model
for controllers synthesis [8] [9].

The nonlinear equations which model the behavior of
the multi-DOFs piezocantilever are written as

 aiδ̈i + biδ̇i + δi = dpiUi − hi
ḣi = dpiAbwiU̇i −Bbwi

∣∣∣U̇i∣∣∣hi − CbwiU̇i |hi| (1)

where i ∈ {y, z}, Abwi, Bbwi and Cbwi are coefficients de-
termining the hysteresis shape and amplitude and dpi is a
positive coefficient that defines the magnitude deflection,
while hi represents the hysteresis internal state.

During multi-DOF micropositioning operation, novel
disturbances arise besides the hysteresis and creep. The
motion along every axis, y − z in this case, generates
reciprocal input-dependent dynamic couplings degrading
the overall positioning performance (see Fig. 8). Such
couplings effects increase during simultaneous operations
which correspond for instance to trajectory tracking
tasks. For this reason, the previous nonlinear model can
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Fig. 1: Hammerstein Model of a 1-DOF Piezocantilever
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Fig. 2: Block scheme of coupling’s structure

be rewritten to encompass not only creep but also the
aforementioned couplings [4].{

aiδ̈i + biδ̇i + δi = dpiUi + Θi

with Θi = −hi + Cdi + Cri
(2)

where Cdi and Cri stand for the coupling and creep,
respectively. The couplings structure is illustrated on
Fig.2.

III. Experimental Setup Description

The experimental platform features a multi-DOF
piezocantilever (y-z axes). This actuator is designed with
36 piezo-electric layers to work at low input voltage. The
total dimensions of the active part are 25x1x1 mm3. This
cantilever is controlled by two inputs Uy and Uz that are
varying in the range of ±20 volts. The first extremity of
the cantilever is clamped while the other moves within
the 2D y-z plane based on the input Ui with i ∈ {y, z}
(see Fig. 3).

The cantilever displacement in the 2D y-z plane is
given by the vector ~δ. The measurement ~Lm of ~δ is
performed using two external confocal sensors orthog-
onally arranged that are pointing at the tip of the
piezocantilever, along the y and z axes (see Fig. 3).
Each confocal sensor provides a measurement of δi, with
i ∈ {y, z}.
The displacement measurement is acquired by a dSpace
DS1005 acquisition system. The measurements per-
formed by the confocal sensors will be considered as the
real position and features a noise νi due to the electronic
conditioning of the position signals. i.e.

δi + νi =

(
δy + νy

δz + νz

)
(3)

It is assumed that νy = νz.



Fig. 3: Experimental setup: 1) y-axis confocal sensor, 2)
z-axis confocal sensor and 3) Piezoelectric cantilever
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Fig. 4: Experimental architecture

A. Model Identification

The parameters corresponding to the dynamics
(Equ.1) of the piezocantilever have been identified using
the ARMAX approach (Autoregressive-moving-average
model with exogenous inputs) with an experimental 10
Volts step response applied to the piezocantilever (see
Tab. I). For instance, Fig. 5 illustrates the identification
process for the y−axis and its coupling to the z−axis.
Such values were used in a prior simulation study so that
we can evaluate the performance of the proposed control
law and they will be used during the estimation stage
described in the further sections. The parameters shaping
the hysteresis have been obtained via a least-square al-
gorithm implemented in Matlab and using experimental
data from the piezocantilever.

Parameter value Parameter value

ay 4.4209 × 10−9 az 3.5125 × 10−9

by 3.7378×−6 bz 2.9062 × 10−5

dpy 5.13 dpz 3.702

TABLE I: Dynamic parameters of the piezocantilever.
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Fig. 5: piezocantilever step response to a 10 V step input
Uy (Uz = 0)

IV. Coupling, hysteresis and creep
compensation principle

A discrete linear Kalman filter (LKF) is designed and
implemented in real-time regarding the estimation of
the disturbances arising during a two-dimensional micro-
positioning task of the piezocantilever in the plan y-z.

The Linear Kalman Filter (LKF) is derived from a
continuous system{

ẋ(t) = Ax(t) +Bu(t) +Mω(t) → process

y(t) = Cx(t) + ν(t) → sensor(s)
(4)

that considers the following hypothesis:

H1. The pair AC verifies the controllability property
H2. The signals ω and ν stand for a white Gaussian

random process with zero-mean (E [ω(t)] = 0) and
E [ν(t)] = 0)) with constant power spectral density
(PSD) W (t) and V (t) defining respectively:

• The process covariance matrix

Q = E
[
ω(t)ω(t+ τ)T

]
= W∆(τ) (5)

• The sensor covariance matrix

R = E
[
ν(t)ν(t+ τ)T

]
= V∆(τ) (6)

It is also assumed that both stochastic processes are not
correlated, i.e.

E
[
ω(t)ν(t)T

]
= 0 (7)



A. LKF-based Estimation Strategy

Let us recall the piezocantilever model given by Equ. 2

aiδ̈i + biδ̇i + δi = dpiUi + Θi with i ∈ {y, z} (8)

This model corresponds to two scalar disturbed systems
defining the motion behavior along y and z axes (see
Fig. 6). This model may be rewritten into the space-state
representation

ẋ = Ax+Bu+ Pd

y = Cx
(9)

having as a state vector x = (δi, δ̇i)
T . The positions

provided by the confocal chromatic sensors are the out-
puts y = δi and d = Θi corresponds to the dual-axis
disturbance. The matrices of the system (Equ. 9) are
given by:

A =

(
0 1

− 1
ai
− bi
ai

)
B =

(
0
dpi
ai

)
P =

(
0
1
ai

)
C =

(
1 0

)
(10)

It is assumed that no prior information about the
disturbance is available. However, we consider that the
disturbance has a slow time-varying dynamics that can
be modeled by a random walk process

Θ̇i = ω (11)

with ω(t) defined by H2. The latter assumption allows
us to introduce an extended state-space vector:

xe(t) = (δi, δ̇i,Θi)
T (12)

and its associated state-space model describing the dy-
namics is obtained from (Equ. 11) in which the unknown
input disturbance Θx(t) is incorporated in the transition
matrix:

ẋe(t) = Axe(t) + Bu+Mω (13)

y(t) = Cxe(t) + ν (14)

with

A =


0 1 0

− 1
ai
− bi
ai

1
ai

0 0 0

 B =


0
dpi
ai

0

 (15)

1
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Fig. 6: Simplified disturbed model

M =


0

0

1

 C =
(

1 0 0
)

(16)

The continuous-time model (Equ. 13) can be discretized
with sampling time Ts. Assuming zero-order hold (zoh)
of the input yields

ẋek = Akxek + Bkuk + ωk (17)

yk = Ckxek + νk (18)

with

xek = (δik , δ̇ik ,Θik)T (19)

Ak = eATs (20)

Bk =
(∫ Ts

0
eATs

)
B (21)

ωk = (ωδik , ω
δ̇i
k , ω

Θi

k )T (22)

νk = νδik (23)

where ωk and νk are discrete-time band-limited white
gaussian random process with zero-mean characteriz-
ing uncertainties on the model (unmodeled dynamics
or parametric uncertainties) and measurement (noisy
sensors) equations, respectively.

The model uncertainties 3× 3 covariance matrix Q is:

Q = E
[
ωkω

T
k

]
=
∫ Ts

0
eAtMWḞMT eA

T tdt

= WΘ̇i

∫ Ts

0
eAtMMT eA

T tdt

= WΘ̇i
η(Ts)

(24)

The latter equation shows that the covariance matrix
Q is proportional to PSD WΘ̇i

and it can be shown
with (Equ. 24) that the variance is

σ2(ωΘi

k ) = Q33 = TsWΘ̇i
(25)

The classical LKF is very attractive for experimental
applications due to its simplicity and low computational
demand. The algorithm that computes the estimate (in-
cluding the disturbance Θi) of the state vector xek is
initialized as follows:

• The piezocantilever-based micro-positioning system
is in the equilibrium state

xek0 = (0, 0, 0)T (26)

• The initial covariance matrix P0 is considered as

P0 = diag
[
σ2(δi0), σ2(δ̇i0), σ2(Θi0)

]
(27)

The corresponding LKF recursive algorithm features a
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Fig. 7: Closed-loop architecture

prediction-estimation structure and is provided next

Prediction stage

x̂estk = Akx̂estk + Bkuk
Ppredk = AkPestkATk +Q

Kk = PpredkCTk
(
CkPpredkCTk +R

)−1

Estimation stage

yk = measurement vector

x̂estk = x̂predk +Kk (yk − Ckx̂predk)

Pestk = (I −KkCk)Ppredk (I −KkCk)
T

where Kk denotes the Kalman filter gain, and I is the
identity matrix. The estimated vector state generated by
the LKF is the written:

x̂ek = (δ̂ik ,̂ δ̇ik , Θ̂ik)T (28)

For the actual work it was considered

Θ̂ik = Cdx̂ek (29)

with Cd = (0, 0, 1)T

B. LKF-based Disturbance Compensation

The feedback compensation input Ui incorporates the
output of the discrete LKF that corresponds to the
overall estimated disturbance Θ̂i. The closed-loop archi-
tecture is depicted in Fig. 7. Assuming the knowledge of
the disturbance, the goal consists in changing the natural
equilibrium point provided by the second-order stable
behavior of the actual piezoactuator. Let us rewrite the
dynamics model Equ.8 as

δ̈i =
dpiUi − biδ̇i − δi + Θi

ai
(30)

whose vectorial space-system is given(
δ̇i1

δ̇i2

)
=

(
0 1

− 1
ai
− bi
ai

)
︸ ︷︷ ︸
A :Hurwitz

(
δi1

δi2

)
+

(
0
dpi
ai

)
︸ ︷︷ ︸

B

Ui +

(
0
1
ai

)
︸ ︷︷ ︸
P

Θi

(31)
with i ∈ {y, z}. From the latter, it is straightforward
to deduce the required feedback input to counteract the
disturbance and to perform a change of coordinates, i.e.

u =
1

dpi
(δrefi − Θ̂i) (32)

Parameter Value

sampling time Ts 0.2 × 10−3 [sec]

PSD WΘi
0.01

Ri 0.04

TABLE II: Experimental parameters

Also, the feedback input Equ.32 allows to rewrite the
system Equ.33 as(

ξ̇i1

δ̇i2

)
=

(
0 1

− 1
ai
− bi
ai

)
︸ ︷︷ ︸

(A+KB) :Hurwitz

(
ξi1

δi2

)
(33)

where ξ1i
= δ1i

− δref1i
. Since the matrix A + BK is

Hurwitz the states ξ1i
and δ2i

converge exponentially to
zero, which implies that δ1i

→ δref1i
.

V. Experimental Results

Section IV has detailed the estimation strategy of the
generalized disturbance (dual-axis hysteresis, couplings
and creep), where as the experimental results obtained
from real-time implementation of the LKF-based strat-
egy are discussed in this section. Firstly, it is presented
the open-loop performance of the system with a circular
trajectory reference. Moreover, a simple and disturbance
feedback is implemented to introduce the estimated dis-
turbance. The latter demonstrates the effectiveness of
the disturbance estimation of the estimation algorithms
counteract its adverse effects.

Real-time experiments were carried out using Matlab-
Simulinkr which is linked to the dSPACEr DAQ1 via
ControlDeskr. Experimental parameters are listed on
the table II.

A. Open-loop Behavior

During micro-positioning operations the piezocan-
tilever’s performance is significantly deteriorated mainly
due to hysteresis and creep. Indeed, besides these ad-
verse effects, multi-DOFs (2DOF in our case) tasks
features internal dynamic couplings. The curves matrix
depicted in Fig.8 picture such parasitic relationship. The
worst case occurs during simultaneous motion position-
ing. The curves depicted on Fig.?? and Fig.?? show
the open-loop behavior while tracking circular trajectory
(radius=30µm)

δy(t)d = 30 sin(2πft)

δz(t)
d = 30 cos(2πft)

(34)

at frequencies of 0.1Hz and 1Hz. It is observed in that
the error is quite significant reaching 30%. As witnessed
by open-loop experimental results, Fig. 9 and Fig. 10,
the need of incorporating not only a feedback approach
but also disturbance-tolerant controllers either robust or
observer-based.

1I/O Acquisition card



B. Closed-loop Behavior: Hysteresis, Creep and Cou-
plings Compensation Performance

In order to show the effectiveness of the LKF-based
estimation strategy, the closed-loop scheme illustrated by
Fig. 7 is used to reject dynamic dual-axis disturbances
due to simultaneous 2D motion (circular trajectory ref-
erence). In general, experimental results depicted in Fig.
11 and Fig. 12a reveals that motion objective is fulfilled.
Specifically, Fig. 11 shows that the 0.1Hz-circular refer-
ence is successfully tracked having errors below 2% for
both axes. The latter implies the effective estimation of
the overall dual-axis disturbance containing hysteresis,
creep and couplings. Likewise, Fig. 12a shows that the
1Hz-circular reference is successfully tracked having,
once again, errors below 2% for both axes. Hence, to the
actual value the overall dual-axis disturbance containing
hysteresis, creep and couplings is well estimated.

square to improve the presentation.

VI. Concluding Remarks

This paper dealt with the control of two degrees of
freedom (2-DOF) piezoelectric actuator (PEA) devoted
to micromanipulation tasks. Although the actuator ex-
hibit interesting bandwidth and positioning resolution,
it is typified by strong couplings between its two axes,
and strong hysteresis and creep nonlinearities. These
couplings and nonlinear phenomena finally compromise
the overall performances of the tasks: loss of accuracy,
stability compromised. In this paper, we proposed a
new strategy to control 2-DOF PEAs for microrobotics
tasks. This strategy is based on two steps : firstly, an
estimation of the hysteresis, creep and axis coupling
effects, considered as an unknown disturbance input, is
done with a LKF using an extended state including this
unknown input. The unknown dynamic of this distur-
bance is simply modeled by a random walk process (aka
Wiener process). Secondly, this estimation is used in
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Fig. 8: Curves depicting the effect the dual-axis couplings
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Fig. 9: Open-loop behavior using a circular trajectory
reference (radius=30µm): (a) f = 0.1Hz and (b) f =
0.1Hz
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Fig. 10: Open-loop displacement errors resulting from the
reference tracking: (a) ey with f = 0.1Hz, (b) ez with
f = 0.1Hz, (c) ey with f = 1Hz and (d) ez with f =
1Hz

a feedback scheme to compensate for this disturbance.
Extensive experiments were carried out and demonstrate
the efficiency of the proposed approach of modeling and
control for low frequency trajectory tracking despite the
simplicity of the feedback used. More elaborated control
architecture should be developed to deal with high-speed
tracking. For future works, we are planning to merge the
proposed strategy with an sliding-mode controller.
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Fig. 11: Closed-loop performance @ 0.1Hz: (a) Circular
trajectory tracking (b) y-axis errors (c) z-axis errors
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Fig. 12: Closed-loop performance @ 1Hz: (a) circular
trajectory tracking (b) y-axis errors (c) z-axis errors
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