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a b s t r a c t

Floquet–Bloch theorem is widely applied for computing the dispersion properties of periodic structures,
and for estimating their wave modes and group velocities. The theorem allows reducing computational
costs through modeling of a representative cell, while providing a rigorous and well-posed spectral prob-
lem representing wave dispersion in undamped media. Most studies employ the Floquet–Bloch approach
for the analysis of undamped systems, or for systems with simple damping models such as viscous or
proportional damping. In this paper, an alternative formulation is proposed whereby wave heading
and frequency are used to scan the k-space and estimate the dispersion properties. The considered
approach lends itself to the analysis of periodic structures with complex damping configurations, result-
ing for example from active control schemes, the presence of damping materials, or the use of shunted
piezoelectric patches. Examples on waveguides with various levels of damping illustrate the performance
and the characteristics of the proposed approach, and provide insights into the properties of the obtained
eigensolutions.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Tailoring the dynamical behavior of one or two-dimensional
waveguides can provide efficient and physically elegant means to
optimize mechanical structures with regards to vibration and
acoustic criteria, among others. However, achieving this objective
may lead to different outcomes depending on the context of the
optimization. In the preliminary stages of a product’s development,
one mainly needs optimization tools capable of rapidly providing
global design directions. Such optimization will also depend on
the frequency range of interest. One usually discriminates between
the low frequency (LF) range and the medium frequency (MF)
range, especially if vibration and noise are considered. However,
it should be noted that LF optimization of vibration is more com-
mon in the literature than MF optimization. For example, piezo-
electric materials and other adaptive and smart systems are
employed to improve the vibroacoustic quality of structural com-

ponents, especially in the LF range (see Preumont, 1997; Nelson,
1992 or Banks and RCSmith, 1996 among many others).

Recently, much effort has been spent on developing new multi-
functional structures integrating electro-mechanical systems in
order to optimize their vibroacoustic behavior over a larger
frequency band of interest, among which Thorp et al. (2001) or
Collet et al. (2009). However, there is still a lack of studies in the
literature for MF optimization of structural vibration. To that
end, the aim of this study is to provide a suitable numerical tool
for computing wave dispersion in two-dimensional periodic
systems incorporating damping and/or active devices (visco-,
poro-elastic materials, controlling electronics devices, etc). The
final aim is to allow their optimization in terms of vibroacoustic
diffusion in two-dimensional waveguides.

The two most popular numerical approaches that can be distin-
guished for computing dispersion are the Semi-Analytical Finite
Element method (SAFE) and the wave finite element (WFE) meth-
od. In the former approach, the displacement field is modeled
exactly in the direction of wave propagation by using a harmonic
function and approximately in the directions perpendicular by
using finite elements. An eigenvalue problem is then formulated
by introducing the displacement field into the governing equa-
tions. Solving the eigenvalue problem for a given frequency gives
the wave numbers of all the propagating modes. The main
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disadvantage of the SAFE method is that FE used are not standard
so they must be specifically defined for each application. Neverthe-
less, many specific finite elements have been developed since
1975, among which those dedicated to computation of different
types of structures. (Gavrić, 1995) used this technique to calculate
the dispersion relationship in a free rail by using triangular and
quadrilateral elements, with those elements obtained from Hamil-
ton’s principle. (Hayashi et al., 2003) derived the SAFE formulation
for the waveguides of complex cross-sectional shape through vir-
tual work principles. By using Lagrange’s equations (Damljanovic
and Weaver, 2004) developed the linear triangular elements for
SAFE method to investigate the elastic waves in waveguides of
arbitrary cross-section. The wave mode characteristics in damped
waveguides were examined by Bartoli et al. (2006), with the ele-
ments derived also from Hamilton’s principle. The SAFE technique
has also been adopted to investigate the wave propagation charac-
teristics for thin-walled structures in Finnveden (2004). In order to
avoid development of specific FE, the WFE method considers the
structures as periodic in order to model, with standard FE, a period
of the structure. By using the periodic structure theory (PST) intro-
duced by Mead (1996), an eigenvalue problem can be formulated
from the stiffness and mass matrices of the FE model to find wave
numbers of all the propagating waves. Contrary to SAFE method,
the displacement field is approximated in the direction of propaga-
tion. Thus, some numerical issues can arise when the size of FE are
too coarse. As recommended by Mace and Manconi (2008), a min-
imum of six elements per wavelength is a good rule of thumb to
ensure a reliable analysis. The WFE method has been successfully
used to deal with wave propagation in two dimensional structures
by Manconi (2008), Ichchou et al. (2008) or Akrout (2005).

One of the main problems of these two approaches is the diffi-
culty to deal with complex mechanical wave propagation specifi-
cally of multi-modal nature. Indeed, the existence at each
frequency step of a number of wavemodes that potentially ex-
change energy make the computation and characterization of wave
attenuation a delicate task. This task is of fundamental interest in
the optimization process of energy dissipation features. This paper
will then concentrates in the computation of the damped wave
numbers in the whole Brillouin domain defined in Brillouin
(1953) that are necessary for vibroacoustic optimization behavior
of such periodic structures. By using WFE technique, one can intro-
duce structural or viscous damping, as indicated in Duhamel
(2007) or Mace and Manconi (2008). Such computations involve
resolution of complex polynomial or transcendental eigenvalue
problem as underlined in Mace and Manconi (2008). The treatment
of the obtained damped wave numbers also necessitates specific
tools for defining and estimating the wave loss factors as in
Manconi and Mace (2010).

In this paper, after recalling the Floquet and the Bloch theo-
rems, a new numerical formulation is introduced for computing
the multi-modal damped wave numbers in the whole first Brill-
ouin domain of periodical structures with non homogeneous and
generic frequency dependent damping terms. Then a bi-dimen-
sional numerical application is presented in order to validate
the method and to use it for estimating the bi-dimensional band
gaps as well as a suitable evanescence’s indicator in the context
of strongly damped systems. The validated methodology can also
be used for optimizing damping layers or active/semi-active ele-
ments to control vibroacoustic power flow into mechanical sys-
tems. The paper is precisely structured as follows. Section 2
reminds The Floquet–Bloch theorem for elasto-dynamical system
and offers the mathematical and physical context of its applica-
tion. Section 3 deals with a two-dimensional application of Sec-
tion 2 main finding. The considered example corresponds to a
periodic distributed passive system. Section 4 concludes the
paper.

2. Floquet and Bloch theorems for elasto-dynamic dispersion
analysis

This section summarizes Floquet and Bloch theorems and their
application to elasto-dynamics. The well-known formulations of
Floquet (1883) and Bloch (1928) respectively for one dimensional
(1D) and two dimensional (2D) systems governed by differential
equations with periodic coefficients are here specifically revisited
in light of their application to the analysis of damped periodic
mechanical systems.

2.1. The Floquet theorem

The Floquet theory is a methodology to solve ordinary differen-
tial equations of the form:

dwðxÞ
dx

¼ AðxÞwðxÞ; 8x 2 R; ð1Þ

where wðxÞ : R! Cn is the unknown function, and A(x) is a given
matrix of continuous periodic functions with period r1, i.e.
A(x + r1) = A(x). Floquet Theorem dictates that any solution of this
system of equations can be expressed as a linear combination of
functions v(x)ekx, where v(x) is r1-periodic, while k 2 C is a scalar
complex quantity. The theory provides a way to evaluate v and k
from the solution of an eigenvalue problem.

Among the many mathematical aspects of the theory, some
points should be mentioned for proper understanding. First, for
any given basis WðxÞ 2 Cn�n of fundamental solutions of (1), a
new basis P0(x) of solutions normalized so that P0(0) = In can be
defined:

P0ðxÞ ¼WðxÞW�1ð0Þ; ð2Þ

where In denotes the n � n identity matrix. It is possible to search
for W(x + r1) from the expression:

Wðxþ r1Þ ¼ P0ðxÞWðr1Þ ¼WðxÞW�1ð0ÞWðr1Þ; ð3Þ

where P0 is the Floquet propagator which allows the evaluation of
W(x + r1) from knowledge of W(r1). The estimation of P0 is based
on its diagonalization performed for x = r1:

P0ðr1Þ ¼ ZKZ�1; ð4Þ

where K and Z contain the solutions of the following eigenvalue
problem:

P0ðr1Þzj ¼ kjzj; ð5Þ

so that K is a diagonal matrix with kj terms, and Z is the matrix
grouping eigenvectors zj as columns. The eigenvalues can also be
written as:

K ¼ eKr1 ; ð6Þ

where K is a diagonal matrix whose generic element is kj such that
kj ¼ ekjr1 . The parameter kj is the jth Floquet (characteristic) exponent,
while kj is the corresponding Floquet multiplier. The computation of
the eigenvalues is not performed directly on P0, since a more conve-
nient approach identifies Y as the Floquet propagation of basis Z
such that:

YðxÞ ¼ P0ðxÞZ:

Also, It may be shown that:

Yðxþ r1Þ ¼ YðxÞeKr1 : ð7Þ

The vectors included as columns in Y(x) are solutions of the initial
periodic problem (1) restricted to the elementary cell [0, r1], with
fixed boundary conditions at x = 0 and x = r1. Accordingly, the
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eigenvectors zj and eigenvalues kj ¼ ekjr1 are solutions of the gener-
alized eigenvalue problem:

dYðxÞ
dx ¼ AðxÞYðxÞ 8x 2 ½0; r1�;

Yð0Þ ¼ Z;
Yðr1Þ ¼ ZK:

8><
>: ð8Þ

The Floquet propagators are then obtained from:

P0ðxÞ ¼ YðxÞZ�1 ð9Þ

and a basis of solutions is given by:

WðxÞ ¼ YðxÞWð0Þ: ð10Þ

An alternative way computes the Floquet propagators by consider-
ing the undamped Floquet vectors vj defined from the following
relation:

VðxÞ ¼ YðxÞe�Kx; ð11Þ

where V is the matrix containing the vectors vj as columns. It can be
shown that these function are r1-periodic, and they are solutions of
the following problem:

dVðxÞ
dx ¼ AðxÞVðxÞ � VðxÞK 8x 2 ½0; r1�;

Vð0Þ ¼ Z;
Vðr1Þ ¼ Z:

8><
>: ð12Þ

The generalized eigenvalue problem (12) is equivalent to (8) and
gives eigenvectors zj and eigenvalues kj. The solution in terms of
Floquet propagator can then be expressed as:

P0ðxÞ ¼ VðxÞeKxZ�1; ð13Þ

while a basis of solutions is given by:

WðxÞ ¼ VðxÞeKxWð0Þ: ð14Þ

Eq. (14) is the Floquet normal form of the fundamental basis W(x).
The characteristic multipliers in Eq. (14) are also the eigenvalues
of the linear Poincaré maps defined as the function
w(x) ? w(x + r1), where w(x) is a solution of (1).

Based on the above discussion, it is clear that two different ap-
proaches for the calculation of wave solution are possible: the Flo-
quet propagators can be obtained by solving the eigenvalue
problem (8) or by estimating the Floquet vectors from (12). The
two resulting eigensolutions are related to each other and permit
the computation of wave solutions for (1). However, they are ob-
tained from two different eigenvalue problems. The first approach
computing the Floquet propagators (8) leads to compute non stan-
dard eigen solutions of a problem where the eigenvalues (i.e. the
Floquet multipliers) appear in the expression of the applied bound-
ary conditions, while the second approach considers only standard
Dirichlet periodic boundary conditions and computes the eigen-
values (i.e. the Floquet exponents) by solving a standard eigen-
value problem by introducing another expression of the used
operator inside the cell domain (1). The distinction between these
two approaches is essential to the understanding of the numerical
implementation presented in what follows. Of note and relevant to
the upcoming discussion is that Floquet exponents are not unique
since eðkjþi2mp

r1
Þr1 ¼ ekjr1 where m is an integer. Also, Floquet vectors

are periodic, and therefore bounded on R. The stability of homoge-
neous solutions of (1) are also given by the value of the Lyapunov
exponents, which are the real parts of the Floquet exponents: the
solutions are asymptotically stable if all Lyapunov exponents are
negative, Lyapunov stable if the Lyapunov exponents are nonposi-
tive and unstable otherwise. These properties remain valid when
multi-dimensional problems are considered.

2.2. The Bloch theorem

Bloch theorem was originally introduced to represent the form
of homogeneous states of Schrödinger equation with periodic po-
tential. This theorem can be considered as a multidimensional
application of the Floquet theorem, as indicated by Joannopoulos
et al. (1995).

For illustration purposes, we consider a medium whose generic
property M satisfies the periodicity condition:

Mðxþ RmÞ ¼ MðxÞ;

where m 2 Z3, and R ¼ ½r1; r2; r3� 2 R3�3 is a matrix containing the
three lattice vectors rj, j = 1, . . . ,3, as illustrated in Fig. 1. The prim-
itive cell is defined as a convex polyhedron of R3 called XR. The re-
ciprocal unit cell, denoted by XG is defined by the reciprocal lattice
vector basis gk for which the following holds:

rj � gk ¼ 2pdjk;

where djk the Kronecker delta. Also, G = [g1,g2,g3] is the reciprocal
lattice matrix in the later. If XR is the irreductible primitive cell,
XG corresponds to the first Brillouin zone of the lattice (see (Kittel,
1986) for details).

The Bloch theorem stipulates that any functions
uðxÞ 2 L2ðR3;CnÞ can be expressed as

uðxÞ ¼
Z

XG

~uðx;kÞeik�xdk; ð15Þ

where the Bloch amplitude ~uðx;kÞ is XG-periodic in k and can be
represented as:

~uðx;kÞ ¼
X
n2Z3

ûðkþ GnÞeiGn�x;

¼ jXRj
ð2pÞ3

X
n2Z3

uðxþ RnÞe�ik�ðxþRnÞ; ð16Þ

where ûðkÞ stands for the Fourier transform of u(x). It can also be
demonstrated that the mean value of the Bloch amplitude is the
Fourier amplitude of u(x) for the corresponding wave vector:

h~uð:;kÞiXx
¼ ûðkÞ;

where h~:iXx
denotes for the spatial mean value computed on domain

Xx.
The application of Bloch theorem for the representation of solu-

tions of partial differential equations with periodic coefficients

Fig. 1. Generic 3D periodic cells.
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allows for all derivatives to be shifted by k in the sense given by the
considered spatial operator. Consider for example the second order
elliptic operator:

AðxÞ ¼ �
XN

p;q¼1

@

@xp
ApqðxÞ

@

@xq

� �
þWðxÞ ð17Þ

defined on smooth functions of RN (i.e. C1ðRNÞ) where ApqðxÞ is a
symmetric, smooth and uniformly positive matrix with XR-periodic
coefficients. Indices p and q denote each basis vector of the consid-
ered RN domain. Also, W(x) P 0 is a real smooth function XR-peri-
odic. A spectral resolution of the closure of this operator can be
found in L2ðRNÞ, and can be expressed in terms of Bloch waves asso-
ciated with AðxÞ. Indeed, let k 2XG, and define:

Aðx;kÞ ¼ �
XN

p;q¼1

@

@xp
þ ikp

� �
apqðxÞ

@

@xq
þ ikq

� �
þWðxÞ: ð18Þ

The shifted cell eigenvalue problem is then considered:

Aðx;kÞv jðx;kÞ ¼ x2
j v jðx;kÞ; ð19Þ

for k 2Xk with v(x,k) in H1(XR) and XR-periodic.
The essentially self-adjoint operator Aðx;kÞ is non negative and

the eigenvalue problem (19) has a discrete sequence of eigenvalues
x2

j , with j 2 N whose corresponding eigenfunctions are the Bloch
waves vj(x,k). These eigenvalues are smooth functions of x and
are complete in L2(XR). More details in mathematical properties
of this eigen solution can be found in Bensoussan et al. (1978)
and Wilcox (1978). Based on these results, the Bloch expansion
of any function uðxÞ 2 L2ðR3;CnÞ can be expressed as:

uðxÞ ¼
Z

XG

Xþ1
j¼1

ujðkÞeikxv jðx;kÞdk ð20Þ

and

ujðkÞ ¼
Z

RN
uðxÞe�ikx �v jðx;kÞdx; ð21Þ

where �v j is the complex conjugate of vj. Moreover, Parseval’s iden-
tity holdsZ

RN
juðxÞj2dx ¼

Z
XG

Xþ1
j¼1

jujðkÞj2dk: ð22Þ

The spectral resolution of operator A can also be expressed as:

AðxÞuðxÞ ¼
Z

XG

Xþ1
j¼1

ujðkÞeikxx2
j ðkÞv jðx;kÞdk: ð23Þ

Examples of applications of these results can be found in Bensous-
san et al. (1978).

2.3. Application to elastodynamic

Let us consider an infinite periodic elastodynamic problem as
presented in Fig. 1. The harmonic homogeneous dynamical equilib-
rium of system is driven by the following partial derivative
equation:

qðxÞx2wðxÞ þ rCðxÞrsymðwðxÞÞ ¼ 0 8x 2 R3; ð24Þ

where wðxÞ 2 R3 is the displacement vector, C(x) stands for the
Hook elasticity tensor and eðxÞ ¼ rsymðwðxÞÞ ¼ 1

2 rwTðxÞþ
�

wðxÞrTÞ is the strain tensor. By considering a primitive cell of the
periodic problem XR and by using the Bloch theorem, the associated
Bloch eigenmodes (19) and the dispersion functions can be found
by searching the eigen solutions of the homogeneous problem
(24) as:

wðxÞ ¼ wn;kðx;kÞeik:x; ð25Þ

where wn,k(x,k) are XR-periodic functions. In that case wn,k(x,k) and
xn(k) are the solutions of the following generalized eigenvalues
problem:

qðxÞxnðkÞ2wn;kðxÞ þ rCðxÞrsymðwn;kðxÞÞ � iCðxÞrsymðwn;kðxÞÞ � k

� irCðxÞ1
2
ðwn;kðxÞ � kT þ k �wT

n;kðxÞÞ þ CðxÞ1
2
ðwn;kðxÞ � kT

þ k �wT
n;kðxÞÞ � k ¼ 0 8x 2 XR; ð26Þ

wn;kðx� R:nÞ �wn;kðxÞ ¼ 0 8x 2 CR: ð27Þ

The first equation is simply obtained by introducing Eq. (25)
into elastodynamic Eq. (24). The second equation represents the
symmetrical boundary conditions expressed on boundary faces of
the lattice polyhedron as described in Fig. 2(a) for a rectangular
parallelepiped cell. In this equation n stands for the outpointing
unitary normal vector. It corresponds to a complex Quadratic
Eigenvalue Problem (QEP) that can be solved by fixing two of the
constants x, jkj (the complex amplitude) or cosine directions of
k and compute the last one.

The proposed formulation is based on the computation of the
Floquet vectors from Eq. (26), instead of computing the Floquet
propagators commonly used for elastodynamic applications. The
methodology allows the computation of the full complex map of

(a) (b)

Fig. 2. (a) Rectangular parallelepiped primitive lattice (b) Corresponding rectangular parallelepiped reciprocal lattice.
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the dispersion curves incorporating computation of evanescent
waves and allowing the introduction of damping operator if any.

2.3.1. Weak formulation and computation of waves dispersion curves
in periodical lattice

Let us consider the partial derivative Eq. (26) on a unit cell XR. It
stands for a generalized eigenvalue problem leading to computa-
tion of the dispersion curves xn(k) and corresponding Floquet
eigenvectors wn,k(x).

For 3D applications, the wave vectors are supposed to be com-
plex if damping terms are added into Eq. (26), they can be written

as k ¼ k
sinðhÞ cosð/Þ
sinðhÞ sinð/Þ

cosðhÞ

2
4

3
5 where h and / represent the direction an-

gles into the reciprocal lattice domain as shown in Fig. 2(b). This
decomposition assumes that real and imaginary parts of vector k

are co-linear. In the following, U ¼
sinðhÞ cosð/Þ
sinðhÞ sinð/Þ

cosðhÞ

2
4

3
5 indicates that

direction vector.

2.3.2. Weak formulation
If wn,k(x) is a solution of Eq. (26), then:

8 ~wn;kðxÞ 2 H1ðXR;C
3Þ= ~wn;kðx� RnÞ ¼ ~wn;kðxÞ8x 2 CR

� �
;

�
Z

XR

qðxÞx2
nðkÞ ~wn;kðxÞwn;kðxÞ � ~en;kðxÞCðxÞen;kðxÞ

þ ik~jn;kðxÞCðxÞen;kðxÞ � ik~en;kðxÞCðxÞjn;kðxÞ

þ k2 ~jn;kðxÞCðxÞjn;kðxÞdXþ
Z

CR

~wn;kðxÞðCðxÞðen;kðxÞ

þ ikjn;kðxÞÞÞ:ndC ¼ 0; ð28Þ

where en,k(x) =rsym(wn,k(x)) is the strain tensor, jn;kðxÞ ¼ 1
2 ðwn;k

ðxÞ:UT þU:wT
n;kðxÞÞ is the symmetric dyadic tensor or the dyadic

product of the displacement wn,k(x) and the direction vector U.
�means that the specified operator is applied to the test functions
and n is the unit outpointing normal vector on the considered
boundary.

This weak formulation is simply obtained by integrating Eq.
(26) projected onto any test function ~wn;kðxÞ. The boundary integral
vanishes as the test functions are chosen so that ~wn;kðx� RnÞ
¼ ~wn;kðxÞ on CR that implies C(x)(en,k(x � Rn) + ikjn ,k(x � Rn)).n(x
� Rn) = �C(x)(en,k(x) + ikjn,k(x)) � n(x). That corresponds to the ex-
act compensation of the boundary applied generalized constraints
C(x)(en,k(x) + ikjn,k(x)). For a polyhedron cell, each boundary is a
polyhedral plane sub-domain that can be associated with a parallel
opposite one. The symmetry conditions wn,k(x � Rn) = wn,k(x)
explicitly link these associated surfaces. As the corresponding nor-
mal vector n are opposite, jn,k(x � Rn) = jn,k(x) and the stress con-
dition can be restricted to C(x)(en,k(x � Rn)) � n(x � Rn) = �C
(x)(en,k(x)) � n(x) on the two opposite surfaces. Thus, all boundary
integrations vanish and the weak formulation can be written as:

8 ~wn;kðxÞ 2 H1ðXR;C
3Þ= ~wn;kðx� RnÞ ¼ ~wn;kðxÞ 8x 2 CR

� �
;

�
Z

XR

qðxÞx2
nðkÞ ~wn;kðxÞwn;kðxÞ � ~en;kðxÞCðxÞen;kðxÞ

þ ik~jn;kðxÞCðxÞ; en;kðxÞ � ik~en;kðxÞCðxÞjn;kðxÞ
þ k2 ~jn;kðxÞCðxÞjn;kðxÞdX ¼ 0: ð29Þ

2.3.3. Numerical computation
The numerical implementation is obtained by using a standard

finite elements method to discretize the weak formulation (29).
The assembled matrix equation is given by:

ðK þ kLðUÞ � k2HðUÞ �x2
nðk;UÞMÞwn;kðUÞ ¼ 0; ð30Þ

where k = ik, M and K are respectively the standard symmetric def-
inite mass and symmetric semi-definite stiffness matrices, L is a
skew-symmetric matrix and H is a symmetric semi-definite positive
matrix:

M !
R

XR
qðxÞx2

nðkÞ ~wn;kðxÞwn;kðxÞdX;

K !
R

XR
~en;kðxÞCðxÞen;kðxÞdX;

L!
R

XR
�~jn;kðxÞCðxÞen;kðxÞ þ ~en;kðxÞCðxÞjn;kðxÞdX;

H !
R

XR
~jn;kðxÞCðxÞjn;kðxÞdX:

ð31Þ

When k and U are fixed, the system (30) is a linear eigen value
problem allowing us to compute the dispersion functions x2

nðk;UÞ
and the associated Bloch eigenvector wn,k(U).

This approach has been widely used for developing homogeni-
zation techniques and spectral asymptotic analyses like in the
work of Allaire and Congas (1998). It can also be applied for com-
puting wave’s dispersion even if Floquet propagators are preferred
for 1D or quasi 1D computation, as indicated by Ichchou et al.
(2007), Houillon et al. (2005) or Mencik and Ichchou (2005). Nev-
ertheless these approaches have been only developed for un-
damped mechanical systems that is to say represented by a set
of real matrices. In this case, most of the previously published
works present techniques based on the mesh of a real k-space
(i.e k or k and U) inside the first Brillouin zone for obtaining the
corresponding frequency dispersion diagrams and the associated
Floquet vectors. For undamped systems, only propagative or eva-
nescent waves exist, corresponding to families of eigen solutions
purely real or imaginary. Discrimination between each class of
waves is easy. If a damped system is considered, that is to say if
matrices K, L, H are complex, evanescent part of propagating waves
appear as the imaginary part of x2

nðk;UÞ and vice versa. It then be-
comes very difficult to distinguish the two families of waves but
also to compute the corresponding physical wave’s movements
by applying spatial deconvolution.

Another possibility much more suitable for computing damped
system, dedicated for time/space deconvolution and for computa-
tion of diffusion properties as defined by Collet et al. (2009) or
Mencik and Ichchou (2005), is to consider the following general-
ized eigen value problem:

ðK �x2MÞ þ knðx;UÞLðUÞ � k2
nðx;UÞHðUÞÞwn;kðUÞ ¼ 0: ð32Þ

In this problem, the pulsation x and the propagative angle U are
fixed real parameters. Wave’s numbers kn = ikn and associated Flo-
quet vectors wn,k are then computed by solving the quadratic eigen
problem.This approach allows introduction of frequency dependent
matrices corresponding to generalized damping terms (viscoelastic-
ity), multiphysic coupling (especially electromechanical with elec-
tronic ordinary differential equation), foam (Biot-Allard model) or
open domain boundary conditions (Sommerfeld condition).

Based on this approach, an inverse Fourier transformation in the
k-space domain can lead us to evaluate the physical wave’s dis-
placements and energy diffusion operator when the periodic distri-
bution is connected to another system, like in the work by Collet
et al. (2009). Another temporal inverse Fourier transformation
can furnish a way to access spatio-temporal response for non-
homogeneous initial conditions. As L is skew-symmetric, the ob-
tained eigen values are quadruple ðk; �k;�k;��kÞ collapsing into real
or imaginary pairs (or a single zero) when all matrices are real (i.e.
for an undamped system). In this case a real pair of eigen values
correspond to evanescent modes oriented in two opposite direc-
tions on the k-space and imaginary values to two traveling waves
propagating in opposite direction. The obtained eigen solutions are
similar, in 1D for homogeneous material (non periodic), to those
given by SAFE method and additional important properties can
be extrapolated from Gavrić (1994).
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As previously mentioned, the real part of k = kU vector is re-
stricted to stand inside the first Brillouin zone (see Fig. 2(b)). In
the quadratic eigen value problem (2.3.3) nothing restricts compu-
tation to only find eigen values satisfying this condition. For direc-
tion vector U orthogonal to the lattice facelets (i.e. for Up1 = [1,0]T

and Up2 = [0,1]T in bi-dimensional rectangular cell), the periodical
conditions expressed for one dimensional waveguide are still valid:
if kj(Up) is an eigen value associated to wj,k(Up) then 8m 2 Z3,
kþ i:UT

pðG:mÞ is also an eigen value associated to wj;kðUpÞ
e�i:UT

p ðG:mÞx. Thus, for undamped systems, all obtained eigenvalues
are periodically distributed in the k-space along its principal
directions.

3. Applications for computing bi-dimensional waves dispersion

Illustrations in this paper are limited to bi-dimensional wave-
guide applications. Thus, it can easily be found in literature
comparative works to validate this new computational methodol-
ogy. Two different systems are considered in this section. The first

(a) (b)
Fig. 3. (a) Schematic of the considered bi-dimensional waveguide (b) Description of the unit cell with periodic stubbed surface.

Fig. 4. Bi-dimensional physical cell and corresponding first Brillouin zone. Shaded
area is its irreducible part.

Fig. 5. Unrefined (a) and refined (b) Mesh cases.
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Fig. 6. Dispersion curves for undamped system (imaginary part of kn(x)). Plain
lines: standard method, dot: unrefined modeling of the proposed procedure, cross:
refined modeling of the proposed procedure.
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Fig. 7. Evanescence ratio Ind(x). Plain lines: refined mesh, dashed line: unrefined
mesh.
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one corresponds to the undamped system used by Wu et al. (2009)
to validate our computation and the second one corresponds to the
damped version of the same system.

3.1. Undamped wave dispersion and band-gap computation in thin
plate with periodic stubbed surfaces

The system is presented in the work of Wu et al. (2009). It con-
sists of an infinite periodic bi-dimensional waveguide shown in
Fig. 3(a). The system is made of a 1 mm thick aluminum plate with
periodic cylindrical stubs on one of its faces as shown in Fig. 3(b).
The whole system is made of isotropic Aluminum 6063-T83
(m = 0.33, E = 69e9[Pa], q = 2700[kg/m3]).

By using symmetry of the unit cell, the corresponding first Brill-
ouin zone is described in Fig. 4 where the irreducible zone is the
shaded area. The method allows us to compute eigen frequencies
corresponding to any k vector described in cylindric coordinates
system by its radius k and its angle /.

3.1.1. Numerical implementation
The numerical implementation is based on the 3D weak formu-

lation (29), using a bi-dimensional orientation in the k-space by

imposing U ¼
cosð/Þ
sinð/Þ

0

2
4

3
5. The applied boundary conditions are

equalities of all 3D displacements on the two pairs of lateral faces
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Fig. 8. Whole propagative wave numbers (imag(kn(x)) when / = 0.
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Fig. 9. Propagative wave numbers of damped system (imag(kn(x)) when / = 0 (left) and / = 18�.
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Fig. 10. Directivity of damped system using evanescence indicator (33) saturated at unit value in the case of 1% of damping ratio.

Fig. 11. Directivity of damped system using evanescence indicator (33) saturated at unit value in the case of 10% of damping ratio.
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Crþ1
Cr�1

and Crþ2
Cr�2

as depicted in Fig. 3(b). To impose such Dirich-

let boundary conditions an extrusion coupling variable maps of
displacements from the source face is exported to the destination
face corresponding to the opposite one (i.e. from Crþ1

to Cr�1
). As

the domains are of the same space dimension, we typically use a
point-wise mapping. The exported mapping is also coupled to
the destination displacement by using dedicated Lagrange multi-
pliers. The implementation is made with COMSOL Multiphysics�
platform and parametric computation to obtain k(x,/) is carried
out with Matlab� routines.

For each parameters x and /, the quadratic eigenvalue problem
can be reformulated as a first order one by doubling the state
dimension. After constraint handling, it is possible to write the sys-
tem in the form Ax = kBx. The algorithm computes the largest
eigenvalues of the matrix C = A�1B. To do this, the solver uses the
ARPACK FORTRAN routines for large-scale eigenvalue problems
which is described by Lehoucq et al. (1998). This code is based
on a variant of the Arnoldi algorithm: the implicitly restarted Ar-
noldi method (IRAM). The ARPACK routines must perform several
matrix-vector multiplications Cv, which are accomplished here
by solving the linear system Ax = Bv using the PARDISO solver
developed by Schenk and Gärtner (2004). This procedure uses dou-
ble precision floating point numbers and is implemented using out
of core memory management in order to avoid any memory prob-
lem even when dense (and converged) mesh is considered as
shown in the following.

For all presented examples, computations have been carried out
with x = 2p � [1000:1000:200000] (frequency between 1 and
200 kHz) and / ¼ 0 : p

20 : p
2

� �
.

The mesh of the cell is shown in Fig. 5. The first mesh case
consists of 296 tetrahedral Lagrange quadratic elements for 1947
degrees of freedom and the refined one of 1550 tetrahedral
Lagrange quadratic elements for 23913 degrees of freedom.

3.1.2. Dispersion along C � X direction of the undamped system
A first computation has been made to compare our results with

those presented by Wu et al. (2009). The proposed method is ap-
plied for computing the wave’s dispersion curves of the undamped
system along the C � X direction (i.e for / = 0, see Fig. 4). Fig. 6
shows three different computations of the same dispersion curves.
The first one (plain red line) corresponds to the direct simulation of
the undamped system by fixing k along the C � X segment in the
Brillouin zone and computing the corresponding eigenfrequencies
x by using a standard numerical method based on Eq. (26) (Aberg
and Gudmundson, 1997; Mace and Manconi, 2008). The second
and third dispersion curves (in dotted and crossed lines in Fig. 6)
show, respectively, the results obtained with the unrefined and
refined meshes cases. The results show a really good agreement
between the standard computation method used to obtain the ref-
erence results as proposed by Wu et al. (2009) and the proposed
method with the refined mesh. It can be pointed out that the eva-
nescent modes are included into the computation and are repre-
sented by crosses points with a null imaginary parts located
along the frequency axis. It also shows the convergence of the
refined model compared to the unrefined one. The running time
for the refined mesh case is 13.897 s and 0.621 s for the unrefined
one by using an Intel Core i7 CPU running at 2.67 GHz with a RAM
of 8 Go. The convergence of the proposed method is also obtained

Fig. 12. Directivity of damped system using wave numbers in the first Brillouin zone in the case of 1% of damping ratio: each mark indicates a computed solution, the size of
the mark is a measure of the propagative nature of the wave (‘‘evanescent’’ waves correspond to small radius, ‘‘propagative’’ waves correspond to large radius).
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by using 12 time more degrees of freedom for 22 time more com-
puting time which 3 more ARPACK iterations. These computations
validate the numerical implementation of the proposed method.

For evaluating the band-gap of the periodic system, an indicator
of minimal evanescence ratio of all the computed waves for each
considered frequency can be used, defined as:

Indðx;/Þ ¼min
n

RealðknÞ
jðknÞj

				
				: ð33Þ

Fig. 7 shows the plot of this indicator for both mesh cases. The loca-
tion of the first two stop bands of the system can be observed: the
first one is from 40 to 50 kHz and the second from 156 to 176 kHz.
Precision of these results depends on the frequency discretization
rate. The obtained band-gap is totally comparable with those com-
puted by Wu et al. (2009). Fig. 7 allows us to observe convergence of
the obtained results when refined mesh density is improved.

As previously mentioned, the Bloch theorem only allows com-
putation of waves dispersion into the first irreductible Brillouin
zone, here for k cos(/) and k sin(/) inside the shaded area in
Fig. 4. The obtained wavenumbers are symmetrical according to
the boundary conditions of the corresponding polyhedral surface.
This property is observed in Fig. 8 where the whole set of obtained
wavenumbers (i.e the imaginary parts of kn(x)) is plotted. It can be
observed that they are symmetrical with respect to the vertical
axes on � p

r1
¼ 100p when / = 0.

3.2. Dispersion of the damped system in the whole bi-dimensional
k-space

The proposed computational method allows us to compute
multi modal wave’s propagations in the complete bi-dimensional

k-space in the first Brillouin zone. The proposed methodology is
based on the computation of complex wave numbers as a function
of frequency. The Bloch theorem is expended in the case of damped
systems and the obtained values become complex integrating
phase velocity and evanescent part for each computed wave num-
ber associated to the real and imaginary parts of the obtained
eigenvalues of (2.3.3). The damping behavior is introduced by
assuming a complex Hook elasticity tensor. The same methodology
could have been realized by introducing any kind of linear visco-
elastic modeling such as viscous behavior or any other complex
frequency-dependent terms.

The first calculations have been done considering a 1% damping
ratio on the same structure as the one presented before. A specific
procedure has been developed to track the waves from one fre-
quency to another in the dispersion curve, in order to follow the
characteristic propagating waves: starting from a set of waves
which are considered as propagative (typically such that the ratio
of the real part of eigenvalue to its modulus is lower than 5%), a
MAC-based correlation criteria is computed to associate the waves
from one frequency step to another:

MACðu;vÞ ¼ ju
Hv j2

juj2jv j2
; ð34Þ

where uH is the hermitian of u. Even if this criteria does not consti-
tute a scalar product for the considered basis, it nevertheless gives a
good estimation of the closest shape to a given reference vector. The
use of a correlation indicator to track the waves between two calcu-
lation steps gives the opportunity to plot confident dispersion dia-
grams, in particular when curves are crossing together that is to
say when veering or bifurcation phenomena occur in dispersion
curves. Moreover, in particular situations like apparition of a new

Fig. 13. Directivity of damped system using wave numbers in the first Brillouin zone in the case of 10% of damping ratio: each mark indicates a computed solution, the size of
the mark is a measure of the propagative nature of the wave (‘‘evanescent’’ waves correspond to small radius, ‘‘propagative’’ waves correspond to large radius).
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wave, loosing of correlation, or even for vanishing of group velocity,
the frequency step is adapted in order to enhance the ability to fol-
low the waves.

Fig. 9 illustrates the typical results of the analysis. Propagative
wave numbers of the damped system are shown for / = 0 and /
= 18�. It can be observed that if / = 0, the symmetry illustrated in
Fig. 8 still exists, while as soon as other directions are considered,
the symmetry in the dispersion diagram does not exist anymore.
This can be explained by the fact that the periodicity of the initial
pattern is lost when the orientation is not parallel to one of the
sides of the initial cell. Concerning the correlation, some surprising
results can be observed: in some cases the correlation indicator
fails to follow a given mode, even for small frequency steps. It is
not yet clear if this is a numerical artefact or if this can be ex-
plained physically. One should emphasized that the MAC-based
correlation is not mathematically justified since it does not consti-
tute a scalar product for the considered basis. This point is cur-
rently under investigation.

Fig. 10 illustrates the stop bands directivity of the damped sys-
tem using the evanescence indicator saturated at unit value for a
sake of visualization. The full dark areas correspond to stop bands
in which only evanescent waves can exist. The stop bands can exist
even in the case of lightly damped system. These bands can be an-
gle-dependent and exist only for particular directions.

A second computation has been made using a damping ratio of
10%. It can be observed in Fig. 11 that the evanescence ratio is
modified and that larger band gaps can be observed. In that case,
the existence of specific frequencies for which wave propagation
is only possible along the main system axis (Ox) and (Oy) is ob-
served. This particular behavior is reinforced by the damping effect
smoothing the stop wave domains as observed in Fig. 10. The high
frequency behavior is almost always ‘evanescent’ and cancels all
wave transmissibility inside the system.

These results can also be interpreted visually by using directiv-
ity diagrams in which the solutions are plotted in terms of wave
numbers, for a given set of frequency points. This graphical repre-
sentation is shown in Fig. 12 for a damping ratio of 1%. One can ob-
serve in particular that for frequencies in pass-bands several
propagative solutions can be found, while for frequencies in
stop-bands, all solutions correspond to evanescent waves. This
can clearly be observed at 49 kHz for example. For particular fre-
quencies like 179 kHz, the directivity is strong: waves traveling
along x and y axes are propagative, while when / belongs to
[30�,60�], the corresponding waves are becoming evanescent.

When the damping ratio becomes larger, the real part of the
solutions are increasing in amplitude and the waves tend to be
attenuated, as it can be observed in Fig. 13. The directive effect ob-
served at 179 kHz for a lower value of damping does no longer ap-
pear for that particular frequency since the former ‘‘propagative’’
waves have been changed in evanescent ones.

All these aspects constitute interesting results that will be con-
fronted to experimental results in the next part of this work.

4. Concluding remarks

This paper presents a validated numerical procedure able to
compute the damped wave’s dispersion functions in the whole first
Brillouin domain of multi dimensionnal elastodynamical wave’s
guides. The method has been applied for determining the bi-
dimensional band-gaps of the well known periodic structures stud-
ied by Wu et al. (2009) when damping effect is considered. Based
on this approach, a suitable criterion indicating the evanescence
ratio of computed waves is proposed. It can be used for optimizing
structured damping layers or electronics circuits and transducers
for controlling vibroacoustic behavior of the systems. The damping

operator introduced in the formulation can be frequency depen-
dent as viscous one but can also be much more complicated. It
can compass specific dissipation phenomenon such as those in-
duced by distributed shunted piezoelectric patches as proposed
by Beck(2008), Casadei et al. (2009), or even foams or complex
polymers behaviors. The proposed method furnishes an efficient
tool for future optimization of distributed smart cells as proposed
in the case of 1D waveguides by Collet et al. (2009).
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Gavrić, L., 1995. Computation of propagative waves in free rail using a finite
element technique. Journal of Sound and Vibration 185, 531–543.

Hayashi, T., Song, W.J., Rose, J.L., 2003. Guided wave dispersion curves for a bar with
an arbitrary cross-section, a rod and rail example. Ultrasonics 41, 175–183.

Houillon, L., Ichchou, M., Jezequel, L., 2005. Wave motion in thin-walled structures.
Journal of Sound and Vibration 281 (3-5), 483–507.

Ichchou, M.N., Akrout, S., Mencik, J., 2007. Guided waves group and energy
velocities via finite elements. Journal of Sound and Vibration 305 (4-5), 931–
944.

Ichchou, M., Berthaut, J., Collet, M., 2008. Multi-mode wave propagation in ribbed
plates : Part I k-space characteristics. International Journal of Solids and
Structures 45 (5), 1179–1195.

Joannopoulos, J., Meade, R., Winn, J., 1995. Photonic Crystals: Molding the Flow of
Light. Princeton University Press.

Kittel, C., 1986. Introduction to Solid State Physics. John Wiley and Sons, New York.
Lehoucq, R., Sorensen, D., Yang, C., 1998. ARPACK users’ guide: solution of large-

scale eigenvalue problems with implicitly restarted Arnoldi methods. Siam.
Mace, B., Manconi, E., 2008. Modelling wave propagation in two-dimensional

structures using finite element analysis. Journal of Sound and Vibrations 318,
884–902.

Manconi, E., 2008. The wave finite element method for 2-dimensional structures.
Ph.D. Thesis, University of Parma.

Manconi, E., Mace, B., 2010. Estimation of the loss factor of viscoelastic laminated
panels from finite elements analysis. Journal of Sound and Vibration 329, 3928-
3039.

Mead, D., 1996. A general theory of harmonic wave propagation in linear periodic
systems with multiple coupling. Journal of Sound Vibration 27 (2), 429–438.

M. Collet et al. / International Journal of Solids and Structures 48 (2011) 2837–2848 2847



Author's personal copy

Mencik, J., Ichchou, M., 2005. Multi-mode propagation and diffusion in structures
through finite elements. European Journal of Mechanics A-Solids 24 (5), 877–898.

Nelson, P.A., Elliott, S.J., 1992. Active Control of Sound. Academic Press, London, San
Diego.

Preumont, A., 1997. Vibration control of structures : An introduction. Kluwer.
Schenk, O., Gärtner, K., 2004. Solving unsymmetric sparse systems of linear

equations with PARDISO. Future Generation Computer Systems 20 (3), 475–
487.

Thorp, O., Ruzzene, M., Baz, A., 2001. Attenuation and localization of wave
propagation in rods with periodic shunted piezoelectric patches. Proceedings
of SPIE – The International Society for Optical Engineering Smart Structures and
Materials 4331, 218–238.

Wilcox, C., 1978. Theory of bloch waves. Journal d’Analyse Mathématique 33, 146–
167.

Wu, T., Wu, T., Hsu, J., 2009. Waveguiding and frequency selection of Lamb waves in
plate with periodic stubbed surface. Physical Review B 79, 104306.

2848 M. Collet et al. / International Journal of Solids and Structures 48 (2011) 2837–2848


