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Abstract: In this paper is proposed a thermodynamically consistent port Hamiltonian formu-
lation of non isothermal reaction diffusion processes. The use of appropriate thermodynamic
variables for the definition of the state and the co-state vectors allows to highlight the inherent
infinite dimensional interconnection structure linking the different thermodynamic phenomena
(entropy production, diffusion, conduction) that is suitable for control purposes. The presenta-
tion is given for systems defined on one dimensional spatial domain.
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1. INTRODUCTION

The Port Hamiltonian framework is based on a geometric
description of physical systems and is particularly useful
for the modeling and control of multi-physics, network and
distributed parameters systems (Duindam et al., 2002).
Since its definition (Maschke et al., 1992) and its extension
to distributed parameter systems (Maschke et al., 2000;
Le Gorrec et al., 2005) it has been widely and successfully
applied to classical mechanical and electrical systems, both
in finite and infinite dimensions (Duindam et al., 2002;
Hamroun et al., 2010; van der Schaft et al., 2014). The
application of Port Hamiltonian formalism to thermody-
namic systems (Baaiu et al., 2009) is much more tedious
as in the general non isothermal case the link between
energy and irreversible phenomena cannot be associated to
a linear geometric structure (Eberard et al, 2004). Never-
theless slightly degenerated structures suitable for control
purposes can be defined as it has been the case for con-
tinuous finite dimensional stirred tank reactors (CSTR)
(Hoang et al., 2011).

The idea of this paper is to propose a proper decomposition
of thermodynamic phenomena in the case of non isother-
mal distributed reaction diffusion systems in order to high-
light the inherent interconnection structure, called Stokes
Dirac structure (Maschke et al., 2005). The irreversibility
is taken into account through an appropriate non linear
closure relation between extended port variables, as it can
be done for purely dissipative systems. We discuss how
the states and port variables have to be chosen such that
geometric properties of the model are emphasized.
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It is important to notice that the port based representation
proposed in this paper differs from the one in (Zhou
et al., 2012) since the skew symmetric operator that
defines the geometric structure does not depend on the
effort variables. In the present paper all the non linear
terms are gathered in the closure relation, accounting
for the irreversible phenomena. Such formulation can be
advantageously used for control purposes.

The paper is organized as follows. In Section 2, we recall
the main properties of irreversible thermodynamic dis-
tributed parameter systems. In Section 3 we briefly recall
the general port Hamiltonian formulation of distributed
parameter systems. In Section 4, we present the model of
the reaction diffusion process. In Section 5 is given the
port Hamiltonian formulation of the overall system.

2. THERMODYNAMIC OVERVIEW FOR
DISTRIBUTED PARAMETER SYSTEMS

In Thermodynamics, as far as distributed parameter sys-
tems are concerned, the following form of the Gibbs equa-
tion is used (De Groot et al (1983)):

du = Tds− Pdυ +

nc∑
i=1

µidωi (1)

where u, s, υ, ωi are respectively the energy per unit mass,
entropy per unit mass, volume per unit mass and the mass
fraction of species i. T is the temperature, P the pressure
and µi the chemical potential of species i. Then the local
equilibrium hypothesis for distributed system is expressed
in its local form by (see De Groot et al (1983) for details):

Du

Dt
= T

Ds

Dt
− P Dυ

Dt
+

nc∑
i=1

µi
Dωi
Dt

(2)

where D•
Dt stands for the material derivative ∂•

∂t + vm
∂•
∂z of

quantity • per unit mass.



For simplicity in the remainder of the section we con-
sider that volumes are cylinders of section S and that
homogeneity properties are assumed such that only the
longitudinal coordinate z is necessary. We also assume
an incompressible fluid phase and a constant total mass

density ρ. This implies that Dυ
Dt =

D( 1
ρ )

Dt = 0. We consider
also that the average velocity vm is constant. Moreover
since no convection transport is assumed we have vm = 0.

Then for any sub domain z ∈ [za, zb] in the reactor, we
obtain the integral form of (2):

d

dt

∫ zb

za

ρu(z, t)Sdz =

∫ zb

za

T
∂ρs(z, t)

∂t
Sdz

+

nc∑
i=1

∫ zb

za

µi
∂ρωi(z, t)

∂t
Sdz (3)

Equation (3) expresses the conservation of energy of the
distributed systems without convection.

From the Gibbs equation (2) the pairings of energy con-
jugated variables are: (ρs, T ) and (ρωi, µi). The time
derivative of Gibbs equation (3) associated with the local
equilibrium hypothesis shows the natural power conju-
gated variables given by (∂ρs∂t , T ) and (∂ρωi∂t , µi).

3. DISTRIBUTED PORT-HAMILTONIAN SYSTEMS
WITH DISSIPATION

The port Hamiltonian formulation of distributed param-
eter systems is based on a generalization of the finite
dimensional Dirac structure introduced in (Courant , 1990;
Dorfman , 1993). This geometrical structure relates the
flow and effort variables variables through a skew sym-
metric operator which interprets the power conservation
principle.

Let us consider the 1-D port Hamiltonian system with
dissipation defined on the Z = [a, b] with distributed
control input defined by:

∂x

∂t
= (J − GDG?)δH

δx
+ Bu (4)

where x(t, z) = (q, p) ∈ R2n is the state, u(t, z) ∈ C∞(Z)

is the distributed control, J =

[
0 In
In 0

]
∂
∂z is a formally

skew symmetric differential operator, G and B are linear
bounded operators with their respective adjoint operator
G∗ and B∗, D ∈ R2n×2m is a non negative definite matrix
and H(x) is the Hamiltonian of the system:

H(x) =
1

2

∫ b

a

Hdz =
1

2

∫ b

a

xTLx dz (5)

with L > 0 a constant matrix. δH
δx = Lx represents the

variational derivative of the functional H (see Duindam
et al. (2002)). Consider the flow variables vector noted
f = (fq, fp) = ∂x

∂t ∈ C∞(Z)2n and the effort variables

vector e = (eq, ep) = δH
δx ∈ C

∞(Z)2n.

The model (4) can be written in extended form as

(
f
er

)
=

(
J G
−G? 0

)
︸ ︷︷ ︸

Je

(
e
fr

)
+

(
B
0

)
u with fr = Der (6)

with a specific dissipative port variables (fr, er) ∈
C∞(Z)2m × C∞(Z)2m. Let us define extended flow and
effort variables fe = (f, fr) and ee = (e, er).

We associate to this system the set of boundary conditions
at a and b (a part of them can be used for control purpose)
in the case of G is a matrix ( 0-order differential operator)
of:

e∂ =

(
ea∂(t)
eb∂(t)

)
=

(
−eq|a
−eq|b

)
, f∂ =

(
fa∂ (t)
f b∂(t)

)
=

(
ep|a
ep|b

)
(7)

Remark 1. In the case of the operator G is of higher
dimension, the set of corresponding boundary variables
(fe∂ , ee∂ ) could be chosen using the parametrization given
in Le Gorrec et al. (2005).

The energy balance is given by

dH

dt
=

1

2

d

dt

∫ b

a

xTLx dz =

∫ b

a

eT
∂x

∂t
dz =< e, f > (8)

which finally leads to equation (9):

dH

dt
= eb∂

T
f b∂ − ea∂

T fa∂ +

∫ b

a

eTBu−

−eTr︷︸︸︷
eTG

−fr︷ ︸︸ ︷
DG?e dz

= ea∂
T fa∂ − eb∂

T
f b∂− < y, u > − < er, fr >

(9)

with y = −B∗e.
First let us define the space of flow variables

F =
{( fe

f∂
u

)
∈ C∞(Z)2(n+m) × Rn×{a,b} × C∞(Z)

}
(10)

and the space of effort variables

E =
{( ee

e∂
y

)
∈ C∞(Z)2(n+m)×Rn×{a,b}×C∞(Z)

}
(11)

endowed with the following non-degenerated bilinear pair-
ing:〈(

ee
e∂
y

)
|

(
fe
f∂
u

)〉
=< ee, fe > + < y, u > (12)

+ < eb∂ , f
b
∂ >Rn − < ea∂ , f

a
∂ >Rn

which is the duality product defined on the space of effort
and flow variables. This power product expresses at the
same time the energy balance equation of the system. the
notation <,>Rn stands for the scalar product in Rn. Let
us also consider symmetric pairing:〈〈[

e1
f1

]
,

[
e2
f2

]〉〉
>=< e1|f2 > + < e2|f1 > (13)

where

[
e1
f1

]
,

[
e2
f2

]
∈ E × F

Definition 1. (Maschke et al. (2005)) A Stokes Dirac
structure D is a subspace of E × F that is maximally



isotropic respectively to the non-degenerate symmetric bi-

linear form (12) or D⊥ = D, D⊥ =
{
b ∈ E×F|

〈〈
b, bT

〉〉
=

0
}

.

It can be shown that the subset D:

D =
{

(fe, f∂ , u, ee, e∂ , y) ∈ E × F with (6), y = −B∗e,

and e∂ =

(
ea∂
eb∂

)
, f∂ =

(
fa∂
f b∂

)}
is a Stokes-Dirac structure

with respect to (12).

More generally a Stokes Dirac structure can be obtained
for linear first order port-Hamiltonian systems with

J = P1
∂

∂z
+ P0 (14)

where the matrix P1 is invertible and self-adjoint, and P0

is skew-adjoint (see Le Gorrec et al. (2005); Jacob et al.
(2012)).

4. MODEL OF DIFFUSION REACTION PROCESS

We suppose isobaric operating conditions and a constant
total mass density ρ inside the jacketed reactor. The
reactor is assumed to have a length L.

The chemical reaction r involves two species A and B:
νAA −→ νBB with stoichiometric coefficients νA, νB > 0.
The reaction kinetics is modeled by a Arrhenius law

r = k0e
− E
RT cA (15)

where cA is the molar concentration of the specie A, E is
the activation energy, R the perfect gas constant and k0
the kinetic constant.

We assume that matter diffusion and heat conduction are
occurring inside the reactor.

The diffusion flux fAd of species A is given by (see Bird
(2002)):

fAd = −D∂z(µA − µB) (16)

where x is the state vector and D the diffusion coefficient.
Since it is assumed pure diffusion, we have fAd + fBd = 0.

The conduction flux satisfies the Fourier’s law:

fF = −λ∂z(T ) (17)

where λ > 0 is the thermal conductivity of the matter.

Furthermore we consider that there is distributed heat
transfer q(z) between the reactor and its jacket. We do
not develop this term that is in general linear with respect
to reactor temperature T (z).

The model for the reaction diffusion system is given by:


ρ∂tωA = −∂zfAd −MAνAr
ρ∂tωB = −∂zfBd +MBνBr

ρ∂ts = −∂zfs −
q

Tj
+ σ

(18)

where ωi represents the mass fraction of the species i (
i = A, B) and s is the entropy per mass unit. Mi is the
molar mass of species i, Tj is the distributed temperature
of the jacket, fs =

∑
i=A,B f

i
dsi + fsF is the total entropy

flux where fsF = fF
T is the entropy flux due to conduction

fsF = fF
T and si the partial mass entropy of species i.

σ is the irreversible production of entropy. This term is
computed by equalizing the entropy balance given by eq.
(18) and the one deduced from the Gibbs equation (2).
For this purpose the energy balance is needed. The energy
balance with incompressible and isobaric assumptions is
expressed through the enthalpy balance:

ρ∂th = −∂zfh − q (19)

where h = u+P 1
ρ is the enthalpy per mass unit and fh is

the total enthalpy flux given by:

fh = fhd + fF (20)

where fhd =
∑
i=A,B f

i
dhi is the enthalpy flux due to

diffusion. hi is the partial mass enthalpy of species i.

The irreversible production of entropy is given by:

σ =

σext︷ ︸︸ ︷
q(

1

Tj
− 1

T
)

σr︷ ︸︸ ︷
− r
T
A

σA︷ ︸︸ ︷
− 1

T
fAd ∂zµA

σB︷ ︸︸ ︷
− 1

T
fBd ∂zµB

σS︷ ︸︸ ︷
−fs ∂zT

T

(21)

with A = −νAMAµA + νBMBµB the chemical affinity.

Each term of the irreversible entropy production terms is
assumed in the context of irreversible Thermodynamics
to be positive (see Callen (1985)). The first term σext is
related to the exchanges with the jacket of the reactor. The
second term σr is due to the chemical reaction. σA and σB
are due to diffusion of species A and B in the material
domain. Finally σS is due to diffusion and conduction in
the thermal domain.

5. PORT HAMILTONIAN FORMULATION FOR
DIFFUSION REACTION PROCESSES

In the framework of irreversible Thermodynamics the
natural state vector x of the system is given by xT =
( ρωA ρωB ρs ) corresponding to the variable appearing
in the material derivative of the local equilibrium equation
(2). The energy is then an implicit variable obtained
from eq. (2). We call this representation Implicit energy
representation.

In the sequel of this section we show this Implicit energy
representation can be written using a Stokes Dirac struc-
ture defined on a particular extended pairings of effort and
flow variables given in Table 1.

For that purpose we consider the vectors E ∈ E =
(H2[0, L])3 × (H1[0, L])3 × (L2[0, L])5 and F ∈ F =
(L2[0, L])3 × (H1[0, L])3 × (L2[0, L])5:

E = ( eA eB es fA fB fs fr fσA fσB fσS fσr )
T

F = ( FA FB Fs EA EB Es Er eσA eσB eσS eσr )
T

(22)

The subset :

( fA fB fs fr fσA fσB fσS fσr )
T

of vectors E and the subset:

(EA EB Es Er eσA eσB eσS eσr )
T



Table 1. variables settings

flows efforts

FA = ρ∂tωA eA = µA
FB = ρ∂tωB eB = µB
Fs = ρ∂ts es = T
fA = fAd EA = −∂zµA
fB = fBd EB = −∂zµB
fs = fsd Es = −∂zT
fr = r Er = A
fσA = −σA eσA = T
fσB = −σB eσB = T
fσS = −σs eσS = T
fσr = −σr eσr = T
u = − q

T
y = T

of vector F correspond to the extended effort er and flow
variables fr described in section 3.

The model of reaction diffusion system given in (18) can
be rewritten as: {

F = JeE + Beu
y = −B?eE

(23)

with Be =

( B
03
05

)
where B =

(
0
0
1

)
. J is a skew-symmetric

differential operator given by:

Je = P1∂z + P0 (24)

with

P1 =

(
03 −I3 0
−I3 03 0

0 0 05

)
P0 =

 03 03 P
03 03 0
−PT 0 05

 (25)

where 03, I3 ∈ R3×3, represent the zero matrix and the
identity matrix respectively. The two matrices I3 of P1 are
related to the diffusion and conduction phenomena.

and

P =

(−νAMA 0 0 0 0
νBMB 0 0 0 0

0 −1 −1 −1 −1

)
(26)

Let us consider the following boundary port variables:

(
f∂
e∂

)
=

(
I3 0
0 −I3

)(
f |∂z
e|∂z

)
(27)

with

e|∂z =

(
eA
eB
es

)
|0,L, f |∂z =

(
fA
fB
fs

)
|0,L (28)

The proposed representation of the system (18) given in
(23) is based on an extension of port variables set (flows
and efforts) corresponding to the natural dual variables
for diffusion, reaction, conduction phenomena but also
for their respective entropy production. The system (23)
shows that the externalization of the constitutive equa-
tions of the previously cited thermodynamic phenomena as
well as the irreversible entropy production terms exhibits
the intrinsic interconnection structure for the considered
system.

This methodology corresponds to “open” the R and the S
bonds of the RS bond graph element (see Duindam et al.
(2002) for RS elements). This element is used as soon
as the entropy balance is written. This power continuous
element is formed by a resistive part R that represents
the dissipation of some phenomenon with constitutive law
between the effort eR and the flow variablefR: eR = R(fR).
Since the internal energy is conservative this dissipation
appears as a source term S in the thermal domain. The
additional port which is endowed with a pair of conjugate
variables (σ, T ) satisfies the power continuity relation:
Tσ = eRfR, σ is the entropy production associated with
the phenomenological law defined by R.

Set F =

{[
F
u
f∂

]
∈ F× L2[0, L]× R3×{0,L}

}
and

E =

{[
E
y
e∂

]
∈ E × L2[0, L] × R3×{0,L}

}
. Let us endow

the subspaces E and F with the pairing

<

[
E
u
e∂

]
|

[
F
u
f∂

]
>:=< E,F >L2 + < y, u >L2

+< eL∂ , f
L
∂ >R3 − < e0∂ , f

0
∂ >R3 (29)

Proposition 1. The linear subset D ⊂ E × F defined by:

D =

{([
F
u
f∂

]
,

[
E
y
e∂

])
∈ E × F| F = JE + Beu ,

y = −BeE ,

[
f∂
e∂

]
(0,L)

as defined in (27)

}
is a Stokes

Dirac structure with respect to the symmetric pairing (29).

Furthermore the irreversible feature of the system is de-
fined by:

−E

(
03 0 0
0 0 0
0 0 I4

)
F > 0 (30)

Proof To prove that D is a Dirac structure, we follow the
same steps given in (van der Schaft et al. (2002)) where
we have to show that D ⊂ D⊥ and D⊥ ⊂ D.

•D ⊂ D⊥:

We define < Fi, ui, f∂i , Ei, yi, e∂i >= di for i = 1, 2.

Let d1 ∈ D, and consider any d2 ∈ D .

We consider the following bilinear form:

<< d1, d2 >>=

∫
Z

(E1F2 + E2F1 + y1u2 + y2u1)dz

+[e∂1f∂2 ]L0 + [e∂2f∂1 ]L0

=

∫
Z

Idz +

∫
∂Z

Fdz (31)

where I is the distributed part and F is the boundary
part.

Using the definition (22) of E and F , we have:



I = eA1
FA2

+ eB1
FB2

+ es1Fs2 + fA1
EA2

+ fB1
EB2

+fs1Es2 + fr1Er2 + fσA1
eσA2

+ fσB1
eσB2

+ fσS1 eσS2
+fσr1 eσr2 + eA2FA1 + eB2FB1 + es2Fs1 + fA2EA1

+fB2
EB1

+ fs2Es1 + fr2Er1 + fσA2
eσA1

+ fσB2
eσB1

+fσS2 eσS1 + fσr2 eσr1 (32)

By substituting all the flux expressions into (32), we have

I = −∂z(eA1fA2 + eB1fB2 + es1fs2 + eA2fA1

+eB2
fB1

+ es2fs1) + (es1σ2 − es2σ1 + es2σ1 − es1σ2)︸ ︷︷ ︸
=0

+MAνA(fr2(−eA1
+ eB1

+ eA1
− eB1

)

+fr1(eA2 − eB2 − eA2 + eB2))

= −∂z(eA1fA2 + eB1fB2 + es1fs2 + eA2fA1

+eB2
fB1

+ es2fs1) (33)

The sum of the third and fourth line is zero.Thus by
integration:∫

Z

Idz =−
∫
∂z

(eA1
fA2

+ eB1
fB2

+ es1fs2 + eA2
fA1

+

eB2fB1 + es2fs1)dz

=−[eA1
fA2

]L0 − [eB1
fB2

]L0 − [es1fs2 ]L0

−[eA2
fA1

]L0 − [eB2
fB1

]L0 − [es2fs1 ]L0

=−e∂1f∂2 |0 + e∂1f∂2 |L − e∂2f∂1 |0 + e∂2f∂1 |L(34)

Finally∫
Z

Idz +

∫
∂Z

Fdz =−e∂1f∂2 |0 + e∂1f∂2 |L − e∂2f∂1 |0

+ e∂2f∂1 |L − e∂1f∂2 |L + e∂1f∂2 |0
− e∂2f∂1 |L + e∂2f∂1 |0
= 0 (35)

As the result, we have << d1, d2 >>= 0, and thus
D ⊂ D⊥.

•D⊥ ⊂ D:
let us consider d1 ∈ D⊥ , implying that for all elements
d2 ∈ D << d1, d2 >>= 0

First, we assume that the boundary part e∂f∂ is zero, and
the reactor is autonomous so that

∫
Z
yudz = 0, implying

that

∫
Z

(E1F2 + E2F1)dz = 0 (36)

We demonstrate that in this case, F1 has the same expres-
sion as F2

We replace F2 by the expression as given in Table 1 into
the equation (36) because d2 ∈ D, we have:

E1F2 = fA2
∂zeA1

+ fB2
∂zeB1

+ fs2∂zes1 + eA2
∂zfA1

+eB2∂zfB1 + es2∂zfs1 − ∂z(eA1fA2 + eB1fA2

+es1fs2 + eA2
fA1

+ eB2
fA1

+ es2fs1)

MAνA(−fr2eA1
− fr1eA2

+ eB1
fr2 + eB2

fr1)

+es1σs2 − es2σs1

The equation (36) gives that:∫
Z

E2F1dz =−
∫
Z

E1F2dz

=−
∫
Z

(fA2
∂zeA1

+ fB1
∂zeB1

+ fs1∂zes1)dz

−
∫
Z

(eA2∂zfA1 + eB2∂zfB1 + es2∂zfs1)dz∫
Z

(MAνA(fr2eA1
+ fr1eA2

− eB1
fr2

−eB2fr1)− es1σs2 + es2σs1)dz

+[eA1fA2 ]L0 + [eB1
fA2

]L0 + [es1fs2 ]L0

+[eA2
fA1

]L0 + [eB2
fA1

]L0 + [es2fs1 ]L0

By the hypothesis that on the boundary efforts are zero,
we eliminate the boundary part so that:∫

Z

E2F1dz =−
∫
Z

E1F2dz

=−
∫
Z

(fA2
∂zeA1

+ fB1
∂zeB1

+ fs1∂zes1)dz

−
∫
Z

(eA2
∂zfA1

+ eB2
∂zfB1

+ es2∂zfs1)dz∫
Z

(MAνA(fr2eA1 + fr1eA2 − eB1fr2

−eB2fr1)− es1σs2 + es2σs1)dz (37)

In the same way we obtain:

E2F1 = eA2(−∂zfA1 +MAνAfr1) + eB2(−∂zfB2

−MBνBfr1) + es2(−∂zfsd2 + σs1)

+fA2
(−∂zeA1

) + fB2
(−∂zeB1

)

+fs2(−∂zes1) + fr2(−νAMAeA1 + νBMBeB1)

−(σA2 + σB2 + σS2 + σr2)es1 (38)

By identification , we easily find that for F1:

FA1 = ρ∂tωA1 FB1 = ρ∂tωB1 Fs1 = ρ∂tωs1

EA1
=−∂zµA1

EB1
= −∂zµB1

Es1 = −∂zT1
Er1 =A1 eσA1

= T1 eσB1
= T1

eσS1 = T1 eσr1 = T1 (39)

which has the same expression as in the table (1).

Secondly, we consider that the boundary is no longer zero,
and demonstrate this part of d1 also belongs to D
let us substitute eq. (39) into (31):



∫ L

0

(−∂z(eA1
fA2

+ eB1
fB2

+ es1fs2 + eA2
fA1

+ eB2
fB1

+es2fs1))dz + [e∂1f∂2 ]L0 + [e∂2f∂1 ]L0 = 0 (40)

We obtain easily:

[e∂1f∂2 ]L0 + [e∂2f∂1 ]L0 (41)

−[eA1
fA2

]L0 − [eB1
fB2

]L0 − [es1fs2 ]L0

−[eA2
fA1

]L0 − [eB2
fB1

]L0 − [es2fs1 ]L0 = 0

Substituting boundary conditions (28) into (41), we ob-
tain:

[e∂2f∂1 ]L0 = [eA2
fA1

]L0 + [eB2
fB1

]L0 + [es2fs1 ]L0

[eA1fA2 ]L0 + [eB1fB2 ]L0 + [es1fs2 ]L0

−e∂1f∂2 |L + e∂1f∂2 |0

The sum of the second and the third line is zero so that:

[e∂2f∂1 ]L0 = −[eA2
fA1

]L0 − [eB2
fB1

]L0 − [es2fs1 ]L0

As the result , by identification we can easily obtain that

f |∂z1 =

(
fA1

fB1

fs1

)
showing that indeed d1 ∈ D.

• The third point of the proof concerns the irreversibility
feature of the representation

It can be easily checked by using Table 1 and expression
(21) that

−E

(
03 0 0
0 0 0
0 0 I4

)
F = E

(
03 0 0
0 I4 0
0 0 04

)
F

= −rA− fAd ∂zµA − fBd ∂zµB
− fs∂zT > 0

(42)

2

6. CONCLUSION

This paper is a first attempt to the port Hamiltonian
representation of a tubular reactor. It is shown how trans-
port phenomena and chemical reactions can be repre-
sented in the energy based representation using a Stokes-
Dirac structure. It remains to show how the convection
phenomenon can be integrated in such formulation. This
formulation could be advantageously used for control pur-
poses using the passivity based methods and thermody-
namic availability function introduced in Ruszkowski et
al. (2005) and used for the control of CSTRs in Hoang
et al. (2011).
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