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Abstract—The Capacitive Micromachined Ultrasonic Trans-
ducers (CMUTs) are a promising alternative to piezoelectric
ultrasound transducers. They are constituted by a very large
number of silicon membranes electrostatically actuated. We
propose an original method to calculate the acoustic pressure
emitted by CMUTs by taking into account explicitly the dynamics
of each membrane of the network. The electrostatic forces are
linearized, the displacements of the membranes are projected on
a mechanical modal base and the acoustic pressures are computed
via the Rayleigh integral. The method has been validated by
comparison with ANSYS for a single cell and a small hexagonal
network of 7 cells. Application on a 2D CMUT network shows
the interest of such a calculation method.

I. INTRODUCTION

The numerical simulation of the radiated pressure of a
CMUT Network is conducted by approximate methods, due
to the huge number of membranes that have to be taken into
account. Simple CMUT design tools, used piston like analytic
solutions and simplified coupling hypothesis, as described in
[5]. Commercial Finite Element Software are also currently
used to study the radiation of a single membrane. Some
authors [2], [3] have used ANSYS to study cross talk effects
on models limited to a few number of membranes. The use of
periodic conditions as in [1] is exact only for infinite networks.
Other models take acoustic coupling into account with various
simplification hypothesis [7], [6].

We present here a method where all the membranes are
taken into account explicitly in the simulation. Computation
time is reasonable, because acoustic couplings are calculated
by the Rayleigh integral and membrane displacements are pro-
jected on mechanical mode shapes. We present first the model,
then its validation by comparison with ANSYS simulations
and finally the application of the method to a 2D CMUT
network.

II. MODEL

A CMUT is composed of many cells organized as a
network. Each cell comprises a small membrane over a
sealed vacuum cavity. Electrodes are deposited at the bottom
of the cavity and on the membrane to permit electrostatic
actuation. Electrical connections allows to apply the same
electrical tension to a group of cells called element. We
suppose that the membranes are coupled by the semi infinite
acoustic medium but not by the mechanical substrate. The
objective of our method is to predict first the displacement of

all the membranes of the network. Then radiated pressures,
directivity diagrams and acoustic power can be deduced from
the displacement of all the network membranes.

A. Cell electro-mechanical model

Each membrane, is statically deflected by bias voltage Udc.
We suppose that the alternating voltage Uac is small compared
to Udc. In this case the alternating electrostatic forces Fdyn can
be linearized around the static deflection of the membrane wdc.
We thus can write :

Fdyn = ε0U
2
dc

ˆ
S

w

(hgap − wdc)3
dS (1)

+ ε0UdcUac

ˆ
S

1

(hgap − wdc)2
dS (2)

where S is the surface of the electrode, hgap the initial
electric effective gap and w the dynamic membrane deflection.

B. Acoustic model

The CMUT if flat and each membrane can be considered as
baffled. Thus the pressure P (r, ω), in the frequency domain,
radiated at the point M of coordinates r, by the membrane of
surface Sm, can be expressed by the Rayleigh integral :

P (r, ω) = −ω
2ρ0
2π

ˆ
sm

W (r′, ω)e−jk|r−r
′|

|r−r′|
dS′ (3)

where W (r′, ω) is the harmonic deflection of the membrane
current point with w(r′,t) = Re[W (r′,ω)ejωt], ρ0 is the mass
per unit volume of the fluid and k = ω

c0
is the wave number

with c0 the speed of sound in the fluid.
The Rayleigh integral will be use in a first step to compute

the acoustic direct and mutual impedances on the membranes.
Then in a second step, it will be used to compute the pressure
radiated by the network.

C. Cell mechanical model

The dynamic membrane deflection w can be projected on
the first M modes shapes ϕk of the membrane in vacuum and
clamped on its edge [4].

w =

M∑
k=1

ϕkqk
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where qk is the generalized coordinate associated with mode
number k. We will further consider an harmonic domain
approach where

qk(t) = Re[Qk(ω)e
jωt]

In addition, for each mode k, we will introduce a mechanical
modal viscous damping.

D. Network model

If we use M mode shapes to represent the displacements
of the membrane number i, for i = 1, N , the unknown
vector for the membrane i is

{
Qi
}T

=
{
Qi

1, ..., Q
i
M

}
and

the unknown vector for the entire network is {Q}T ={{
Q1
}T

, ...,
{
QN
}T}

. The momentum equation for the un-
known {Q} is obtained after projection of the forces on the
modal vectors ϕi

k, for i = 1, N and k = 1,M . It leads to the
following linear system of size N ×M to be solved in the
frequency domain :

(−ω2[M ]+jω[C]+[K]−[Kelec]+
ω2ρ0
2π

[A(ω)]){Q} = {Felec}

Where :

• [M ], [C], [K] are the diagonal structural mass, damping
and stiffness matrices

• [Kelec]is the linearized electrostatic softening matrix eval-
uated from (1)

• {Felec}is the linearized electrostatic forces vector evalu-
ated from (2)

• [A(ω)] is the acoustic coupling matrix evaluated from (3)

Most of the physics is thus included in the model for small
amplitude responses. Only two parameters have to be chosen;
the number of modes and the radius out of which acoustic
interactions between membranes are neglected. The adequate
choice depends on the physics of the problem. A trade off has
to be made between accuracy and computational cost. The
method has been implemented in an in house software called
OptiMUT.

III. VALIDATION

We consider a generic circular membrane that we will use
through all the simulations described in this paper. It is a poly
silicon membrane of 1,5 µm thickness and 25 µm radius. The
electrode radius is 20 µm and the air gap height is 0, 3 µm.
Collapse voltage has been calculated to 106 V and the bias
voltage Udc is equal to 95 V (90% of the collapse voltage).
Alternating voltage Uac is equal to 1 V. Water is the acoustic
radiation medium. A modal viscous damping ratio of 0.5% has
been taken for all the mechanical modes. The first ten eigen
frequencies of this membrane in vacuum are given on table I

Table I
FIRST TEN EIGEN FREQUENCIES OF THE MEMBRANE IN VACUUM

Frequency Multiplicity Nb. of nodal Nb. of nodal
MHz diameters circles
9.9 1 0 0

20.7 2 1 0
33.9 2 2 0
38.7 1 0 1
49.6 2 3 0
59.2 2 1 1
67.8 2 4 0
82.3 2 2 1
86.7 1 0 2
88.3 2 5 0

Figure 1. Single membrane center displacement

A. Single cell model

The radiation of a single membrane in vacuum and in water
has been simulated with ANSYS and OptiMUT. The first 6
modes have been considered in the OptiMUT model. Displace-
ment vs frequency at the center of the membrane is represented
on figure 1. We can see that the solutions with ANSYS and
OptiMUT are very close. A slight difference observed on the
second peak in vacuum is due to the mechanical damping that
is defined differently with ANSYS. In vacuum we can see the
effect of the electrostatic softening on the first two modes,
with zero nodal diameters, that are the only modes excited
here. The first mode shifts from 9.9 MHz to 7.6 MHz and the
second shifts from 38.7 MHz to 38 MHz. In water, we can
notice that the frequency shift and the strong damping effect
are identically computed with both models.

B. Hexagonal cell model

This test inspired from [3] is done to validate cross talk
effects. A central membrane is surrounded by 6 identical
membranes disposed according to an hexagonal pattern. The
minimum distance between two adjacent membranes is 5µm.
Only the central membrane is electrically excited by an alter-
nating voltage of 1V. The outer membranes are not electrically
excited. Seventeen modes have been considered for each
membrane in the OptiMUT simulation. The ANSYS meshing,



Figure 2. ANSYS meshes

Figure 3. Displacement at the center of the central membrane

of one sixth of the structure, and of the fluid is represented
Fig. 2.

The displacement at the center of the central cell is plotted
on Fig.3. A good agreement is found between ANSYS and
OptiMUT from 0 to 30 MHz. Between 30 MHz and 50 MHz,
the ANSYS meshing is too coarse relative to the wavelength.
Indeed, beyond 30 MHz each wavelength includes less than
5 fluid elements. On Fig. 3 we can distinguish clearly 5
different frequency peaks at 3.86 MHz, 11 MHz, 19.9 MHz,
23.9 MHz and 32.8 MHz. These frequencies correspond to
strong coupling between the different modes of the central and
the surrounding cells. This is illustrated by the instantaneous
displacements represented at these frequencies on Fig.4. The
plot of the pressure at 1mm in front of the central cell in Fig.5
shows again a good agreement between ANSYS and OptiMUT
up to 30 MHz.

IV. APPLICATION

This section is devoted to show the potential of the method
to study larger networks. We choose an academic 2D Network
composed of 64 elements of 16 cells each. Six mode shapes
are considered for each membrane. The interaction radius
for acoustic coupling is 500 µm. This means roughly that
each cell is coupled with its eight close neighbors in each
direction. The alternating voltage is applied with a phase of 10
degrees between adjacent elements in the x and y directions.
The displacement at the center of a cell in the middle of
the CMUT is represented on Fig.6. We can see a series of
peaks and in particular a very sharp one at 11.84 MHz. This

Figure 4. Instantaneous displacement of the membranes at coupling frequen-
cies

Figure 5. Pressure at 1mm in front of the central membrane

peak correspond to a global displacement involving mostly
the second mode of the cells. An instantaneous displacement
field at the center of each cell, for 3.18 MHz, is represented
on Fig.7. We can see large differences on the amplitudes of
different cells belonging to the same element. Also at that
frequency, we can notice that the elements are not responding
according to the phase imposed on the excitation. Finally the
far field pressure in front of the CMUT is shown on Fig.
8. Those results shows the importance of cross talk in such
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Figure 6. Displacement at the center of a cell in the middle of the CMUT
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Figure 7. Instantaneous displacement at the center of each cell for 3.18 MHz

a network. Validation of those results with Finite Element
commercial software is not possible due to the size of the
model. Experimental validation needs to be done in the next
future.

V. CONCLUSION

We propose a method that can predict the behavior of
CMUT operating in linear regime, taking into account cross
talk and edge effects. The model represent explicitly all the
membranes. Most of the physics is taken into account. The
only approximations are the linearisation of the electrostatic
forces, the modal truncation and a radius above which acoustic
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Figure 8. Far field pressure in front of the CMUT

coupling is neglected. The model has been validated by
comparison with ANSYS for small networks. Application
to a larger 2D network shows very strong coupling effects.
Further investigations will be necessary to understand all the
phenomena in order to optimize the performance of future
networks. Experimental validation of the results is necessary
and will be done in a near future.
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