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Abstract

The internet of things (IoT) has gained worldwide attention in recent
years. It transforms the everyday objects that surround us into proactive
actors of the Internet, generating and consuming information. An impor-
tant issue related to the appearance of such large-scale self-coordinating
IoT is the reliability and the collaboration between the objects in the pres-
ence of environmental hazards. High failure rates lead to significant loss of
data. Therefore, data survivability is a main challenge of the IoT. In this
paper, we have developed a compartmental e-Epidemic SIR (Susceptible-
Infectious-Recovered) model to save the data in the network and let it
survive after attacks. Furthermore, our model takes into account the dy-
namic topology of the network where natural death (crashing nodes) and
birth are defined and analyzed. Theoretical methods and simulations are
employed to solve and simulate the system of equations developed and to
analyze the model.

1 Introduction

The Internet of Things (IoT) or Internet of objects has gained worldwide atten-
tion in recent years, particularly with the proliferation of new communication
technologies and connected devices. The main idea behind the IoT is to bridge
the gap between the physical world of humans and the virtual world of elec-
tronics via smart objects. These smart objects allow the interactions between
humans and their environment by providing, processing and delivering any sort
of information or command. This concerns a large variety of IoT applications,
which contribute to our everyday life. They cover a wide range from traditional
equipment to general household objects, which help to make people’s lives eas-
ier [20, 21]. Sensors and actuators will be integrated in buildings, vehicles, and
common environment and can tell us about them, their state or their surround-
ings.

The IoT built from smart things or objects needs to address challenges re-
lated to system architecture, design and development, integrated management,
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business models and human involvement. These challenges will be addressed
by:

• energy issues in all their phases, from harvesting to conservation and usage,
are essential in the development of the IoT;

• scalability, IoT applications require a large number of devices where it
is difficult to implement due to restrictions on time, memory, processing,
and energy constraints;

• standardization and interoperability of data processing awareness are highly
needed;

• big data management, it is expensive to transmit huge volumes of raw
data in the complex and heterogeneous network. Therefore, IoT needs
data compression and data fusion to reduce the data volume;

• interaction between hardware, software, algorithms as well as the devel-
opment of smart interfaces among things;

• security, hackers, malicious software and virus in the communication pro-
cess might disturb data and information integrity.

With the development of the IoT technology, we must develop new techniques
and concepts to improve the existing security and privacy in order to adapt to
new technological and societal challenges [3].

With this increasing use of technology and its social life applications such as
intelligent transportation, smart cities, smart homes, etc [3], the use of the In-
ternet increases, constantly offering new functionalities and facilities. Although
these applications can be extremely useful, they must ensure personal privacy
else private information may be leaked at any time. Furthermore, the IoT using
wireless sensor networks proved crucial in disaster and rescue missions such as
natural disasters (e.g. earthquakes), life-threatening mining accidents, monitor-
ing of critical infrastructures, etc. A major obstacle that delays the appearance
of such large-scale self-coordinating IoT is the reliability of the objects/sensors
in the presence of environmental hazards. High failure rates lead to a significant
loss of data. Therefore, data survivability is a main challenge of the IoT. For
instance, in urban disaster areas, the collected data can identify hazards and
save lives whereas nodes failures or attacks lead to data loss. Another example is
about critical infrastructure monitoring where data can be lost after a portion of
the critical infrastructure suffers a disaster. Thus, data survivability and avail-
ability is particularly important in the IoT and cannot be ignored. Therefore,
collaboration and transmitting crucial information between nodes are essential
to maximize the amount of monitoring-related data that can survive.

For that purpose, in this paper we study and develop a new epidemic-domain
inspired approach to model the information survivability in the IoT. Somehow,
the propagation of the information in a network of things could be compared
with a disease transmitted by vectors when dealing with public health. In [2] the
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authors discussed the spreading nature of biological viruses, leading to infectious
diseases in human populations through several epidemic models.

The propagation of the information throughout the IoT can be studied by us-
ing epidemiological models for disease propagation. The model we present here
is based on the SIR (Susceptible - Infected - Recovered) model. A node/thing
is susceptible to a data item when it is online and functioning normally; it
can receive the information that must survive. Based on a classical epidemic
model, various dynamic models for malicious attacks propagation were pro-
posed [24, 31, 32, 29, 30, 28, 23, 25, 26, 27, 8]. The majority of these models
were studied for powerful computer networks and based on the fully-connected
assumption of the network which is not the case of the IoT based on wireless
sensor networks with heavy resources and a very dynamical topology. In this
paper, we introduce a thorough analysis of the conditions that can assure data
survivability in the internet of things. We study a new SIR model that considers
dynamic topologies and nodes energy constraints. Our novelty in this paper is
that we study arbitrary dynamic network topologies instead of static networks.
We establish a new information propagation model which incorporates the ef-
fects of the dynamic IoT topology and its heavy resources. The dynamics of
this model are studied, specifically, the level of the attacks and the disparition
of nodes. Some numerical examples are given to support this result.

The remainder of the paper is organized as follows: Section 2 briefly reviews
the related work. The SIR model for Data Survivability in the IoT is presented
in Section 3. Sections 4 and 5 detail the proposed epidemic schemes in a com-
parative manner and give variations of SIR applied to the IoT. In these sections
theoretical and numerical results will be presented. Finally, Section 7 concludes
this research work.

2 Related work

In the literature, we can find several mathematical models which illustrate
the dynamical behavior of the transmission of biological diseases and/or com-
puter viruses. Based on the Kermack and McKendrick SIR classical epidemic
model [11, 12], dynamical models for malicious objects propagation were pro-
posed. Due to the numerous similarities between biological viruses and computer
viruses, several approaches and models are proposed to study the spreading and
attacking behavior of computer viruses in different phenomena, e.g. virus prop-
agation [33, 10, 9], e-mail propagation schemes [16], virus immunization [15, 7],
quarantine [14, 4], vaccination [1], etc. The authors in [18] propose an improved
SEI (susceptible-exposed-infected) model to simulate virus propagation. [13]
propose an SEIS-V epidemic model with vertical transmission using vaccination
(that is, run of anti-virus software time and again with full efficiency) so that a
temporary recovery from the infection of worms can be obtained.

More recently, epidemiological models have been used not only to transmit
viruses in computer network but also to ensure the security in wireless sensor
networks [22, 19, 6, 17]. The authors in [22, 19] studied the robustness of
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filtering on nonlinearities in packet losses and sensors. Unattended Wireless
Sensor Networks (UWSNs), have been introduced by Di Pietro et al. in [5],
where adversaries can compromise some sensor nodes and selectively destroy
data. In such networks, nodes collect data from the area under consideration,
and then they try to upload all the stored data when the sink comes around
and the main challenge is data survivability. The epidemiology community has
developed the so-called SIR and SIS models [6, 17] of infection. The SIS model
(Susceptible - Infected - Susceptible) is suitable for, e.g., the common flu, where
nodes may be infected, healed (and susceptible), and infected again. The SIR
model (Susceptible- Infected - Recovered) is for example suitable for mumps,
where a node, after being infected, becomes recovered (with life-time immunity).
SIS, SIR, and SIRS models have been investigated by authors of these research
works, in order to derive the parameters that can ensure information to survive.
In these articles, the S(t) compartment is constituted by sensors that do not
possess the datum at time t, while I(t) is the compartment of sensors that
possesses it. Finally, the R(t) compartment is constituted by sensors that have
been compromised by the attacker.

To the best of our knowledge none of the previous work have studied epidemic
models for data survivability in the IoT. Furthermore, existing approaches have
not taken into account the energy consumption constraints of the nodes. As
in the IoT, usually the nodes’ energy is provided by a battery that can be
emptied due to data acquisition, transmission, or simply the functioning cost
of keeping nodes alive. On the other hand, the topology of the networks they
consider is static, the network’s lifetime is unbounded, and nodes cannot die due
to empty batteries. Our intention in this paper is to provide a new epidemic
model dedicated to the IoT, by taking into account these issues.

3 Formulation of SIR model for IoT

3.1 Introducing the Kermack & McKendrick model

In IoT, the global network can be divided in three compartments, namely the
nodes/things S susceptible to receive the datum of interest (intrusion detection,
etc.), the ones that currently store it (Informed) I, and the recovered nodes
R that have been compromised by the attacker: their stored datum has been
recovered.

Suppose now that between S and I, the transmission rate is bI, where b is
the contact rate, which is the probability of transferring the information in a
contact between a susceptible node and another having the datum. Indeed, as
proven by Di Pietro et al., such a situation occurs when the network is composed
by N nodes, and if each node forwards the datum with probability α

N [6, 17] (α
is the transition rate).

Suppose, additionally, that the rate to pass between I and R, is c: the
attacker is able to individuate the nodes containing the target information, and
to destroy each of them with this probability c. Notice that, if the duration
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of the information survivability is D, then c = 1
D , as a node experiences one

recovery in D units of time.

S I R
bI c

Figure 1: SIR model

Under such hypotheses and as stated in [6, 17], the nodes population follows
the so-called SIR model of Kermack & McKendrick [11] depicted in Figure 1.
Notice that the total sensors population is equal to N = S + I +R = S0 + I0 +
R0, which is a constant: the number of connected nodes does not evolve. In
particular, only two of the three populations of nodes have to be studied.

3.2 First Theoretical Study

The time dependant SIR model can be expressed by the following set of ordinary
non-linear differential equations :

dS
dt = −bIS

dI
dt = bIS − cI

dR
dt = cI.

(1)

We suppose that each informed node (which has received the datum) com-
municates with k nodes per unit time, where k is independent of the size of the
network. Thus, it communicates with kS

N susceptible nodes S. If a fraction τ of
these nodes receives the information, then each informed node I communicates
the information to τkS

N new susceptible nodes S per unit time, and b = β
N ,

where β = kτ . We called τ the transmissibility of the information.
In the equation system 1, we can see that the right member of the first line

is negative, and the right member of the third line is positive. Therefore, we
deduce that dS

dt ≤ 0 and dR
dt ≥ 0, then, assuming that the quantities S and R

are positive we obtain:

• 0 ≤ S(t) ≤ S(0) ≤ N ,

• 0 ≤ R(0) ≤ R(t) ≤ N .

We can observe that S is a decreasing function and bounded from below,
and it converges to a limit denoted by S(∞)). Similarly, R converges to R(∞),
and then I = N −R− S converges also, to I(∞) = N − S(∞)−R(∞).

We can deduce from the above that the number of the informed nodes ap-
proaches 0 (I(∞) = 0). Indeed, if this were not the case and since dR

dt = cI, we

can deduce that for t large enough, dR
dt > c I(∞)

2 > 0 and R(∞) = ∞, which is
absurd.
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Figure 2: Evolution of the fractions S and I of susceptible and having the datum
nodes with b = 0.4, c = 0.15, s(0) = 0.9, and i(0) = 0.1 (SIR model).

4 The SIR Model study

4.1 First Theoretical Results

Let Re = S(0)β
Nc denote the number of the effective information reproductions in

the network, and R0 = β
c be the basic reproduction number. If, at time t = 0

the entire network (all the connected nodes) are susceptible and only one node
informed (which means that S(0) = N − 1 et I(0) = 1), and if the network is

large, then Re = (N−1)β
Nc is approximately equal to R0, which we are going to

assume in the reminder of the paper.

Under this assumption of large network, we prove that Re is the limit value
that determines whether the information will propagate within the network, or
whether it will quickly disappear.

Proposition 1 If Re ≤ 1, then I(t) decreases to 0 as t→∞. Else, I(t) grows
to a maximum, then decreases to 0 (epidemic transmission of the information).

As shown in figure 3, the information propagates in the networks as an
epidemic-like if R0 > 1, which means if β > c.
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Proof From the second equation of the system 1, we can deduce that

dI

dt
= (bS − c)I ≤ (bS(0)− c)I = c(Re − 1)I ≤ 0

for Re ≤ 1. As I(∞) = 0, the first result of the proposition is then obtained.
Similarly, the second equation of the system 1 implies

dI

dt
(0) = c(Re − 1)I(0) > 0

for Re > 1. Thus, the function I increases for t approaches 0. This equation
implies also that there is no non-zero constant value of I satisfying Equation 2.
These remarks and the fact that I(∞) = 0 complete the proof.

4.2 Finding the maximum number of informed nodes I

Dividing the first two equations of the system of the SIR model, gives:

dS

dI
=
−bSI

bSI − cI
.

This differential equation independent variables can be rewritten as follows:∫
bS − c
bS

dS = −
∫
dI.

We find then −I − S + c
b lnS = k, where k is a constant and thus ∀t ≥ 0,

I(t) + S(t)− c

b
lnS(t) = I(0) + S(0)− c

b
lnS(0). (2)

The maximum number of the informed nodes Imax is reached when dI
dt = 0.

According to the system 1, this occurs when S = c
b . Rewriting the equation 2,

we find:

Imax = I(0) + S(0)− c

b
lnS(0)− c

b

(
1− ln

c

b

)
.

Particularly, assuming that I(0) = 1 and S(0) = N − 1, we find

Imax = N − N

R0
(1 + lnR0) .

Moreover, from equation 2 one can deduce that, in the plane S − I, the
solutions (S(t), I(t)) are in the contour lines of the function F (S, I) = S + I −
c
b lnS as shown in figure 3
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Figure 3: Phase space (S, I) with b = 0, 4, c = 0, 15 (SIR Model).

4.3 Stopping the information transmission

In the context of data survivability for IoT, a question could be asked about
the stopping of the information transmission because there are no more nodes
susceptible to receive it (which means S(∞) = 0). The next proposition proves
that this case cannot happen.

Proposition 2 The minimum number of nodes capable of receiving informa-
tion, satisfies the following inequality:

S(∞) ≥ S(0) exp(−R0).

In particular, this limit is strictly positive.

Proof We proceed as in the previous proposition, by dividing now the first to
the third equation in the system 1 as follows:

dS

dR
=
−bIS
cI

=
−bS
c
.

We find again, a differential equation with independent variables which can
be rewritten as:
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∫
dS

S
=

∫
−b
c
dR,

Which implies S(t) = S(0) exp
(
−bR(t)−R(0)

c

)
.

Since 0 ≤ R(t)−R(0) ≤ N , then S(t) ≥ S(0) exp
(−bN

c

)
, and thus

S(∞) ≥ S(0) exp

(
−bN

c

)
= S(0) exp(−R0) > 0.

Noting that S is actually an integer, then for the high value of R0, we find
that S(∞) = 0: in this extreme case, all nodes will receive the information at a
given time.

In the case when an epidemic propagation of the information occurs in the
network, the number of the nodes susceptible decreases. Thus the rate of ap-
pearance of new nodes informed also decreases, and at a time t it may happen
that S(t) is less than c

b : the rate of the nodes having lost the information ex-
ceeds the rate of the informed nodes, this explains why I(t) starts decreasing.
The transmission of information will then stop in the network due to a lack of
informed nodes (and not because of the number of susceptible nodes).

5 Variations of SIR applied to the IoT

5.1 Another understandings for the Recovered compart-
ment

In the previous section, the R compartment was constituted by nodes that have
been compromised by the attacker, which will be referred in what follows as
situation 1. It is possible to attribute at least two other understandings to this
compartment, for nodes in the IoT based on a wireless sensor network whose
lifetime is dependent on energy consumption and in absence of attacks.

This compartment can be constituted by dead nodes, when considering that
the sole action on the energy is the information transmission, and that the
unique way to die for a node is to have transmitted too many data. In other
words, in this Situation 2, the nodes send information messages to their neigh-
bors until totally emptying their batteries. The user will receive the information
when it interrogates the network at time t if I(t) 6= 0.

A third situation can be considered without any changes in formalization,
except redefining the meaning of the R compartment. Indeed, it can be interest-
ing to consider that a node is first susceptible to receive an information message
for a while, then once the message has been received it can be transmitted,
before finally entering into the third age of its life, the recovered state in which
it will lose its ability to transmit the information.

However, in many situations of the IoT, the energy consumption and the
death of the nodes can not be neglected. This is why a natural extinction rate
of nodes for each compartment S, I and R will be introduced in the next section.
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5.2 A SIR model for the IoT with a natural death rate

S I R
bI c

m

(a) Situation 2

S I R
bI c

m m’ m

(b) Situations 1 and 3

Figure 4: SIR models with natural death rate

The previous section considers that all nodes activities are negligible, in
terms of energy, except the transmission of information in Situations 2 and 3,
which is reasonable in a first approximation. It is however possible to refine
the SIR model in these two last situations, in order to consider that the nodes’
energy decreases too in absence of information transmission.

In Situation 2, the R compartment of the SIR model is constituted by dead
nodes. This compartment is populated by susceptible nodes that have naturally
died (death rate m) without having received the datum and by nodes of the I
compartment which die at another rate c supposed to be greater than m, as
they have to transfer the datum, an energy-consuming task. This situation is
depicted in Figure 4(a).

In the two other situations investigated in this research work, the R compart-
ment is constituted by living nodes that do not transmit the datum anymore,
either because they have been corrupted and thus have lost it (first situation),
or because their batteries are preserved (third one). This new situation is closed
to the SIR model of Figure 1, except that a new network is characterized by
a death rate for each nodes compartment (see Figure 4(b)). Notice that the
death rate m′ of the I compartment is a priori different from the one of S and
R compartments, as it is reasonable to suppose that the datum transmission
implies more energy consumption.

The SIR model of Equation 1 can be adapted as follows for Situation 2:

dS
dt = −bIS −mS

dI
dt = bIS − cI

dR
dt = cI +mS,

(3)

while it has the following form in Situations 1 and 3:

dS
dt = −bIS −mS

dI
dt = bis− cI −m′I

dR
dt = cI −mR.

(4)

Numerical simulations are used to show the long-term behavior of the system
under such assumptions. The phase space for the three situations are detailed
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(a) Situation 2
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(b) Situations 1 and 3

Figure 5: Phase space (S, I) with b = 0.4, c = 0.15,m = 0.01, SIR model with
natural death rate in Situation 3.

in figure 5 and in figure 6. We show the evolution of susceptible S and having
the datum I nodes for situations 1 and 3.

To put it in a nutshell, to achieve data survivability in the IoT, the birth of
connected nodes must be considered, which is the subject of the next subsection.

5.3 Achieving data survivability using connected/birth and
disconnected/death rates

Considering now a new SIR model that leads to the division of each compart-
ment in two parts, corresponding respectively to connected and disconnected
nodes. Indeed, in the IoT, nodes or things can be scheduled to be connect-
ed/awaken or not in order to save energy and extend the nodes lifetime. There-
fore, a scheduling process of the nodes can be established where each node
periodically decides to be in active/connected or sleep/disconnected mode. We
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Figure 6: Evolution of the fractions S and I of susceptible and having the datum
nodes with b = 0.4, c = 0.15,m = 0.01, s(0) = 0.9, and i(0) = 0.1, SIR model
with natural nodes death rate in Situations 1 and 3.

S I R
bi c

m m m

l

Figure 7: SIR model with natural connected/birth and disconnected/death rates

suppose that, initially, a small part of the nodes is connected. New nodes are
then connected periodically during the network’s service at a rate l, repopulat-
ing by doing so the S compartment. Along with this birth rate, a natural death
rate m is considered for each of the three kind of nodes, while the R compart-
ment is for corrupted nodes in the original situation 1, as depicted in Figure 7.
Notice that such a model is compatible with living and awaken/connected nodes
that have stopped to transfer the information in Situation 3.

To model such a scenario requires to rewrite the first line of Equation 3,
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leading to the following system:

dS
dt = l − bIS −mS

dI
dt = bIS − cI −mI

dR
dt = cI −mR.

(5)

Our objective is to know if the information will disappear from the network
in the short or long term, or if it will remain available in the network, like
the epidemy. The solutions in the long term, which depend on the nature of
the equilibrium point, can be studied for this purpose. It leads to the phases
diagram in Figure 8.

It can be shown that in this case, there is a set of parameters of the IoT for
which the number of the informed nodes is strictly positive at an equilibrium
point. Thus, if other solutions approach to equilibrium, the number of the
informed nodes will remain strictly positive, and the information will remain
in the network and become “endemic”. We can then define, as above, a R0

depending on the parameters of the system, such as the situation is endemic if
and only if R0 > 1.
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Figure 8: Evolution of the fractions s and i of susceptible and having the datum
nodes, SIR model with natural birth and death rates (R0 = 3.75).

The attacker wish is to have R0 < 1 tending to an information-free equilib-
rium, whereas R0 must be greater than 1 for the end user to face such an attack.
If the attacker has the opportunity to observe the network running a certain
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duration, then he or she can infer the values of parameters b, c,m, and l. Let N
be the number of data transmissions by one informed node per time unit, that
is, N = bl

m . If the attacker is able to detect and infect the informed nodes in a
time 1

c+m lower than 1
N , then he or she is sure that R0 < 1: the data will not

survive in the network. The user’s interest, for its part, is to have bl
m large and

1
c+m low, which means R0 < 1, which can be achieved in the following manner:

• increasing the birth rate l,

• increasing the lifetime of nodes to reduce m,

• increasing the data transmission rate b, but m increases when b increases,

• if possible, reducing c by considering countermeasures against data re-
moval.

6 Numerical Simulations

Let us now verify experimentally the efficiency of the proposal. A network of
10,000 interconnected nodes has been modelled using a simulator written in
Python language. It can handle 3 states for each node, which will be called here
Susceptible, Infected, or Recovered. We have computed the nodes behavior
and capabilities according to what has been presented and explained previously
in the theoretical part of this article. 90% of the nodes are initially in the S
compartment, while 10% of the network is set to Infected at time t = 0. The
numerical simulator is then launched during 30 time units.

(a) R0 = 0.001111 (b) R0 = 4.9995

Figure 9: Simulations of Eq. 1 model and illustration of Prop. 1

In all 4 experiments, nodes from the S compartment can be infected following
a probability bI, which depends on the number of infected nodes, while the nodes
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in the I compartment move to the R compartment according to a c probability.
b and c are respectively set to (0.001, 0.9), (0.5, 0.1), (0.2, 0.15), and (0.23, 0.01)
in the 4 experiments, to see the infection rates effects on the network evolution.
In the first two experiments we simply consider the SIR model described in
Figure 1, while in the two last simulations we respectively add one and two
death rates m and m′, corresponding to the probability for a given node to have
emptied its battery.

The objective of the first two simulations is to illustrate experimentally the
effects of the constant R0 on the evolution of the number of infected nodes, what
has proven in Proposition 1. It can be seen in Figure 9 that the I compartment
has a maximum for R0 > 1, while it is not the case if R0 < 1. Figure 10, for
its part, illustrates the evolution of the network when considering death rates
in the 3 variations of SIR model described in Section 5. We can see that the I
compartment is never empty, leading to a data survivability in this IoT, while
phase spaces and compartment evolution theoretically deduced in a previous
section can be experimentally obtained too.
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Figure 10: Compartment evolution in the 3 variations of SIR model described
in Section 5.

For the sake of comparison, we have regarded which results can be obtained
with a situation where each informed node send the data to its k neighbors as
soon as it receives it, for various k. The trade off in that situation is as follows:
increasing the k value leads to a better data survivability, but the network’s
lifetime is consequentially reduced accordingly. This obvious fact is illustrated
in Figure 11, in which the number of informed nodes increases more rapidly with
a larger k, while the death rate is increasing too. Remark that one objective
of the theoretical study presented previously were indeed to find the best k in
such a situation.

We investigated too a random approach, in which each node picks randomly
both the number of closest neighbors it must transfer the information and in
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Figure 11: Compartment evolution when each informed node send the data to
its k neighbors.

how much iterations it must achieve the transfer. Obtained results are pre-
sented in Figure 12(a). In that situation we observed that, even though the
data survivability and network’s lifetime are locally heterogeneous, behaviors
are averaged on the whole network, leading to a global result that does not
outperform what we obtained when computing the optimal k in a previous ex-
periment. Finally, in our last experiment, the number of data transmission
became inversely proportional to the battery level of the associated sensor. As
can be seen in Figure 12(b), data survivability is improved during the first iter-
ations, but this latter decreases dramatically over time. This is not surprising,
as the data transmission decreases accordingly.
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(a) Random approach
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(b) Transmission inversely proportional to the battery

Figure 12: Compartment evolution for heterogeneous transmission rates.
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7 Conclusion

Data survivability is a main challenge of the internet of things that can not
be ignored. Therefore, collaborating and the transmitting crucial information
between nodes are to be realized in order to maximize the amount of monitoring-
related data that can survive. This paper presented an efficient technique that
uses epidemic domain models in the context of data survival in the IoT. We
modelled the collaboration and transmission between nodes via a SIR (Sus-
ceptible - Infected - Recovered) model that can ensure the survivability of the
datum in presence of different types of attacks. We showed that our method is
well adapted to IoT applications based on wireless sensor networks with energy
and resource constraints. On the other hand, it takes into account the dynamic
network topology which is a non-negligible constraint. The introduced model
which we prove its viability for IoT paves the way for further investigations in
the IoT domain. For instance, assessing how these results are influenced by
nodes or things mobility. Furthermore, in order to evaluate the efficiency of the
proposed technique, real experiments are planned for the future.
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