Del principio de Vernier al procesamiento de imágenes con una resolución subpixel: Teoría y aplicaciones

Patrick Sandoz

Département de Mécanique Appliquée,

Institut FEMTO-ST,

UMR CNRS 6174 – Université de Franche-Comté

Besançon, France patrick.sandoz@univ-fcomte.fr

slides in english

From Vernier's principle to image processing with a subpixel resolution: Theory and applications

Physics colloquia at PUCP, november 17th, 2011 - Lima

1 Vernier principle and its transposition to image domain

Other contributors: Sounkalo Dembelé, Jean-Christophe Ravassard, André Janex, Tijani Gharbi, Vincent Bonnans, Jean-Michel Friedt, Emile Carry, July A. Galeano Z., Emilie Gaiffe, Sophie Launay, Laurent Robert, Maxime Jacquot, Fabienne Hirchaud, Jean-Luc Prétet, Christiane Mougin, Bertrand Trolard, Johnson Garzon R., Néstor A. Arias H., Jaime E. Meneses, Miguel A. Suarez, Rabah Zeggari, Luc Froehly

Vernier Instrument

Measurements with two complementary scales

Pierre Vernier: 1580-1637, mathematician

Lived in Ornans; 25 kms from Besançon

Trigonometric phase representation of the Vernier principle

Trigonometric phase representation of the Vernier principle

Mathematical phase representation of the Vernier principle

In the space domain:

 $O_{\text{Dis}}(x,y) = O_{\text{ini}}(x,y) * \delta(\Delta x, \Delta y)$

In the Fourier domain:

$$\tilde{O}_{\text{Dis}}(v_x, v_y) = \tilde{O}_{\text{ini}}(v_x, v_y) \cdot \exp(2\pi v_x \Delta_x) \cdot \exp(2\pi v_y \Delta_y)$$

Pseudo-periodic pattern and pixel frame as Vernier scales

Vernier Instrument 1D (X)

Digital image 2D (Χ,Υ,θ)

Fine: phase

Orientation: phase

Second scale: pattern

Pseudo-periodic image pattern

Pseudo-periodic pattern and pixel frame as Vernier scales

Vernier Instrument 1D (X)

Pseudo-periodic pattern and pixel frame as Vernier scales

Vernier Instrument 1D (X)

Digital image 2D (X,Y,θ) Pseudo-periodic image pattern

encryption of raw and columns orders

Pseudo-periodic position encryption principle

LFSR (Linear Feedback Shift Register) technique for obtaining pseudorandom sequences

S.W. Golomb, Shift Register Sequences, Holden-Day Inc., San Francisco, U.S.A, (1967).

2 Image processing for reconstruction of target position and orientation: two steps

Phase computations: relative but high accuracy measurements

Binary processing: - raw and column order identification - coarse but absolute measurement - from edges or from missing dot distribution

Patrick Sandoz, Sounkalo Dembelé, Jean-Christophe Ravassard, André Janex, Phase-sensitive vision method for high accuracy position measurement of moving targets, IEEE Transactions on Instrumentation and Measurement 49 (2000), no. 4, 867–872

Patrick Sandoz, Vincent Bonnans, Tijani Gharbi, High-accuracy position and orientation measurement of extended 2D surfaces by a phase-sensitive vision method, Applied Optics, 41, (2002), no. 26, 5503-5511

Fourier Processing: fine measurement (Sub-Pixel)

Image

Inverse Fourier transform: real part and angle

Unwrapped phase

Fourier spectrum

Fourier Processing: fine measurement (Sub-Pixel)

From the unwrapped Phase
$$\Phi_V(i,j) = A_V \cdot i + B_V \cdot j + C_V$$

 $\Phi_H(i,j) = A_H \cdot i + B_H \cdot j + C_H$

Orientation $\alpha = tan^{-1}(B_V/A_V)$ or $tan^{-1}(B_H/A_H)$

 C_V Phase constants C_H with an ambiguity of 2π

Compensation by The Binary Code (coarse measurement)

Binary Processing: coarse measurement (absolute)

Identification of the missing dot distribution

Position decryption from code reading

Binary Processing: coarse measurement (absolute)

Local contrast computation from phase data for robust dot presence identification

 $+\pi$ 0 $-\pi$

Inverse Fourier transforms from complementary spectral lobes

Inverse Fourier transforms from complementary spectral lobes

Subpixel center position determination Orientation determination (slope)

Synthetization of a digital pattern with angle and period retrieved from phase computation for image correlation

Pattern center identified from image correlation peak

3 Performances

- Position
- Orientation
- Depth of focus

Repeatability test

Statistics (100pts) PV in X: 1.67.10⁻² pixel PV in Y: 0.99.10⁻² pixel σ in X : 3.63 10⁻³ pixel σ in Y : 2.24 10⁻³ pixel

Scale:

Pattern period ⇔ 10µm & 1 pixel ⇔ 1µm

lens: 10x

Resolution in linear displacement reconstruction

Phase computation versus image correlation

Demonstration of displacement reconstruction

Phase computation versus PZT capacitive sensor (bandwidth mismatch)

Demonstration of displacement reconstruction

- PZT driven displacement
- Measurement synchronized with displacement
- Measurement rate : ~10 s⁻¹
- Full scale: 1 pixel

Characterization of a motorized stage capabilities

Stage data (c) versus pseudo-periodic pattern data (d)

Position error while the stage was driven repeatedly on a given position cycle

Resolution in in-plane orientation measurement

Following of a progressive target rotation

Out of focus robustness => extended depth of operation

Low contrast images can be processed successfully

4 Applications

Three examples : - Vibration amplitude control

- Positionning of live-cell-cultures
- Didactic experiment

Vibration amplitude control:

Patrick Sandoz, Jean-Michel Friedt, Émile Carry,

In-plane rigid-body vibration mode characterization with nanometer resolution by stroboscopic imaging of a microstructured pattern, Review of Scientific Instruments, 78, 023706, 2007

Patrick Sandoz, Jean-Michel Friedt, Émile Carry, Vibration amplitude of a tip-loaded quartz tuning fork during shear force microscopy scanning, Review of Scientific Instruments 79, 086102 2008

Application to Vibration Amplitude Measurement

Problematic

Control of probe displacement in Scanning Probe Microscopy

- Potential effect of probe vibration on lateral resolution ?
- Trade-off between vibration amplitude and ease of servo-control

Demonstration

Visual control of the prong displacement

Representative of the tip displacement

SEM image of the tip-loaded tuning-fork used

Measurement principle and experimental device

Pseudo-periodic pattern on the prong end face observed by vision

Experimentally recorded image

Pseudo-periodic pattern drilled by FIB on the prong end face or Sticking of a patterned glass plate obtained by photolithography

Detection noise level (electrical and mechanical)

Prong position without tuning-fork excitation

Vibration observation and measurement

2Hz frequency-shift between tuning-fork excitation and LED driving current => The 2Hz resulting frequency fits with standard video rate

Measurement of the prong rotation amplitude

Observation of a torsion mode at 181.552 kHz Variation of the pseudo-periodic pattern orientation

Calibration of the prong rotation amplitude

Observation of a torsion mode at 181.552 kHz Rotation amplitude versus excitation voltage

Tuning-Fork resonance characterization

Natural mode at 33 kHz

dotted line: Free prong vibration amplitude (nm) solid plus crosses: Tip-loaded prong vibration amplitude (nm) solid: Lock-in phase (degrees); circle: Lock-in amplitude (a.u.) Excitation voltag amplitude: 500mV

Calibration of the vibration amplitude

Natural mode at 33 kHz

Vibration amplitude during tip-surface approach

Tuning-fork vibration amplitude during surface scanning

detection of servo-control failures (amplitude damping means surface contact)

Position-Referenced-Microscopy for live-cell-culture monitoring

Patrick Sandoz, Rabah Zeggari, Luc Froehly, Jean-Luc Prétet, Christiane Mougin, Position referencing in optical microscopy thanks to sample holders with out-of-focus encoded patterns, Journal of Microscopy, 225, 293-303, 2007

July A. Galeano Zea, Patrick Sandoz, Émilie Gaiffe, Jean-Luc Prétet, Christiane Mougin, Pseudo-periodic encryption of extended 2D surfaces for high accurate recovery of any random zone by vision, International Journal of OptoMechatronics 4, 1, 65-82, 2010

July A. Galeano Z, Patrick Sandoz, Emilie Gaiffe, Sophie Launay, L. Robert, Maxime Jacquot, Fabienne Hirchaud, J.L. Prétet, Christiane Mougin, Position-referenced microscopy for live cell culture monitoring, Biomedical Optics Express 2, 5, 1307-1318, 2011 http://www.opticsinfobase.org/abstract.cfm?URI=boe-2-5-1307

Position-Referenced-Microscopy for live-cell-culture monitoring

Problematic

Tools for long term cell-culture microscopy observation

Today: video microscopy

Proposal: culture dish transfers

Monopolization of the equipment Stage position limitations Position Referenced Microscopy (Subpixel accuracy in position recovery)

Principle of observation

Recording of two complementary images at different focus depths The pattern image is representative of the cell culture location

Technological realization of smart culture boxes

Photolithographic process

m m m

00000 000 000 000 **Instrumented culture dish**

Software interface

Standard Français (France)

Iterative localization of the zones of interest

Registration of reference and current images in a common coordinate system

Video reconstruction of cell culture transformations

Human fibroblast cells observed in phase contrast mode (12h00)

Observation of the internalization of apoptotic bodies of cervical cancer cells by human fibroblast cells

(confocal fluorescence mode)

Didactic experiment: characterization of a 440Hz tuning-fork

Patrick Sandoz, Jean-Michel Friedt, Émile Carry, Bertrand Trolard, Johnson Garzon Reyes, Frequency domain characterization of the vibrations of a tuning fork by vision and digital image processing, American Journal of Physics, 71, 1, p.20-26, 2009

Labtop controlled excitation and detection devices

Low-cost experimental setup

Pseudo-periodic pattern on one prong end face

Lines result from printing of a form with half-tone gray level (300dpi)

Lines form a reference pattern directty stuck on the prong end face

Pseudo-periodic signal displacing along the pixel indexes

Signal to noise ratio enhancement by summing over lines 100 to 200

Signal processing has to extract the signal phase with respect to the image pixel frame

Gaussian-shaped analysis function in the complex plane

Function designed at the signal frequency

Observation of the tuning-fork vibration amplitude

The phase excursion describes the prong displacement ($2\pi \ll 1$ period)

Excitation at resonance frequency.

1.25 Hz frequency shift between excitation and strobe illumination.

Observation of the tuning-fork vibration amplitude

The beat frequency corresponds to the frequency mismatch

Characterization of the tuning-fork resonance curve

Resonance at 439.9 Hz

Recording time of only a few minutes with an automatic procedure

Thermal drift of the resonance frequency

Resonance curves at different room temperatures (21° - 25°)

Frequency resonance shift of about 0.02 Hz per degree

5 Three dimensional measurement capabilities

Two approaches : - Interferometry - Stereovision

Patrick Sandoz,

Nanometric Position and Displacement Measurement versus the Six Degrees of Freedom by Means of a patterned Surface Element, Applied Optics, 44, (2005), no. 1, 1449–1453

Néstor A. Arias H., Patrick Sandoz, Jaime E. Meneses, Miguel A. Suarez, Tijani Gharbi, 3D Localization of a Labeled Target by means of a Stereo Vision Configuration with Subvoxel Resolution, Optics Express 18, 23, 24152-24162 (2010).

Six degrees of freedom measurement with interferometry

Phase-shifting Interferometry (PSI)

Micro-patterned surface sample

out-of-plane plane data from PSI

In-plane data from pattern

Six degrees of freedom measurement with interferometry

method specifications:

- 6 DOF sensing
- nanometre sensitivity in 3D
- slow rate
- 2π ambiguity along Z

Stereovision of a pseudo-periodic pattern (90° configuration)

specifications: working distance: 20cm magnification: 32.55 μm/pix estimated resolution: 29nm measurement range: 3cm

Stereovision of a pseudo-periodic pattern (±20° configuration)

unambiguous pattern with reference points

Stereovision of a pseudo-periodic pattern

mean and worst position deviations observed (100 pts) measurement distance of 50 cm

Stereovision of a pseudo-periodic pattern: 6 DoF sensing

Summary and prospects

The Vernier principle can be transposed to digital image processing

Subpixel resolution can be obtained typically better than 10⁻² pixel with a standard camera typically better than 10⁻³ pattern period in size typically better than 10⁻³ degree in in-plane orientation

Multiscale method (the imaging lens magnification acts as a scale adaptator) Self-calibrating method (the pattern period forms a size reference)

Various fields of applications : (instrumentation, micro- & nano-technologies, biomedical, teaching, ...)