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Abstract

Nanoforce sensors based on passive diamagnetic levitation with a macroscopic seismic mass are a possible alternative
to classical Atomic Force Microscopes when the force bandwidth to be measured is limited to a few Hertz. When an
external unknown force is applied to the levitating seismic mass, this one acts as a transducer that converts this unknown
input into a displacement that is the measured output signal. Because the under-damped and long transient response
of this kind of macroscopic transducer can not be neglected for time-varying force measurement, it is then necessary
to deconvolve the output to correctly estimate the unknown input force. The deconvolution approach proposed in this
paper is based on a Kalman filter that use an uncertain a priori model to represent the unknown nanoforce to be
estimated. The main advantage of this approach is that the end-user can directly control the unavoidable trade-off that
exists between the wished resolution on the estimated force and the response time of the estimation.
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1. Introduction

The design of micro and nanoforce sensors is constrained
by the fact that only force effects can be directly observed.
Because of this, a transducer is necessary to convert the
force into a measurable effect. The force is the unknown
input to reconstruct and the effect is the measured output
signal. Most of the time, the measured force effect is re-
lated to a displacement x and the usual scalar expression
used to calculate the component F of the applied force ~F
in one-direction ~x of space simply consists in the equation:

F = K x K > 0 (1)

in which K is the mechanical stiffness of the transducer
along ~x (by convention x is set to zero when there is no
displacement). This steady-state equation supposes that
the transient response of the transducer can be neglected.
This is usually considered to be the case for classical de-
signs using monolithic elastic microstructures like micro-
cantilevers which have a high resonant frequency [1]: AFM
based microforce sensors [2] [3], piezoresistive microforce
sensors [4], capacitive microforce sensors [5], piezoelectric
microforce sensors [6], etc. When the transient dynamic
of the transducer due to the evolution of the successive
derivatives of x is not negligible, Eq. (1) can not be used.
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The general framework of the force estimation (shown in
Fig. 1) is then equivalent to the deconvolution problematic
of a noisy output signal or the design of a unknown input
observer. In the specific case treated in this paper, the
unknown input is a nanoforce that is applied to a macro-
scopic seismic mass that levitates passively thanks to the
diamagnetic levitation principle. This seismic mass acts as
a transducer that converts the unknown input force into
a displacement that is the measured output signal cor-
rupted by noise. This kind of macroscopic transducer has
a under-damped and long transient response, thus this dy-
namic behaviour must be taken into account during the es-
timation process contrary to what is done in Eq. (1). The
estimation computation is based on a discrete Kalman fil-
ter that use an uncertain a priori model to represent the
unknown force to be estimated. This paper begins by a
short description of the force sensor and its dynamic be-
haviour (state-space modelling). The calibration process
is then briefly presented and followed by the development
of the unknown input estimation under Gaussian assump-
tions usually used to derive a Kalman filter. To be real-
istic, some performances of the force estimation obtained
are then characterised in a non Gaussian framework and an
analysis of the trade-off between resolution and bandwidth
is developed using a steady-state Kalman filter. Finally,
some experimental results are presented. A glossary of all
mathematic symbols used is also present at the end of the
article.
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Figure 1: Force estimation using a deconvolution approach or an
unknown input observer (UIO).

2. Passive micro and nanoforce sensor prototype
based on diamagnetic levitation

2.1. Sensor description

Microforce sensors based on “heavy” rigid seismic mass
are really uncommon because of the inertia of their mass
that should be a great handicap for time-varying force
measurement. A force sensor with a range measurement
of several millinewtons and based on a mass moving in-
side a pneumatic linear bearing is described in [7]. The
mass is 21.17 g and the force resolution is 0.5 micronew-
ton. The air friction inside the bearing is assumed small
enough to be neglected. A force sensor based on magnetic
springs and upthrust buoyancy is presented in [8, 9]. The
seismic mass is a float. Its weight is 4 grams. Resolution
is around 10 nN and measurement range is ±50 µN. This
force sensor can measure the horizontal component of an
external force and the vertical component of an external
torque. The design presented in this paper is also based
on magnetic springs like [8] but uses repulsive diamag-
netic force [10, 11] instead of repulsive upthrust buoyancy
to stabilise the seismic mass. It reaches the same force
resolution than an Atomic Force Microscope (AFM) but
with a larger range measurement. This design is based on
a macroscopic mass (≈ 70 mg) that is levitating passively
thanks to to the diamagnetic levitation principle. This
mass is a rigid 10-cm long capillary tube made of glass on
which are stuck two small magnets M2. The whole struc-
ture is called maglevtube (see Fig. 2). As it is shown in
Fig. 3, the maglevtube levitates passively around a given
equilibrium state because of repulsive diamagnetic effects
(generated by four graphite diamagnetic plates) coupled
with attractive magnetic effects (generated by magnets M1

and M ′1). The maglevtube has a microscopic tip on which

is applied the unknown external force ~F . The sensor is
currently designed to only measure forces applied along
the longitudinal axis ~x of the tube. Thus, the unknown
force ~F is assumed to be collinear to ~x and has the follow-
ing components in the global reference frame R0 given in
Fig. 3:

~F
[
F x 0 0

]T
(2)

~F

deflector

M2

z

x y

Figure 2: Macroscopic seismic mass sensitive to external forces.
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Figure 3: Levitating seismic mass in the force sensing device.

2.2. Force sensing principle

The forces involved in the maglevtube dynamic along
axis ~x are the external force ~F , the viscous friction due to
the air and the magnetic force. The maglevtube weight
and the diamagnetic force are not involved because they
act along axis ~z and ~y respectively. When the force F x is
applied to the tube tip, the displacement obtained corre-
sponds to an under-damped behaviour because the viscous
friction due to the air is very small. The simulated dis-
placement computed with Matlab-Simulink and obtained
with a step force (which amplitude F x is set to 1 µN) is
given in Fig. 4 (step response). This simulation of the
prototype presented in Section 2.3 is done with a com-
plete computation of the internal magnetic and diamag-
netic forces at each time step of the Simulink solver with
an non-analytical physical model. Thus, the complete be-
haviour of the six DOF of the maglevtube can be plotted if
necessary. In the case studied here, there is only a dynamic
along the axis ~x due to the assumption done in Eq. (2).
The settling time at 5% along ~x axis is typically 20 seconds.
Overshoot is 97%. The nonlinear steady-state response of
the maglevtube is given in Fig. 5. The slope of this curve
corresponds to the magnetic stiffness Kx

m of the sensor
that is equivalent to an invisible magnetic spring with a
very small damping. One can notice that the linearity of
the stiffness is good with displacements between ±1.5 mil-
limetres. For such range of displacements, the maximum
relative error between the linearised force and the nonlin-
ear magnetic force is 0.63% in this simulation [12]. As a
consequence, the behaviour of the maglevtube will be as-
sumed linear for displacements between ±1.5 millimetres.
Knowing the magnetic stiffness Kx

m, the force measure-
ment is given by Eq. (1) in steady-state:

F x = Kx
m x Kx

m > 0. (3)

Because the stiffness is equal to 0.0289 N/m in this sim-
ulation, the corresponding measured force range associ-
ated to a ±1.5 millimetres range displacement is ±43 µN.
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Figure 4: Simulated step response of the maglevtube with an external
input force set to one micro newton.

Eq. (3) can not be used for time-varying force measure-
ment, especially if the seismic mass inertia is high. In this
case, the dynamic response of the seismic mass must be
taken into account in order to correctly estimate the un-
known force applied on the mass. This specific problem
is addressed in this paper. It is an extended analysis of
the study briefly presented in [13] and it completes [12] in
which only steady-state measurements are developed using
Eq. (3).

2.3. Experimental prototype

Typical Kx
m stiffnesses obtained with the prototype

shown in Fig. 6 are between 0.005 N/m and 0.03 N/m
(same order of magnitude than for very flexible AFM can-
tilevers). The stiffness and the horizontal attitude of the
maglevtube can be adjusted by changing the distances be-
tween magnets M1 and M ′1. Lower is the stiffness and
better is the sensitivity of the sensor. There is neverthe-
less a limitation on the lower value that can be reached for
Kx
m because if magnets M1 and M ′1 are too far away from

each other, the magnetic force along the vertical axis is not
sufficient to compensate the maglevtube weight. Typical
mass m for the maglevtube is around 70 mg. The sensor
used to measure the maglevtube displacement is a confo-
cal chromatic sensor (manufactured by STIL SA) that is
aimed at a glass deflector stuck at the rear of the maglev-
tube (see Fig. 2). The force measurement range and the
resolution obtained depends on the measurement range of
the confocal head used. For instance, a CL4 (resp. CL2)
head haves a ±1.5 mm (resp. ±150 µm) measurement
range and covers the linear domain of the sensor. The as-
sociated typical standard deviation of a CL4 (resp. CL2)
head is 75 nm (resp. 12 nm). Thus, without any signal
processing and in steady-state with Kx

m set to 0.01 N/m,
the minimal theoretical standard deviation that can be
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Figure 5: Simulated steady-state characteristic of the external force
Fx versus the displacement x of the maglevtube.

expected for the force is 0.75 nN with a CL4 head and
0.12 nN with a CL2 head. In practice, such small values
can not be reached because of the seismic mass sensitivity
to seismic disturbances (subsonic air disturbances can be
avoided by enclosing the sensor with a chamber). Stochas-
tic low frequency seismic vibrations of magnets M1 and M ′1
generate unwanted magnetic return forces that are applied
on magnets M2. The result is a small stochastic oscillat-
ing behaviour for the maglevtube. All the forces induced
by these environmental seismic and acoustic noises (see
Fig. 1) along ~x axis are included in the force F x mea-
sured by the sensor. Thus care must be taken to reduce
as much as possible this environmental noise. With a
massive concrete ground to minimise seismic vibrations,
a closed chamber and a passive anti-vibration table, the
minimal standard deviation currently reached for the ma-
glevtube displacement is around 30 nm (measured with a
CL2 head).

3. Sensor modelling and calibration

3.1. One DOF linear modelling of the maglevtube dynamic

Let G the centre of gravity of the maglevtube and x its
position in the frame R0 attached to its base (cf. Fig. 3).
The frame R0 is supposed to be a Galilean reference frame,
which implies that all ground vibrations are filtered by an
antivibration table (no acceleration). This hypothesis will
be later discussed in Section 6.1. If an external force F x

is applied under the assumption done in Eq. (2) to the
maglevtube tip, the dynamic of G along ~x can be modelled
by [12]:

mẍ = F x + F xmag + F xvisc (4)

in which F xvisc is the viscous friction force (mainly due to
the air friction against the rear deflector) and F xmag is the

3
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Figure 6: Force sensor prototype.

return magnetic force along ~x (magnetic spring). The dia-
magnetic force is completely negligible along ~x. The force
F x represents the sum of all others external forces applied
on the tip along ~x. It includes all the environmental dis-
turbance forces along ~x. Coordinate x is set to zero when
the maglevtube is in steady-state with F x set to zero. If
the displacement of the tube along axis ~x remains in the
linear domain given in Section 2.2 and if the speed is small,
Eq. (4) becomes:

mẍ = F x −Kx
m x−Kx

v ẋ (5)

in which Kx
m is the magnetic stiffness and Kx

v the viscous
damping coefficient. A possible state equation associated
to Eq. (5) with F x(t) as input, x(t) as output and X(t) =[
x ẋ

]T
as state is:

Ẋ(t) = AX(t) +B F x(t) (6)

x(t) = C X(t) (7)

A =

[
0 1

−K
x
m

m −K
x
v

m

]
B =

[
0
1
m

]
C =

[
1 0

]
(8)

3.2. Calibration

Calibration is usually a complex problem for micro and
nanoforce sensors based on elastic microstructures because
of the lack of standard forces at this scale. Stiffness ab-
solute uncertainty is most of the time not specified and
is still an open question on which are working interna-
tional metrology laboratories [14]. Calibrating micro force
sensors based on macroscopic seismic mass is easier and
several dynamic calibration methods have been investi-
gated. They are based on particular external force gen-
eration like impact force [15], step force [16] and oscillat-
ing force [17, 18]. Because the maglevtube mass m can
be easily measured with a precision balance, a Zero Input
Response (ZIR) is another possible way to identify the two
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Figure 7: Measured and reconstructed zero input response (ZIR) of
the maglevtube displacement.

others parameters Kx
m and Kx

v with an ARMA identifica-
tion process. It requires an unknown excitation force F x

with the following dynamic:

F x(t) 6= 0 t0 ≤ t < t1 ∀F x (9a)

F x(t) = 0 t ≥ t1. (9b)

The output x after t1 is the ZIR of the maglevtube with
unknown initial conditions (position and speed of the ma-
glevtube at t1). The temporal shape of F x(t) before t1
necessary to excite the maglevtube does not matter (see
Eq. (9a)) but must be equal to zero after t1 (see Eq. (9b)).
For the identification process, the behaviour of the maglev-
tube is taken into account only for time t superior to t1 and
is therefore a ZIR. In the prototype, F x(t) is generated us-
ing two coils located near the rear diamagnetic plates (see
Fig. 6). Nevertheless in practice, Eq. (9b) can not be com-
pletely verified because of the environmental disturbance
forces that always acts on the maglevtube (these forces
can be considered as a noise on the input. Its amplitude is
between ±1 nN (see Fig. 22) and the dynamic it induces
needs to be negligible. This condition is achieved with an
excitation of the maglevtube enough high). The acquisi-
tion of x starts at t1 with a sampling time set to 0.01 sec-
onds. Knowing the mass m, Fig. 7 shows the matching
between both experimental ZIR and the continuous linear
model after the parametric identification of Kx

m and Kx
v in

Eq. (5) when F x is set to zero (done with Matlab ARMA
identification). The frequency response of the identified
linear model is shown in Fig. 8. Resonant frequency in
displacement is around 3 Hertz. The low -3dB cutoff fre-
quency (around 4 Hertz) will limit the resulting bandwidth
during force measurements even if the force bandwidth
can be reasonably extended to 20 Hertz because of the
behaviour of the Kalman filter (see Section 5).
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Figure 8: Simulated frequency response along x of the identified
linear model.

4. Unknown input force estimation

Despite the fact that the model-based deconvolution
framework of a noisy output is an ill-posed problem with
no exact solution, numerous approaches have been devel-
oped in the past such as for instance the Wiener deconvo-
lution filter or deconvolution methods based on regulariza-
tion [19]. In the specific context of micro or nanoforce mea-
surement in microrobotics, the deconvolution problematic
has been little addressed but some alternative approaches
using unknown input observers have been recently pub-
lished [20]. These approaches generally requires to set
several parameters and the level of noise in the input re-
constructed can not be adjusted. The method proposed
here only requires one parameter in order to adjust an in-
tuitive trade-off (like in regularization methods) between
the wished resolution of the force estimation (this point
sets the level of noise in the force estimation) and the re-
sponse time of the estimation.

4.1. A priory force modelling

The noisy measurement mx
k of the maglevtube dis-

placement along axis x with the confocal chromatic sensor
is done with a sampling period Ts at each sampling time
tk = k Ts. The estimation of the unknown force with the
set {mx

k}k≥0 is done at each sampling time tk. It is based
on an a priori discrete-time stochastic model for the force
evolution that will be processed inside a recursive discrete
Kalman filter. In this approach, the maglevtube model is
deterministic. The stochastic part only concerns the mod-
elling of the uncertainty associated to the unknown input
force and the modelling of the noise generated by the con-
focal chromatic sensor.

The working out of the a priori uncertain model used
to represent the force evolution is based on a stochastic

Wiener process:
Ḟ (t) = ω(t) (10)

F (t) in Eq. (10) is a model for the real force F x(t) and ω(t)
is a zero-mean infinite-variance white Gaussian stochastic
process representing the fact that the evolution of the force
derivative is not known accurately. The autocorrelation
function φω,ω of this process is characterised by its power
spectral density (PSD) WḞ :

φω,ω(τ) = WḞ δ(τ) ∀τ ∈ IR (11)

The scalar term WḞ is a parameter to set by the end-
user that will influence in a given way the dynamic of the
unknown force estimation (see Section 5). Because the
process is white, all random variables ω(t) for any t are
independent and it is the same for the force increment be-
tween any time interval |ti − tj | [21]. Thus knowing the
force increment between two instants gives absolutely no
information on the increment between two other instants.
As a consequence, this a priori model on the force evolu-
tion is very little informative.

To estimate the force with a state estimator it is nec-
essary to merge the uncertain modelling of the input force
with the deterministic model of the maglevtube in order
to obtain the following extended state:

Xe(t) =
[
x ẋ F

]T
(12)

Its associated state-space model is obtained with Eqs. (10)
and (6) in which the unknown input force F x(t) is replaced
with the modelled random variable F (t):

Ẋe(t) = AXe(t) +Mω(t) (13)

x(t) = CXe(t) (14)

with

A =
[
A11 A12 B11

A21 A22 B21
0 0 0

]
M =

[
0
0
1

]
C =

[
1 0 0

]
(15)

The state-space equation (13) is driven by the non-physical
input ω(t) and thus by the parameter WḞ to set (see
Fig. 9).

To estimate with a discrete Kalman filter the extended
state Xe and thus the external force F (third component of
Xe) at each sampling time tk, a discretization of Eqs. (13)-
(14) is necessary. The use of a zero-order hold (ZOH) on
ω(t) gives:

Xe
k+1 = F Xe

k + Ωk (16)

xk = CXe
k (17)

with:

Xe
k =

[
xk ẋk Fk

]T
Ωk =

[
ωxk ωẋk ωFk

]T
(18)
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∫Ẋe(t)

C
Xe(t) x(t)

A

WḞ
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and

F = eATs =

F11 F12 F13

F21 F22 F23

0 0 1

 (19)

The zero-mean white Gaussian process noise Ωk charac-
terises uncertainties on xk, ẋk and Fk due to the stochastic
force model used and to the discretization of the maglev-
tube dynamic. Its 3× 3 covariance matrix Q is:

Q = E
[
ΩkΩT

k

]
=

∫ Ts

0

eAtMWḞM
TeA

Ttdt (20)

= WḞ

∫ Ts

0

eAtMMTeA
Ttdt (21)

= WḞ η(Ts) (22)

It appears with Eq. (22) that the matrix Q is a tuning
parameter derived from the scalar WḞ and the sampling
period Ts that are both chosen by the end-user. Thus
the matrix Q is not associated to a physical process noise.
This process noise Ωk related to Xe

k dynamic is only a
mathematical consequence of the merging of the uncer-
tain modelling of the input force with the deterministic
model of the maglevtube followed by a discretization.

For a given sampling period Ts in Eq. (22), Q is pro-
portional to WḞ and it can be easily shown with Eq. (21)
thanks to the specific shape of eAt (see Eq. (19)) and M
that the variance of ωFk (third component of Ωk) is equal
to:

σ2(ωFk ) = Q33 = TsWḞ (23)

The evolution of Fk (third component of Xe
k) is obtained

from Eqs. (16) and (18):

Fk+1 = Fk + ωFk k ≥ 0 (24)

Thus, if WḞ is set to a given value, longer is the sampling
period Ts in Eq. (23) and bigger is the variance of ωFk .
That means in Eq. (24) that the uncertainty in the force
evolution is larger. This is coherent with the fact that the
longer sampling period will gives less information on the
force evolution.

The statistic properties of the random process ωFk are:

E
[
ωFk

]
= µ(ωFk ) = 0 ∀k (25)

E
[
(ωFk − µ(ωFk ))2

]
= σ2(ωFk ) = TsWḞ (26)

E
[
ωFi ω

F
j

]
= σ2(ωFi ) δij = TsWḞ δij (27)

Eqs. (24) to (27) fully characterise the a priori discrete-
time Gaussian stochastic model on the force evolution that
will be used inside the Kalman filter. The uncertainty
model represented by Eq. (24) corresponds to a discrete-
time Gaussian random walk that is usually written as fol-
low (index shift on ωFk ):

Fk = Fk−1 + ωFk k ≥ 1 (28)

It comes from Eq. (28) that:

Fk =

k∑
i=1

ωFi + F0 (29)

Because successive random variables ωFi form an a pri-
ori discrete zero-mean white Gaussian process (the white
property is induced by Eq. (27)), Fk in Eq. (29) is Gaus-
sian if the uncertainty on F0 is assumed Gaussian or if F0

is supposed equal to some fixed value. Its a priori variance
at each step k can be calculated thanks to Eq. (27):

σ2(Fk) =

k∑
i=1

σ2(ωFi ) + σ2(F0) (30)

= k TsWḞ + σ2(F0) (31)

= tkWḞ + σ2(F0) (32)

Eq. (32) shows that bigger is the parameter WḞ to set
and bigger is the a priori uncertainty (variance) of the
modelled unknown force Fk at time tk. The uncertainty
growth in time is also linear with tk (see Fig. 10). Let us
now assuming that the a priori uncertainty in the future
on the value of a rapidly varying unknown force is neces-
sarily higher than for a slowly varying unknown force. In
this case, the model given by Eq. (32) involves that the
parameter WḞ should be set higher for a rapidly varying
force than for a slowly varying force. This primary qual-
itative analysis on the choice of WḞ will be completed in
Section 5.

Finally, it is necessary to take into account the fact
that the measurement mx

k of xk is obtained with a confo-
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Figure 10: WḞ effect on the a priori variance σ2(Fk).

cal chromatic sensor that adds to xk a discrete-time band-
limited white Gaussian noise vk with zero-mean and vari-
ance R:

mx
k = xk + vk (33)

Eq. (33) combined with Eqs. (16)-(17) gives the state-space
model with output mx

k that will be used by the discrete
Kalman filter:

Xe
k+1 = F Xe

k + Ωk (34)

mx
k = CXe

k + vk (35)

with

E[Ωk] = 03×1 E
[
ΩkΩT

k

]
= Q = WḞ η(Ts) (36)

E[vk] = 0 E[v2k] = R (37)

4.2. Force estimation using a time-varying Kalman filter

Fig. 11 shows the force estimation using a Kalman fil-
ter. The input of the Kalman filter is the noisy measure-
ment mx

k of the maglevtube displacement. The output is

F̂k. If the parameter WḞ is changed by the end-user during
the force estimation process, a time-varying Kalman filter
must be used and a numerical computation of Q must
be done each time WḞ is changed (nevertheless, the term
η(Ts) in Eq. (22) can be pre-calculated for a given sam-
pling period Ts [22]). The prediction-estimation stages of
the Kalman filter are derived from Eqs. (16) and (35). The
prediction stage is:

X̂e
k|k−1 = F X̂e

k−1 (38)

Pk|k−1 = FPk−1FT +Q (39)

with Pk|k−1 the covariance of the prediction error condi-
tioned by all previous measurements done before time tk:

Pk|k−1 = E
[
(Xe

k − X̂e
k|k−1)(Xe

k − X̂e
k|k−1)T|Mk−1

]
(40)

Mk−1 = {mx
1 , . . . ,m

x
k−1} (41)

In Eq. (38), the third component of X̂e
k|k−1 is the force

prediction F̂k|k−1 that remains equal to the last estima-
tion:

F̂k|k−1 = F̂k−1 (42)

WF , fs , R, X0 , P0 ,   ,

MaglevtubeFx(t) x(t)

 fs

time-varying

kalman filter Fk

xk

vk

mx
k

e.

Figure 11: Force estimation with a time-varying Kalman filter.

The estimation stage that gives F̂k is:

Kk = Pk|k−1CT
(
CPk|k−1CT +R

)−1
(43)

X̂e
k = X̂e

k|k−1 +Kk

(
mx
k − CX̂e

k|k−1

)
(44)

F̂k = CF X̂e
k (45)

Pk = (I3×3 −KkC)Pk|k−1 (46)

with Pk the conditional covariance of the estimation error
defined by:

Pk = E
[
(Xe

k − X̂e
k)(Xe

k − X̂e
k)T|Mk

]
(47)

Mk = {mx
1 , . . . ,m

x
k−1,m

x
k} (48)

and CF the output matrix giving the estimated force:

CF =
[
0 0 1

]
(49)

The Kalman filter is a priori initialised for instance with
the maglevtube in its equilibrium state when no force is
applied to it:

X̂e
0 = E

[
Xe

0

]
=
[
0 0 0

]T
(50)

The covariance matrix P0 of the initial estimation error is
taken equal to:

P0 = E
[
(Xe

0 − X̂e
0)(Xe

0 − X̂e
0)T
]

=

[
σ2(x0) 0 0

0 σ2(ẋ0) 0

0 0 σ2(F0)

]
(51)

In Eq. (51), each variance on the main diagonal repre-
sents the a priori uncertainty on x0, ẋ0 and F0. The term
σ2(F0) is shown in Fig. 10. These values are chosen to
be coherent with the initial conditions associated to the
experiment made. In practice, they have little importance
if the user starts the Kalman filter with no force applied
on the maglevtube and waits a few seconds such that the
Kalman gain Kk converges to its steady-state K∞ (solu-
tion to the discrete Riccati equation that depends on WḞ ,
fs and R) before applying an unknown varying external
force. Each time WḞ is changed, K∞(WḞ , fs, R) evolves
to a new value.
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5. Analysis of simulated input forces

5.1. Estimation of a force generated by a Wiener Process

The study in simulation of the estimation behaviour is
first conducted with an external force F x(t) generated by
a Wiener process (like Eq. (10)) considered as a shaping
filter instead of an uncertainty model:

Ḟ x(t) = ωr(t) (52)

This specific case corresponds to a brownian evolution of
the input force F x(t). Its interest is to observe qualita-
tively what happens if the parameter WḞ is not equal to
the PSD W of the zero-mean white Gaussian process ωr(t):

φωr,ωr
(τ) = W δ(τ) ∀τ ∈ IR (53)

The PSD WḞ can be set equal, inferior or superior to W
by the end-user who does not know the real value of W .
Sampling frequency fs is 100 Hertz. The variance R of the
measurement noise is 1.44× 10−16 m2 (typical value for a
CL2 confocal head provided by STIL SA).

Fig. 12 shows F x(t) and F̂k when WḞ is chosen equal
to W and both set to 10−14 N2/Hz. The maglevtube dis-
placement that remains in the linear domain is also plotted
for reference. In this case, the error estimation between the
sampled input force and F̂k has a minimal variance con-
ditionally to the measurements done (classical framework
of Kalman filtering). In Fig. 12(a), a slight smoothing in-
duced by the sampling period Ts can be seen between F̂k
and the non-sampled force F (t).

Fig. 13(a) shows F x(t) and F̂k if WḞ is inferior to W
(the last one is still equal to 10−14 N2/Hz). This choice of
WḞ leads to a covariance matrix Q that does not reflect
the real covariance matrix associated to the sampled force
F x(t). In this case, Q can be seen as a parameter that
influence the estimation dynamic in some ways that will
be studied in the next Sections. The estimation is then
much more smoothed and delayed (and it is not optimal
in the sense of minimal variance). In Fig. 13(b) WḞ is
chosen superior to W and the estimation is more noisy.
Thus a primary observation is that WḞ has an effect on
the resulting force bandwidth (smoothing), on the delay
and also on the noise present in the estimation.

5.2. Estimation of a step input force

Because the real force F x(t) does not follow generally
the uncertain model given by Eq. (10), the behaviour of
the deconvolution block must be characterised with crite-
rions well adapted to SISO transfer functions. This char-
acterisation will start by a temporal analysis of the effect
of WḞ on the estimation of a canonical step input force
F x(t). This analysis will result in the study of a trade-
off between the resolution and the bandwidth of the force
sensor.
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Figure 12: Force estimation if W = WḞ = 10−14 N2/Hz.
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(b) Case WḞ > W (WḞ = W × 1000).

Figure 13: Real and estimated force if WḞ is different from W equal

to 10−14 N2/Hz.

The step amplitude is set to 100 nN in all simulations.
To be independent of P0 specified in Eq. (51), a steady-
state Kalman filter is used substituting K∞(WḞ , fs, R)
to Kk and using only Eqs. (38) (44) (45). The associ-
ated third-order state-space model (with measurement mx

k

as input and estimation F̂k as output) is obtained with
Eq. (44) reported in Eq. (38) and using Eq. (45):

X̂e
k+1|k = AK X̂e

k|k−1 +BK mx
k (54)

F̂k = CKX̂e
k|k−1 +DK mx

k (55)

with

AK = F(I3×3 −K∞C) BK = FK∞ (56)

CK = CF (I3×3 −K∞C) DK = CFK∞ (57)

The variance R of the measurement noise remains equal
to 1.44× 10−16 m2. The maglevtube parameters are m =
74 × 10−6 kg, Kx

m = 0.02818 N/m (in linear domain),
Kx
v = 1.8 × 10−5 N.s/m (the damping coefficient ζ is

6.23 × 10−3). Identified values used in the Kalman fil-
ter are Kx

m = 0.02812 N/m, Kx
v = 1.772× 10−5 N.s/m (ζ

is 6.14 × 10−3). The sampling frequency fs = 1/Ts is de-
liberately set to a high value (fs = 1000 Hertz) compared
to the -3 dB cutoff frequency of the maglevtube (around
4 Hertz) in order to see the effects of this choice.

Fig. 14 shows the force F̂k estimated for WḞ set to
10−18 N2/Hz and 10−15 N2/Hz. In the last case, the re-
sponse time is around 0.1 second and thus much shorter
than the Maglevtube settling time at 5% (20 seconds).
Smaller is WḞ and smaller is the noise on F̂k but longer is
the estimation response time. As a consequence, smaller
is the amplitude to estimate and smaller must be WḞ to

have a good signal to noise ratio in F̂k. But in this case,
the force bandwidth of the sensor is also reduced.

5.3. Harmonic frequency response of the Kalman filter

The previous behaviour can be explained with the fre-
quency response of the deconvolution block which is the
steady-state Kalman filter:

HK(ω) =
F̂ (ejω)

mx(ejω)
(58)

= CK(ejωI3×3 −AK)−1BK +DK (59)

As it is shown in Fig. 15, this frequency response “in-
verts” the frequency response of the maglevtube with its
resonance peak (see Fig. 8). Fig. 15 shows that bigger is
WḞ and bigger is the gain in the high frequencies just after
the antiresonance. Thus bigger is the amplification of the
high frequency components in the measurement noise vk
included in the input mx

k. Nevertheless, whatever is WḞ

the gain in the highest frequencies below the Nyquist fre-
quency fs/2 is always decreasing to limit the amplification
of the highest frequencies in the input noise. To reduce the
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(b) Real and estimated force with WḞ = 10−15 N2/Hz.
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Figure 14: Step force estimation with Fx set to 100 nN.

averall noise level, it is necessary to reduce WḞ . But in this
case, the high frequency components of the displacement
mx
k have a very small amplitude because the maglevtube

acts as a low pass filter (see Fig. 8). These high frequencies
are then insufficiently amplified by the Kalman filter (see
Fig. 15(a) with WḞ set to 10−18 N2/Hz) to correctly recon-
struct the high frequency components of the input F (t) at
the step time (time t = 1 sec in Figs. 14(a) and 14(b)). As
a consequence, the response time increases (and the band-
width decreases). This behaviour is interesting because
the maglevtube displacement becomes very small for high
frequencies, especially if fs is set to a high value as it is
deliberately the case here. As a consequence, the signal to
noise ratio of the maglevtube displacement measurement
is also bad in the high frequencies but the Kalman filter
takes care of this information worsening by adjusting a
trade-off (driven by WḞ ) between the resolution of the es-

timated force (ie the noise level in F̂k) and the response
time of the estimation.

5.4. Force sensor resolution

The additive coloured Gaussian noise nk presents in
the estimation F̂k (see Fig. 14(b) for instance) is the con-
sequence of the measurement noise vk (present in the input
mx
k) going through the transfer function HK(z). Statisti-

cal properties of nk can be determined using the Kalman
filter state-space model given by Eqs. (54)-(55). As it
is shown in Fig. 16, thanks to additivity of linear sys-
tems, only input vk is considered instead of the sum mx

k =
xk + vk, which gives the following stochastic state-space
model:

X̂e
k+1|k = AK X̂e

k|k−1 +BK vk (60)

nk = CKX̂e
k|k−1 +DK vk (61)

The noise vk is the input and the noise nk is the output.
Xe
k|k−1 is a random state with mean mk and covariance

matrix Sk given by:

mk = E[X̂e
k|k−1] = (AK)km0 (62)

Sk+1 = E[(X̂e
k+1|k −mk+1)2]

= AK Sk A
KT

+BK RBK
T

(63)

with R defined in Eq. (37). Taking into account the fact
that vk is a zero-mean Gaussian noise and that X̂e

k|k−1 and
vk are independent at time tk, the mean µk and variance
Σk of the Gaussian noise nk in Eq. (61) are given by:

µk = E[nk] = CKmk +DKE[vk] = CKmk (64)

Σk = E[(nk − µk)2] = CKSkC
KT

+DKRDKT
(65)

Because of the sum mx
k = xk + vk on the input, any ini-

tial condition different from zero for the (deterministic)
state Xe

k|k−1 will be associated to the input xk. Thus, by
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Figure 15: Impact of WḞ on the transfer function F̂ (ejω)/mx(ejω).
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Figure 16: Output noise nk in estimation F̂k due to the measurement
noise vk.

additivity, it remains only a null initial condition for the
(stochastic) state Xe

k|k−1 associated to the input vk:

Xe
0|−1 = [0 0 0]T (66)

Because the initial condition for this stochastic stateXe
k|k−1

is always the previous one, it comes:

m0 = 03×1 S0 = 03×3 (67)

Notice that m0 and S0 only influence the transient evo-
lution of nk at the beginning of the measurement. With
Eq. (62) the mean mk is always null and with Eq. (64) the
statistical properties of nk are given by:

µk = 0 ∀k (68)

Σk = CKSkC
KT

+DKRDKT
(69)

The 99% confidence interval associated to Eq. (69) is plot-
ted with red dotted lines in Fig. 17. The sampling fre-
quency fs is set to 100 Hertz in this simulation. The
mean in this Fig. corresponds to the value of F̂k when
there is no measurement noise vk. This unknown value
belongs to the confidence interval with a 0.99 probability.
To avoid any misinterpretation, it does not mean that the
real force F x(t) belongs to this interval, but only that F̂k
should belong to it if they were no measurement noise.
The associated standard deviation

√
Σk is an image of the

resolution (or the SNR ratio) of the sensor. It tends to√
Σ∞ in a few sampling times tk (see the first 0.05 sec in

Fig. 17). This value
√

Σ∞ can be given to the end-user to
adjust WḞ . Bigger is WḞ and bigger is

√
Σ∞ (see Fig. 18),

thus lower is the resolution of the sensor. Variance Σk has
no connection to the force sensor accuracy. This last one
only depends on the estimation of m, Kx

m and Kx
v during

the calibration stage. In steady-state, the accuracy only
depends on the calibration of Kx

m.

5.5. Force sensor bandwidth

The bandwidth of the force estimation depends on the
harmonic transfer between the input force F x(t) and out-
put estimation F̂k. Because time description is continuous
for the input and discrete for the output, this transfer is
difficult to model. Thus, it will be determined with only
discrete time description. Because of this, the first trans-
fer from F x(t) to x(t) that represents the dynamic of the
maglevtube is discretized with a zero-order hold with sam-
pling period Ts added on the input F x(t). This will leads
to a slightly erroneous result when a pure sinusoidal input
F x(t) is applied on the maglevtube.

The discretized linear state-space representation of the
maglevtube is obtained from Eqs. (6) and (7):

Xk+1 = AdXk +Bd F
x
k (70)

xk = CdXk (71)
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Σk) on the force estimation
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and R = 1.44 × 10−16 m2. Small irregularities are mainly due to
numerical errors during the solving of discrete Riccati equation to
obtain K∞(WḞ , fs, R).

with

Ad = eATs Bd =

∫ Ts

0

eAtdtB Cd = C (72)

and the measurement mx
k is given by Eqs. (33) and (71):

mx
k = xk + vk (73)

= CdXk + vk (74)

The global discrete state representing the maglevtube state
and the steady-state Kalman filter state is:

Xk =

[
Xk

X̂e
k|k−1

]
(75)

To obtain the associated global state-space model, Eq. (74)
is merged in Eqs. (54) and (55):

X̂e
k+1|k = AK X̂e

k|k−1 +BKCdXk +BKvk (76)

F̂k = CKX̂e
k|k−1 +DKCdXk +DKvk (77)

and Eqs. (75), (76), (77), (70) leads to the following global
representation of the force sensor with F xk and vk as input

and F̂k as output:

Xk+1 = AgXk +Bg

[
F xk
vk

]
(78)

F̂k = CgXk +Dg

[
F xk
vk

]
(79)

with

Ag =

[
Ad 02×3

BKCd AK

]
Bg =

[
Bd 02×1

03×1 BK

]
(80)

Cg =
[
DKCd CK

]
Dg =

[
0 DK

]
(81)

Setting vk to zero in the global state-space model (to study
only the impact of F xk input) gives:

Xk+1 = AgXk +

[
Bd

03×1

]
F xk (82)

F̂k = CgXk (83)

and the global harmonic transfer Hg(jω) between the force
to measure and the force estimated

Hg(ω) =
F̂ (ejω)

F x(ejω)
(84)

is given by:

Hg(ω) = Cg(e
jωI5×5 −Ag)−1

[
Bd

03×1

]
(85)

Fig 19 shows the global frequency response of the sensor
for different values of WḞ when the calibration is perfectly
accurate (matrices Ad and Bd in Eq. (70) are replaced
with the identified matrices given by the calibration stage).
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Sampling frequency fs is set to 1000 Hertz to minimise
the effect of the ZOH in Eq. (70). The step force response
(with vk set to zero) is also plotted to see the matching
between response time and frequency response of the es-
timation. Higher is WḞ and larger is the force bandwidth
of the sensor. As it is shown, the force bandwidth can be
extended beyond the -3dB cutoff frequency of the maglev-
tube (around 4 Hz) and then the phase difference decrease.
But in this case the resolution also decreases (see previous
Section 5.4). This frequency response can be provided to
the end-user to help him adjusting WḞ . The assumption
at the end of Section 4.1 ruling that WḞ should be set
higher for a rapidly varying force than for a slowly varying
one is coherent with the way the bandwidth of the sensor
is varying with WḞ .

Fig. 20 shows the global amplitude frequency response
when the calibration is not perfectly accurate. The values
chosen are those given in Section 5.2. The scale on Y-
axis is linear contrary to Fig. 19(b). Force measurement
around the resonant frequency of the maglevtube can lead
to non negligible errors.

Fig. 21 shows the five eigen values of Ag for WḞ set to
different values between 10−15 N2/Hz and 10−18 N2/Hz.
Because of the open-loop design used, the two eigen values
very close to the unit circle (inside a small red circle) are
the maglevtube poles that are compensated by the zeros
associated to the Kalman filter. These two maglevtube
poles represent its oscillating and under-damped dynamic
with long response time. They do not change if WḞ is
modified. The three other poles depend on the value of
WḞ and also on the calibration accuracy. Higher is WḞ

and closer are the poles to the unit circle right boundary,
thus slower is the estimation. The two complex conjugate
poles generate an oscillation with a slower dynamic than
the real pole that is the fastest pole. The location of the
poles does not lead to an instability of the Kalman filter for
choice of WḞ even smaller than 10−18 N2/Hz with double
precision floating-point calculation.

6. Experimental results

6.1. Disturbance forces

The force F̂k is an estimation of F x(t) that represents
the sum of all external forces applied on the Maglevtube.
Fig. 22 shows F̂k when no external force is artificially ap-
plied on the Maglevtube. In this case F̂k is an estimation
of all the external disturbance forces applied on the ma-
glevtube along ~x by the environmental noise (see Fig. 1).
Because of the maglevtube -3dB cutoff frequency, the most
predominant disturbance forces are due to the seismic low
frequency vibrations of the sensor base (vibration of mag-
nets M2 that induces a vibration of the magnetic field) and
to air vibration in infrasound frequencies that generates an
acoustic force that is mainly applied on the rear deflector.
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(b) Amplitude of Hg(ejω).

10
−1

10
0

10
1

10
2

10
3

−300

−250

−200

−150

−100

−50

0

Frequency (Hz)

P
ha

se
 (

de
g)
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Figure 19: Impact of WḞ on the global frequency response Hg(ejω)
and the response time of the sensor (fs = 1000 Hertz - accurate
calibration).13



10
−1

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Frequency (Hz)

M
ag

ni
tu

de
 (

lin
ea

r 
sc

al
e)
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Figure 20: Global amplitude frequency response Hg(ejω) with used
calibration.
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Figure 22: Measurement of the external disturbance force at 2:30
PM.

Extreme care must be taken to reduce as much as possi-
ble this environmental noise. With the setup used (sensor
enclosed in a chamber put on a antivibration table inside
a small room shown in Fig. 23), this disturbance force is
probably mainly generated by the antivibration table that
insufficiently filters the seismic low frequency vibrations of
the massive concrete ground floor. Maximum disturbance
force amplitude is inferior to 1 nN and unbiased standard
deviation is inferior to 0.3 nN.

The presence of vibrations involves that the reference
frame R0 (attached to the antivibration table) is non Ga-
lilean and the fundamental principle of dynamic can not
be applied in R0 to obtain Eq. (5). Nevertheless, under
the hypothesis that the displacement sensor and the mag-
nets M2 vibrates in phase (realistic hypothesis in the low
frequency domain), it can be shown using a new Galilean
reference frame that:

mẍ = F ′x + F xseismic −Kx
m x−Kx

v ẋ (86)

mẍ = F x −Kx
m x−Kx

v ẋ (87)

with
F x = F ′x + F xseismic (88)

The force F xseismic gives the low frequency seismic excita-
tion of the maglevtube that depends on the sensor base low
frequency vibration. The force F ′x represents all the ex-
ternal forces applied on the maglevtube except the seismic
excitation. Thus Eq. (87) is the same than Eq. (5). The
demonstration of this point and the taking into account
of the seismic vibrations (measurement, compensation) is
outside the scope of this paper.

6.2. Pull-off force measurement

Fig. 25 shows the evolution of the force F̂k during a
pull-off force measurement. A planar material is pushed
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Figure 23: force sensor enclosed in a chamber on a antivibration
table.
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Figure 24: Micro-sphere stuck at the maglevtube tip.
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Figure 25: Experimental pull-off force measurement.

against a micro-sphere (see Fig. 24) stuck at the maglev-
tube tip (loading stage) and then moved back (unloading
stage) until the contact is broken between the material
and the tip. After this contact loss, the seismic mass is
oscillating because of its big inertia but the unknown ex-
ternal force applied on the maglevtube becomes known: it
is equal to zero and thus it can be compared with the force
estimated with Eq. (3) or Eq. (45). Eq. (3) gives a bad
estimation because it is proportional to the displacement
of the ZIR. Kalman estimation associated to Eq. (45) gives
a better result with a shorter and smaller oscillating tran-
sient response. The residual oscillating behaviour can be
the result of several causes:

• the identification inaccuracy for the viscous damping
coefficient Kx

v ,

• the push is not perfectly done in the horizontal di-
rection thus the maglevtube is not aligned with the
x axis when the contact is broken. The orientation
of the maglevtube around y axis at this instant cre-
ates a complex behaviour in the plane xoz that is not
taken into account in the one DOF model developed
in Section 3.1, thus the Kalman filter does not react
correctly,

• the horizontal and vertical seismic excitations of the
maglevtube that also create a complex behaviour in
the plane xoz defined in Fig. 3 (see previous exam-
ple).

Fig. 26 also shows a pull-off force measurement but
with a non-contact attractive force also applied on the
maglevtube sphere before the loading, during the load-
ing and after the contact break. The sphere used is an
electrically charged macroscopic sphere (one millimetre di-
ameter, Silicon nitride Si3N4). The planar material is a
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Figure 26: Experimental pull-off force measurement with non-
contact attractive force also applied on the Maglevtube.

cover glass (insulating material), thus the most predom-
inant non-contact force is probably an electrostatic force
because atmosphere relative humidity was low (no menis-
cus was observed during the pull-off measurement). The
oscillations after the contact break represent the evolution
of the non-contact force applied on the sphere when the
cover glass is moved back. As the sphere moves towards
and backwards the cover glass (because of the maglevtube
inertia) the non-contact force is oscillating. The mean of
these oscillations has the same mirroring shape than the
non-contact force before the loading. Because the speed of
the planar material is opposite in both cases, this proba-
bly means that the distribution of charges in both material
remained the same during all the force measurement.

7. Conclusion

Despite the inertia of their mass that should be a great
handicap for time-varying force measurement, nanoforce
sensors based on a rigid macroscopic seismic mass are not
disqualified compared to classical designs based on micro-
scopic elastic cantilevers like AFMs. The design proposed
in this paper is based on diamagnetic levitation and makes
possible the adjustment of the stiffness of the magnetic
springs. Stiffness as low as 0.005 N/m can be reached.
The linearity of the dynamic behaviour is good for mil-
limetric displacements of the seismic mass, which makes
possible the measurement of a large range of force with the
same seismic mass. Calibration is quite easy to perform
because the mass can be measured with a precision bal-
ance. Nevertheless, this design imposes some constraints
like the limited bandwidth and the deconvolution of the
mass displacement to take care of the behaviour imposed
by the mass inertia. This deconvolution is done with a dis-
crete Kalman filter that is using a discretized Wiener pro-
cess to model the unknown input force uncertainty. This

processing requires the adjustment of a single parameter
WḞ which directly adjusts a trade-off between the reso-

lution (standard deviation) of F̂k and the bandwidth of
the force sensor. This parameter can be modified at any
time by the end-user in accordance with its own knowledge
on the force to measure. The resolution and frequency
response of the sensor can also be plotted to make this
choice easier. This deconvolution method is computation-
ally cheap (third-order IIR filter if a steady-state Kalman
filter is chosen) and can be implemented in cheap DSP or
microcontrollers. Response time shorter than 0.1 second
can be reached with a correct S/N ratio for forces in the
micronewton scale despite the very long settling time of
the transducer (20 seconds) and its under-damping. Com-
pared to a simple low-pass filter added on the displacement
measurement that will inevitably restrict the bandwidth,
the force bandwidth can be extended reasonably four times
higher than the displacement bandwidth. The main draw-
back of this open-loop design is its sensitivity to unwanted
external disturbant forces like whose generated by the vi-
brations of the magnetic field and the vibration of the air in
infrasound frequencies. Extreme care must be taken to re-
duce as much as possible this environmental noise thanks
to an antivibration table and a closed chamber. As an
outlook, a closed-loop design should be a alternative way
to take into account these disturbances in order to cancel
them.
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Glossary of symbols

Order of appearance of mathematic symbols is the same
than in the paper.

Kx
m magnetic stiffness of the force sensor

Kx
v viscous damping coefficient of the maglevtube

m maglevtube mass

x(t) maglevtube displacement

F x(t) real external force applied to the maglevtube tip

F (t) modelled external force applied to the maglevtube
tip

Fk discrete modelled external force applied to the ma-
glevtube tip

ω(t) zero-mean white Gaussian stochastic process used to
model uncertainty on Ḟ (t)
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WḞ power spectral density of stochastic process ω(t)

X(t) continuous state of the maglevtube

Xe(t) extended continuous state that is including F (t)

xk maglevtube discrete displacement if the external force
(real or modelled) is discretized with a zero-order
hold

Xk discrete state of the maglevtube

Xe
k extended discrete state including Fk

Ωk process noise associated to Xe
k dynamic

Q covariance matrix of process noise Ωk

Ts sampling period used in the force sensor

fs sampling frequency used in the force sensor

vk scalar zero-mean white Gaussian measurement noise

R variance of noise vk

mx
k noisy measurement of maglevtube displacement

X̂e
k|k−1 prediction of Xe

k by the Kalman filter

X̂e
k

estimation of Xe
k by the Kalman filter

Mk set of measurements done between times t1 and tk
included

Pk|k−1 covariance matrix of prediction error Xe
k − X̂e

k|k−1
conditioned by measurements done before tk

Pk covariance matrix of estimation error Xe
k − X̂e

k con-
ditioned by measurements done until tk

Kk time-varying Kalman gain

K∞ steady-state Kalman gain that depends on WḞ , fs
and R

F̂k estimated force by the Kalman filter

X̂e
0 initial a priori estimation of Xe

k

P0 initial a priori covariance matrix of estimation error
Xe

0 − X̂e
0

ωr(t) zero-mean white Gaussian stochastic process used to
generate simulated derivative Ḟ x(t)

W power spectral density of ωr(t)

HK SISO transfer function (z-domain) of the steady-state
Kalman filter with mx

k as input and F̂k as output

mk mean of X̂e
k|k−1 when the steady-state Kalman filter

is only excitated by noise vk

Sk covariance matrix of X̂e
k|k−1 when the steady-state

Kalman filter is only excited by noise vk

µk mean of output noise nk present in F̂k

Σk covariance of output noise nk present in F̂k

F xk F x(t) applied to a zero-order hold and sampled with
frequency fs

Xk global state of the force sensor with F xk and vk as

input and F̂k as output

Hg SISO transfer function (z-domain) of the force sensor
with F xk as input and F̂k as output

System, control, output and feed-forward matrices associ-
ated to state and output dynamics:

A,B,C modelling of X(t) and x(t) dynamic

A,M, C modelling of Xe(t) and x(t) dynamic

F , C modelling of Xe
k and mx

k dynamic

CF output matrix giving F̂k from X̂e
k

AK , BK , CK , DK modelling of X̂e
k|k−1 and F̂k dynamic

Ad, Bd, Cd modelling of Xk and xk dynamic

Ag, Bg, Cg, Dg modelling of Xk and F̂k dynamic
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