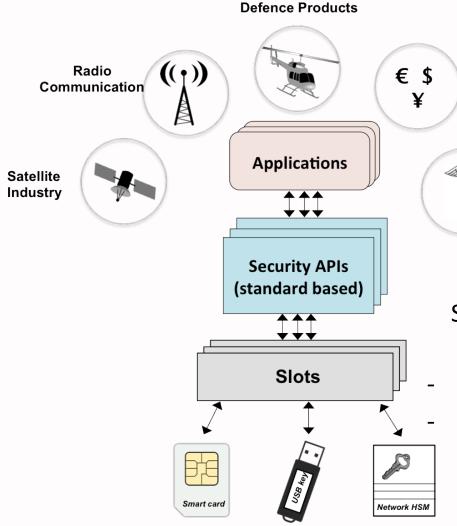


EXPERIENCE REPORT ON MODEL-BASED TESTING OF SECURITY COMPONENTS

Presented by Elizabeta Fourneret

EXPERIENCE REPORT ON MODEL-BASED TESTING OF SECURITY COMPONENTS

Frédéric Dadeau, Elizabeta Fourneret



- Introduction
- Our MBT approach
- Experimental results
- Conclusion and perspectives

Security Components

User Conference

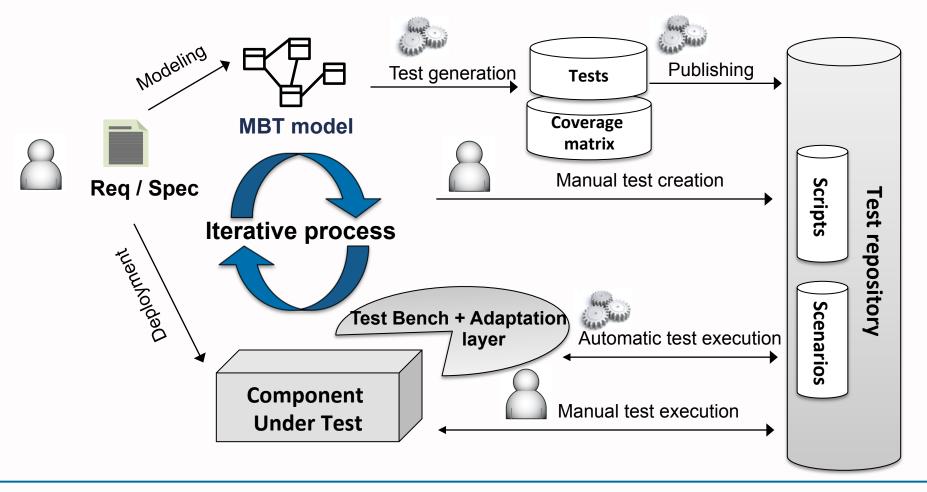
on Advanced Automated Testing

Security Components have two categories of test requirements:

Functional Requirements

Finance

Services


Health

Security Functional Requirements

Model-Based Testing

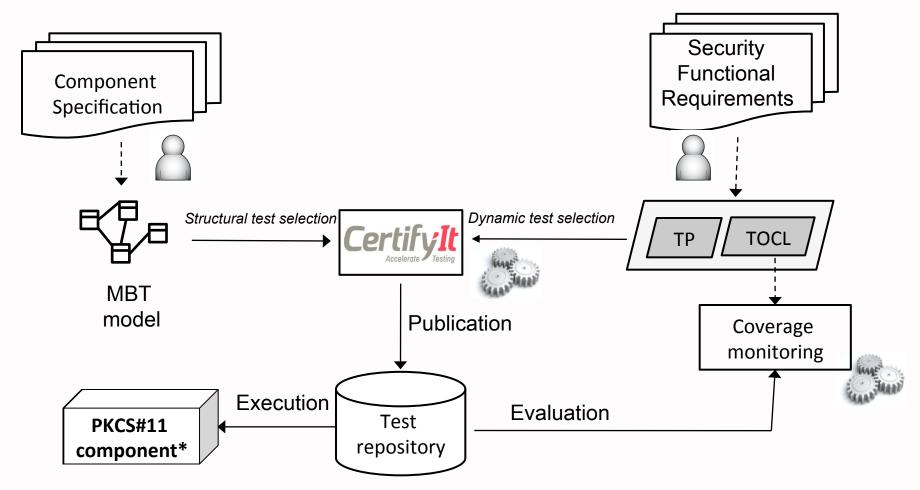
User Conference

Motivation

- Limitations of automated testing based on structural (for ex. requirement) coverage
 - test cases with limited size (steps)
 - difficulty to take into account the dynamics of the security functional requirements (must be hard-coded into the model)

User Conference

- possible issues with the test target's reachability
- Our proposal: use temporal properties in TOCL and Test Purposes
 - How to express the test requirements easily?
 - How to characterize relevant tests?



- Introduction
- Our MBT approach
- Experimental results
- Conclusion and perspectives

Our MBT Approach

*SoftHSM Virtual Cryptographic Token created by the group OPENDNSSEC

TOCL and **TP** test selection criteria

- TOCL and TP make possible to generate tests that exercise corner cases, relevant when testing security components
- TOCL allows to express temporal properties, for instance of succession or precedence, contributing to the MBT process with:
 - Evaluation of the existing tests coverage
 - Verification of the model's conformance to these properties
 - Simplifying the model debugging
- TP allow to express procedures of tests based on a verbose representation and using the experts experience and knowledge

User Conference

- Introduction
- Our MBT approach
- **Experimental results**
- Conclusion and perspectives

User Conference

PKCS#11 and SoftHSM

- PKCS#11 is an RSA standard that defines an interface called Cryptoki to promote interoperability and security of cryptographic tokens.
- Scope: 24 functions most commonly present in the tokens, such as session, token, key and user management functions, as well as cryptographic functions for signing messages and verifying signatures.
- To ensure the repeatability of the MBT process we chose SoftHSM virtual cryptographic store largely used for exploring PKCS#11 without the necessity to posses an HSM (created by the group OPENDNSSEC).

User Conference

Case study: PKCS#11

Component Under Test: SoftHSM

1st experiment: evaluation of complementarity of test selection criteria to cover test requirements

User Conference

on Advanced Automated Testina

2nd experiment: evaluation of the error detection capabilities (robustness)

PKCS#11 set up metrics

Test Requirement category	#FR	#SFR
general purpose	7	4
slot and token management	22	5
session management	32	9
object management	6	1
digesting	28	9
signing	32	10
verifying signatures	31	10
total	158	48

PKCS#11 model element				
#classes	9			
#enumerations	20			
#enum. literals	123			
#associations	17			
#class attributes	34			
#operations	24			
#observations	1			
#behaviors	206			
#tocl properties	50			
#test purposes	5			
#LOC	1308			

LOC: Lines of OCL constraints

User Conference

PKCS#11 results metrics

Test Selection	#Test	#Test	Cov. in %	
Criterion	targets	cases	FR	SFR
Structural	206	184	100	40
TOCL	311	90	31	58
Test Purpose	24	24	9	2
Manual	24	24	45	/

Cost of applying the approach ~ 20 person / days

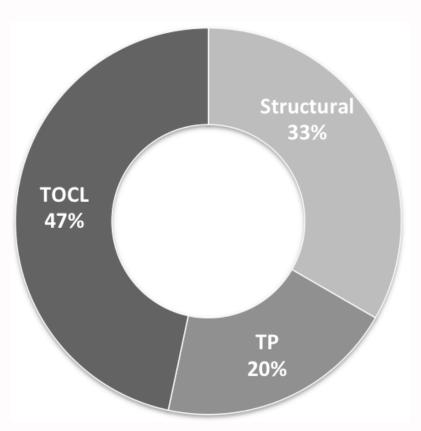


Fig. Distinct fault detection capabilities per coverage requirement

User Conference

Conclusions of the study:

- Relevance of the TOCL and TP coverage criteria
 - "Produce tests that one may not easily think of"
 - augment test requirements coverage
- TOCL and TP increase fault detection capabilities
- Usefulness of coverage reports
 - show which part of the requirements are not covered by the tests
- Cost-benefices.
 - cost of applying TOCL and TP coverage criteria is very low
 - cost for regression testing (for ex. At the end of a sprint) is negligible
- Use of the TOCL properties: model validation
 - Use of the TOCL coverage measure to detect violations of the properties by the model

User Conference

- Introduction
- Our MBT approach
- Experimental results
- Conclusion and perspectives

User Conference

Conclusion

- We have experienced an MBT approach :
 - Combining static and dynamic test selection criteria
 - On a real-life security components
- Useful for:
 - Evaluating a test suite w.r.t. security requirement
 - Test selection, to augment a functional test suite
 - Increasing distinct fault-detection

Perspectives

- Test generation process
 - Online (fuzz) testing
 - Robustness criteria (based on TOCL automata coverage)
- Looking forward for other pilot projects to foreground our results.

User Conference

Thanks for your attention!

Questions?

User Conference

