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2 CEA/LETI - MINATEC, Grenoble, France
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Abstract. The nonlinear dynamics of in-plane nanoelectromechanical cantilevers based on silicon nanowire
piezoresistive detection is investigated using a comprehensive analytical model that remains valid up to large
displacements in the case of electrostatic actuation. This multiphysics model takes into account geometric, inertial
and electrostatic nonlinearities as well as the fringing field effects which are significant for thin resonators. The
bistability as well as multistability limits are considered in order to provide close-form expressions of the critical
amplitudes. Third order nonlinearity cancellation is analytically inspected and set via an optimal DC drive voltage
which permits the actuation of the NEMS beyond its critical amplitude. It may result on a large enhancement of
the sensor performances by driving optimally the nanocantilever at very large amplitude, while suppressing the
hysteresis.

1 Introduction

Nanoelectromechanical systems (NEMS) are drawing in-
terest from the scientific community for a wide range of ap-
plications due to their unique properties. Nanocantilevers
are among those of the possible NEMS realizations that of-
fer access to fundamental resonant frequencies in the mi-
crowaves and active masses in the femtograms. Nanocan-
tilever have been proposed for ultrafast sensors and actu-
ators, signal processing components, quantum computing
[1] as well as ultra sensitive force [2] and mass [3] detec-
tion.

Actually, it is a challenge to optimize NEMS mass sen-
sors in order to achieve high resolutions. Although the lin-
ear design optimization and mechanical transduction gain
of the devices have been thoroughly studied, the drive power
has always been a priori limited by the onset of nonlinear-
ities. Indeed, driving the cantilever at large oscillation am-
plitude leads to better signal to noise ratio (SNR) and, thus,
simplifies the design of the electronic feedback loop. How-
ever, doing so in the nonlinear regime reduces the sensor
performances since the frequency instability of a nonlin-
ear resonator is proportional to its oscillation amplitude.
Moreover, even when NEMS resonators are used as oscil-
lators in closed-loop, a large part of noise mixing [4] due to
nonlinearities drastically reduces their dynamic range and
alters their detection limit.

The nonlinear dynamics of cantilevers have received
considerable attention because of their importance in many
engineering applications. Crespo da Silva and Glynn [5,6]
derived a set of integro-partial-differential equations gov-
erning flexural-flexural-torsional motions of inextensional
beams, including geometric and inertia nonlinearities. They
used these equations and the method of multiple scales to
ascertain the importance of the geometric terms for the
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lower modes, especially the first mode. These equations
have been also used for several investigations such as the
non-planar responses of cantilevers to principal paramet-
ric and primary resonant excitations [7,8], the nonlinear
response of an inextensional beam to a primary resonant
excitation of one of its flexural modes when the first tor-
sional frequency is of the same order as the lower flexu-
ral frequencies [9,10], as well as the nonlinear non-planar
response of cantilever inextensional metallic beams to a
parametric excitation of order two its flexural modes [11].

This paper proposes a method to overcome the physi-
cal limitations in NEMS mass sensors when operating be-
yond their critical amplitudes. Based on the nonlinear dy-
namics of nanomechanical cantilevers, the main idea is to
provide simple analytical tools for NEMS designers in or-
der to optimize mass resonant sensors designs and enhance
their performances for precision measurement applications
such as mass spectrometry.

In [12], a reduced-order analytical model was devel-
oped to investigate the nonlinear dynamics of NEMS reso-
nant cantilever electrostatically actuated and based on ca-
pacitive detection. In this paper, NEMS cantilever based
on silicon nanowire piezoresistive detection are considered
including both mechanical and electrostatic nonlinearities.
Due to the geometry of the device, a specific Galerkin de-
composition procedure based on piecewise basis functions
is used and the resonance under primary excitation is inves-
tigated by means of a perturbation technique. The resulting
analytical model enables the capture of the main nonlinear
phenomena including the mixed hardening-softening be-
havior [13,14]. Thus, close-form solutions of the critical
amplitude in the hardening as well as the softening case
are deduced and the optimal DC driving voltage expression
in function of the design parameters is provided. Hence,
the model can be used by NEMS designers as a practical
tool for the enhancement of resonant sensor performances
based on the nonlinearity cancellation.
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2 Device description

The NEMS is composed of a fixed-free lever beam linked
to two piezoresistive gauges at a distance d = 0.15l from
its fixed end. This value was chosen to maximize the stress
inside the gauges due to the cantilever motion (Figure 1).
The NEMS cantilever is actuated electrostatically at the
primary resonance of its first linear undamped mode shape.
The cantilever oscillation induces stress inside the piezore-
sistive gauges and the collected strain is transduced into a
resistance variation due to the piezoresistive effect. Thus,
the sensor frequency response is obtained via a piezoresis-
tive read-out perfectly decoupled from the capacitive actu-
ation of the resonator. Such a device can be used either as a
mass or a gas sensor. Indeed, the amount of molecules ab-
sorbed by the surface of the cantilever changes its effective
mass which lowers its resonance frequency. By evaluating
the frequency shift, the mass of the added species can be
estimated. Driven below its critical amplitude, This device

Fig. 1. Resonant nanocantilever based on piezoresistive detec-
tion.

has shown promising performances in terms of frequency
stability, dynamic range, and achievable mass resolution
of few zeptograms [15]. Unlike the stand-alone NEMS de-
scribed in [16], it uses CMOS based fabrication and is
therefore fully compatible with very large scale integra-
tion (VLSI) of NEMS. Thus, such device is transferable
to semiconductor foundries on 200 mm wafer for the fu-
ture. Nevertheless, further dynamic range optimization for
lower mass resolution could potentially be based on the
nonlinear dynamics of such mechanical structure.

3 Model

3.1 Equation of motion

A variational approach, based on the extended Hamilton
principle [5,6,17,18] is fallowed in order to derive the non-
linear equations of motion describing the flexural vibration
of the device sketched in Figure 1. The cantilever bending
deflection w̃ j is decomposed into w̃0 for s̃ ∈ [0, d] and w̃1
for s̃ ∈ [d, l].

EIc

{
w̃ j
′′′′
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where j ∈ {0, 1}, s is the arclength, E and Ic are the Young’s
modulus and moment of inertia of the nanocantilever cross
section. l and h are its length and its width. b is the de-
vice thickness, ρ is the material density, g is the capaci-
tor gap width, and ε is the dielectric constant of the gap
medium. The last term in Equation (1) represents an ap-
proximation of the electrostatic force assuming a partial
distribution along the nanobeam length. H is a Heaviside
function and Cn is the fringing field coefficient [19]. The
boundary conditions are:
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′
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where t̃ is time, hg and Ig are the width and the moment of
inertia of the gauge cross section. Equations (4) and (5) are
obtained by writing the force and torque moment equilib-
rium equations at the point s = d.
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where Tsc is the shear force applied to the cantilever, Mbc
is its bending moment, Tag is the axial force applied to the
gauges and Mg is its corresponding torque moment.

3.2 Normalization

Let the nondimensional variables be:

w j =
w̃ j

g
, x =

s
l
, t =
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τ

(8)
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2l2

h

√
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E

. Substituting Equation (8) into Equa-

tions (1-5), gives:
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The parameters appearing in Equation (9) are:

c =
c̃l4

EIcτ
, δ1 =

[
g

l

]2
, δ2 =

1
2

[
g

l

]2

δ3 = 6VacVdc
εl4

Eh3g3 , Ω = Ω̃τ

(14)

3.3 Reduced-order model

Assuming high quality factors (103 − 104), the static de-
flection can be neglected with respect to the dynamic de-
flection. A reduced-order model is generated by modal de-
composition transforming the continuous problem (9) into
a multi-degree-of-freedom system consisting in ordinary
differential equations in time. The undamped linear mode
shapes of the NEMS are used as basis functions in the
Galerkin procedure, and the deflection is approximated by:

w(x, t) =
n∑

k=1

ak(t)ϕk(x) (15)

where n is the number of the first modes retained in the
reduced-order model and ak(t) is the kth generalized coor-
dinate. Since the boundary conditions depend on the po-
sition along the cantilever, the linear undamped bending
modes ϕk of the device are defined as piecewise functions:

x ∈
[
0,

d
l

]
ϕ0k(x) = A0k cos

√
λk x + B0k sin

√
λk x

+C0k cosh
√
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√
λk x (16)

x ∈
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d
l
, 1

]
ϕ1k(x) = A1k cos

√
λk x + B1k sin

√
λk x

+C1k cosh
√
λk x + D1k sinh

√
λk x (17)

Here, λk is the kth natural frequency of the mechanical
structure. ϕ0k and ϕ1k satisfy the boundary conditions de-
fined in Equations (10-13). The first mode is then:

ϕ01(x) = 0.00038 cos (2.21x) − 0.0035 sin (2.21x)
−0.00038 cosh (2.21x) + 0.0035 sinh (2.21x) (18)

ϕ11(x) = −1.284 cos (2.21x) + 0.401 sin (2.21x)
+1.413 cosh (2.21x) − 1.206 sinh (2.21x) (19)

The electrostatic force in Equation (9) is expanded in a fifth
order Taylor series to capture the mixed behavior [13,14,
12] physically significant in nonlinear nanoelectromechan-
ical resonators. Then, Equation (15) is substituted into the
resulting equation and the outcome is multiplied by ϕk and
integrated from x = 0 to 1 for k ∈ [1, n] ∩ N. Thus, a sys-
tem of coupled ordinary differential equations in time is
obtained.

Assuming that the first mode is the dominant mode of
the system, the investigation can be restricted to the case
n = 1. Then, Equation (9) becomes:
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1

]
cos(2Ωt) = 0 (20)

Assuming that the amplitude A(t) and the phase β(t) of
the solution a1(t) are slowly time-varying functions, the
averaging method is used in order to solve the nonlinear
Mathieu-Duffing Equation (20). It permits the transforma-
tion of the reduced-order nonlinear second order Equa-
tion (20) into two first order nonlinear ordinary differential
equations that describe the amplitude and phase modula-
tion of the system frequency response.

For Vac << Vdc, the second harmonic terms are neg-
ligible. The resulting phase and amplitude averaged equa-
tions over the period 2π

Ω
and around the primary resonance

(Ω = λ1 + ξσ) are:

Ȧ = −ξ δ3 sin β
λ1

(
0.716 + 1.2A2 + 3.11A4

)
−ξ c

2
A + O(ξ2) (21)

β̇ = ξ

[
11.84
λ1
+

47.3δ1A2

λ1
− 4.14δ3VdcA2

Vacλ1
− λ1

2

]
+ξ

[
δ3 cos β
λ1

(
0.716

A
− 15.55A3

)
− Vdcδ3

Vacλ1

]
−ξ

[
17.32δ3VdcA4

Vacλ1
+ 3.74δ2λ1A2

]
−3.61ξAδ3 cos β

λ1
+ O(ξ2) (22)

The steady-state motions occur when Ȧ = β̇ = 0, which
corresponds to the singular points of Equations (21) and
(22).

4 Nonlinear behaviors

The normalized displacement Wmax with respect to the gap
at the middle of the beam and the drive frequency Ω can be
expressed as a function of the phase β. Thus, the frequency
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response curve can be plotted parametrically. Several ana-
lytical simulations were performed using the following pa-
rameters: l = 5 µm, b = 160 nm, h = 300 nm, lg = 500 nm,
hg = 80 nm and a = 350 µm. The gap g, the quality fac-
tor Q, the DC and AC voltages were used for parametric
analysis.

4.1 Hardening behavior

The large deformations of the cantilever give rise to ge-
ometric nonlinearities due to nonlinear curvature and/or
mid-plane stretching, leading to nonlinear strain-displacement
relations. In other words, for cantilever beams, the princi-
pal mechanical nonlinearity results from a geometric ef-
fect: as the cantilever deflects its local stiffness and effec-
tive mass increase.

When this nonlinearity dominates the resonator dynam-
ics, the frequency response peak is hysteretic and shifted to
the high frequencies as shown in Figure 2. This so called
”spring hardening” is the most classical effect observed in
clamped-clamped resonators electrostatically actuated [20,
21].

As shown in figure 2, the critical amplitude is the oscil-
lation amplitude Ac above which bistability occurs. Thus,
Ac is the transition amplitude from the linear to the nonlin-
ear behavior.

In order to build a close-form solution of the critical
mechanical amplitude, Equations (21) and (22) are rewrit-
ten when the electrostatic nonlinearities (nonlinear terms
proportional to δ3) are negligible. Then, the frequency re-
sponse is expressed in its parametric form with respect to
the phase β as follows:

Ω = f1(β) (23)
A = f2(β) (24)

Mathematically, Acm is defined as the oscillation am-

plitude for which the equation
dΩ
dβ
= 0 (infinite slope) has

a unique solution βcm =
π

3
.Thus, the critical electrostatic

force is deduced and then substituted into Equation (24)
at the point β =

π

2
and multiplied by the coefficient of the

first linear undamped mode shape ϕ1 at the free point of the
beam. Finally, we obtain the following close-form solution
of the critical mechanical amplitude:

Acm = 6.3
l − d
√

Q
(25)

This expression is the same as on [12], but the can-
tilever length l replaced by l−d. This confirms that the non-
linearities acting between the fixed end of the cantilever
and the nanogauges are negligible since the sensor vibra-
tions in this part are close to zero for the first linear un-
damped mode shape. Therefore, the NEMS dynamics is
equivalent to a resonant nanocantilever of length l − d.

4.2 Softening behavior

In order to increase the softening electrostatic nonlineari-
ties, the resonator designs must display narrow gaps with

Fig. 2. Predicted hardening and critical mechanical behaviors of
the typical resonant piezoresistive NEMS mass sensor described
in Figure 1. σ is the detuning parameter, Wmax is the displacement
of the beam normalized by the gap g at its free end and {B1, B2}
are the bifurcation points.

Fig. 3. Predicted softening and critical electrostatic behaviors of
the typical resonant piezoresistive NEMS mass sensor described
in Figure 1. σ is the detuning parameter, Wmax is the displacement
of the beam normalized by the gap g at its free end and {B1, B2}
are the bifurcation points.

respect to the cantilever width. Combined with a relatively
low quality factor, this leads to a negative global Duff-
ing nonlinearity and thus a softening behavior as shown in
Figure 3. In this nonlinear regime, the frequency response
curve is hysteretic and shifted to the low frequencies. Un-
like clamped-clamped beam resonators, the softening be-
havior is easily reachable in NEMS resonant cantilevers.

In this case, the critical electrostatic amplitude can be
deduced in the same way as the mechanical one. Here,
the mechanical nonlinearities are negligible (terms propor-
tional to δ1 and δ2). By considering only nonlinear terms
up to the third order, while neglecting the parametric terms
and the terms proportional to V2

ac, the critical electrostatic
amplitude is deduced as follows:

Ace =
2 ∗ 109hg

5
2

(l − d)
√

QVdc

7.5 ∗ 107h2

(l − d)4 −
3.8V2

dc

1015g3h

 1
4

(26)

Again, Equation (26) is in good agreement with the
close form solution of the critical electrostatic amplitude
developed in [12] in the case of NEMS cantilevers, which
confirms that the electrostatic nonlinearities are acting only
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Fig. 4. Predicted mixed behavior of the typical resonant piezore-
sistive NEMS mass sensor described in Figure 1. σ is the detun-
ing parameter, Wmax is the displacement of the beam normalized
by the gap g at its free end and {B1, B2, B3, B4} are the bifurcation
points.

on the sensor part comprised between the gauges and the
free end of the device.

4.3 Mixed behavior

Both mechanical and electrostatic nonlinearities are always
operating into the system. However, in some configura-
tions one kind of nonlinearity is negligible with respect to
the second one. Practically, when h/g << 1 and for a high
quality factor, the dynamics is dominated by the harden-
ing nonlinearities and in the opposite case, the frequency
response is nonlinearly softening. Between these two con-
figurations and for the typical resonant piezoresistive mass
sensor shown in Figure 1, a mixed hardening-softening be-
havior is inescapable (Figure 4). The mixed behavior is
characterized by a four-bifurcation points frequency re-
sponse. Moreover, Kacem et al [14] demonstrated in the
case of clamped-clamped resonators, an electrostatic mech-
anism which enables the bifurcation topology tuning of
the mixed behavior so that the bifurcation point B1 can be
moved to a lower frequency than B3. This leads to a multi-
stability with 5 possible amplitudes for a given frequency.
It is highly unstable and thus undesirable for MEMS and
NEMS designers.

5 Engineering optimization

Figure 5 shows several predicted forced frequency response
of the resonant piezoresistive mass sensor. Clearly, the an-
alytical model enables the capture of the main nonlinear
regimes in the resonator dynamics and describes the com-
petition between the mechanical hardening and the elec-
trostatic softening behaviors. As shown in Figure 5, when
g << h, the mechanical nonlinearities are negligible with
respect to the electrostatic nonlinearities. Then, the NEMS
forced frequency curve displays a softening behavior (red
curve of Figure 5) and the critical amplitude is given by
Equation (26) which depends on the quality factor Q, the
cantilever width h, the gap g, the DC voltage Vdc and the
distance between the piezoresistive nanogauges and the can-
tilever free end l − d. In this case, the open-loop stability

Fig. 5. Predicted forced frequency responses of the resonant
piezoresistive device presented in Figures 1 for a quality factor
Q = 104 and Vac = 0.1Vdc. Wmax is the displacement of the beam
normalized by the gap g at its free end.

of the NEMS resonant sensor is limited by an oscillation
amplitude around 60 nm.

If g >> h, the electrostatic nonlinearity is negligible
with respect to the mechanical one. Then, The NEMS forced
frequency curve displays a hardening behavior (see Fig-
ure 5) and the critical amplitude is given by Equation (25)
which only depends on the quality factor Q and the dis-
tance between the piezoresistive nanogauges and the can-
tilever free end l−d. In this case, the open-loop stability of
the NEMS resonant sensor is limited by an oscillation am-
plitude around 270 nm: more than four times higher than
the previous case. Thus the resolution is enhanced by a
factor Πenh = 4 compared to the first case.

Hence, designing NEMS cantilevers displaying soften-
ing behaviors is disadvantageous and can significantly al-
ter the sensor resolution especially when this supposes that
we are able to fabricate structures with very small gaps
which is rather difficult. Indeed, assuming that the upper
bound limit which is the pull-in occurs at an amplitude of
the gap order, even if the cantilever can vibrate linearly up
to very high amplitudes comparable to the gap, the sensor
performances can be altered due to its small dimensional
amplitude limited by the gap. In other words, enhancing
the dimensionless critical amplitude (softening behavior in
Figure 5) is not important when the gap is significantly re-
duced.

The optimal gap is gp = 600 nm for which the me-
chanical and the electrostatic nonlinearities are balanced
which permits the linearization of the frequency response
as shown in Figure 5 (linear behavior in Figure 5). For this
design which is technologically feasible, the resolution is
enhanced by a factor Πenh = 9, compared to first case.

In practice and since cantilever designs are generally
set by technological choices and sensor specifications, it is
more pertinent and useful to provide an optimal DC drive
voltage rather than an optimal gap. It leads to an electro-
static mechanism which enables the hysteresis suppression
by nonlinearity cancellation.

Moreover, It has been identified that the mixed behav-
ior [14] in cantilevers is less pronounced than in electro-
statically driven clamped-clamped beams [12]. Consequently,
the validity domain of the third order nonlinearity cancella-
tion in cantilevers is potentially larger. Thus, the hysteresis
suppression condition can be written as

Acm = Ace (27)

04007-p.5

CSNDD 2012



MATEC Web of Conferences

Hence, while neglecting the ohmic losses [22] and there-
fore assuming a constant quality factor Q, the optimal DC
drive voltage is

VdcOP =

√√√√√ 1
2

√
1.65∗1039g14h6

(l−d)16 +
3.2∗1042g10h6

(l−d)12

− 8.1∗1019g7h3

(l−d)8

(28)

In the particular case of Figure 5, the mechanical criti-
cal amplitude is Acm = 45%g. When g = 600µm and for
a quality factor of Q = 104, the optimal DC drive volt-
age is around 4.5V . At this voltage, as shown by the black
curve of Figure 5, the peak amplitude is linear and beyond
the critical amplitude

(
Apeak > 90%g

)
. Therefore, the en-

hancement rate of the sensor performance is
(

Apeak

Ac

)
> 2.

Remarkably, the electrostatic critical amplitude is in-
dependent of the AC voltage. This is due to the use of a
low AC voltage compared to the DC voltage for the can-
tilever actuation which makes the contribution of Vac in the
electrostatic Duffing term negligible. Hence, in this config-
uration, the compensation of the nonlinearities is indepen-
dent on the AC voltage. This interesting result makes pos-
sible the enhancement of the piezoresistive NEMS sensor
performances up to very high displacements comparable
to the gap in the case of an electrostatic actuation by in-
creasing the AC voltage, and limited by an upper bound
instability such as the pull-in [23].

6 Conclusion

In this paper, the nonlinear dynamics of a resonant piezore-
sistive NEMS mass sensor under its primary resonance has
been investigated using a multiphysics analytical model
which includes both mechanical and electrostatic nonlin-
earities. The model is based on the modal decomposition
using a specific Galerkin procedure with piecewise basis
functions combined with a perturbation technique, namely
the averaging method. The model enables the capture of
the main nonlinear phenomena including the mixed behav-
ior. The bistability as well as multistability limits of the
NEMS dynamics have been analytically investigated and
close-form solutions of the critical mechanical and electro-
static amplitudes have been provided. These expressions
have been validated with respect to the model developed
in [12]. Finally, the analytical expression of the optimal
DC drive voltage has been extracted. Besides, it permits
the control of the nonlinearities via an electrostatic mech-
anism in order to drive the NEMS resonator linearly be-
yond its critical amplitude. This rule could be a new de-
vice specification for NEMS designers by defining the ap-
propriate polarization corresponding to the operating do-
main of the third order nonlinearity cancellation. As a con-
sequence, the sensor sensitivity could significantly be en-
hanced. Indeed, the carrier power of the resonator is largely
increased at large amplitudes and keeping a linear behav-
ior may prevent most of noise mixing [4]. In practice, this
technique of hysteresis suppression could potentially en-
hance the NEMS performances and provide mass reso-
lutions sufficient to detect individual nanoparticules and
biomolecules in real time and VLSI fashion for mass spec-
trometry applications [24,25].
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