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Abstract
The interest for Multi-Agents Systems (MAS) grows rapidly and espe-

cially in order to simulate and observe large and complex systems. Cen-
tralized machines do not however offer enough capacity to simulate the
large models and parallel clusters can overcome these limits. Neverthe-
less, the use of parallel clusters implies constraints such as mono-threaded
process of execution, reproducibility or coherency. In this paper, our
contribution is a MPI based communication schema for Parallel and Dis-
tributed MAS (PDMAS) that fits High Performance Computing (HPC)
on cluster requirements. Our communication schema thus integrates agent
migration between processes and it guarantees message delivery in case of
agent migration.
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1 Introduction
The interest for Multi-Agents Systems (MAS) grows rapidly and especially in or-
der to simulate and observe large and complex systems. Centralized machines,
like desktop computer, do not however offer enough capacity to simulate the
model expected: their lack of memory or their processor is not powerful enough.
Parallel machines like clusters or networks of workstations can overcome these
limits. Nevertheless, using a cluster or a network of workstations implies man-
agement of some constraints, such as distribution, load balancing, migration,
coherency or inter-processors communications, that we do not have on a single
workstation. Efficiently using these platforms, to get good performance, also
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requires the relay of adapted software stacks. This clearly means that the MPI
interface [9] must be used as a base for parallelism and communication.

Using MPI with its mono-threaded process execution model to run MAS
is however a challenge. The contribution of this paper is a MPI based com-
munication schema for Parallel and Distributed MAS (PDMAS) that fits High
Performance Computing (HPC) on cluster requirements. Our communication
schema thus integrates agent migration between processes and it guarantees
message delivery in case of agent migration.

This article is organized as follows. In section 2, we detail the related work
on Multi-Agent Systems and parallel execution context. Then, in section 3, we
identify some lacks or limits in existing Parallel and Distributed Multi-Agent
platforms. In section 4, we give an overview of our proposition and we detail it
in section 5 for the communication schema and section 6 for the proxy system
used to follow mobile agents. We present the performance results obtained
with our proposition, based on the same model used to make the survey on
PDMAS [11], in section 7. We finish the paper with conclusions and future
work.

2 Related work
Multi-Agent Systems are platforms which provide support to run simulations
based on several autonomous agents [7]. Among the most known platforms
we can cite: NetLogo [13], MadKit [8], Mason [10] and Gama [12]. For large
models, these platforms are sometimes no longer sufficient to run simulations
in terms of memory and computation power. This is, for example, the case in
simulating individual behaviour of urban mobility [3] in a large city. In some
cases increasing the size or the precision of models is however necessary to find
emergent behaviours that we would never expect or never have seen otherwise.
For this reason several Parallel and Distributed Multi-Agent Platforms exist
such as RepastHPC [5], D-Mason [6], Pandora [1] and Flame [4] or JADE [2].
These platforms provide a native support for parallel execution of models. That
is to say, support for collaboration between executions on several physical nodes,
distribution of agents, communications between agents and so on. All existing
PDMAS platforms propose mechanisms to communicate between agents dur-
ing the simulation. But, this is done only with agents which are executed on
the same process or in the buffer zone, the zone shared between two adjacent
processes. For example, RepastHPC proposes mechanisms to request a copy of
a remote agent from other processes, but if the copy agent is modified, modi-
fications are never reported in the remote agent. In other words there are no
synchronization mechanisms to apply modifications nor communication mecha-
nisms to communicate directly with remote agents. Only the Flame [4] platform
allows to communicate with remote agents executed on other processes. To
perform the inter-process communications, Flame platform uses its own com-
munication library based on MPI which is called Message Board Library called
libmboard. Each process which participates in the simulation has an instance of
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libmboard in order to make synchronizations and to perform communications.
One of the advantages of the libmboard is that sending and receiving messages
is a non-blocking process. It then allows much of the communication time to be
overlapped with computations. The Flame platform however offers low perfor-
mances on clusters compared to others platforms (RepastHPC, D-MASON...)
as shown in [11]. In addition Flame uses a proprietary programming paradigm
(X-Machine) that could not be easily adopted by modellers used to standard
languages as C or Java.

3 Implementing PDMAS on HPC platforms
Targeting high performance computing implies some constraints on MAS imple-
mentation. Usually, PDMAS platforms are implemented using a Single Process
Multiple Data (SPMD) programming paradigm in order to provide scalability.
MAS simulations generally involve several tens of thousands of agents which
potentially communicate with each other at each simulation time step. The
communication bottleneck is thus a key problem as, in a parallel context, the
running time is affected by the frequent communications. As the de facto stan-
dard of communication infrastructure in HPC cluster is the message passing
interface (MPI) it is important to take care of the communication primitive
properties in order to reduce the communication overhead. This constraint
combines with another which is to have only a single mono-threaded process
of execution on each allocated core. This constraint is imposed by most batch
systems as SGE or SLURM. Using a single process of execution implies that
we cannot use mechanisms like listener, onEvent or onMessage to communicate
because we cannot dedicate one thread to wait for a message during the agent
set execution. Messages must thus either be received by issuing non-blocking
receives during the execution or at the end of the execution with a blocking re-
ceive. This illustrates the complexity of using a mono-threaded execution model
to implement asynchronous communications.

Another problem set by the parallel context is the problem of message deliv-
ery in a time-driven MAS. In time-driven simulations the simulation is divided
in time steps that represent the temporal discretization of the simulation. Mes-
sages between agents are thus bounded by time step. The issue is: at what time
step must the message be delivered? To guarantee reproducibility, each message
sent at time step n must be received before the beginning of time step n + 1.
Indeed, as processes run asynchronously from each other, delivering messages
in the same time step n cannot be guaranteed: the receiving agent can either
be scheduled later or sooner in different runs, depending on the node load. For
this reason delivering messages at the beginning of time step n + 1 is the only
way to guarantee that a message will always be received at the same time step.

Note however that, even with delivering messages at time step n + 1, the
stochastic nature of MAS makes it difficult to provide an absolute guarantee
during the simulation as illustrated on Figure 1 and 2. Figure 1 shows a case
of indeterminism of message receive order. Let p1, p2 and p3 be three processes
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Receive phase

A2 Send Msg to A1
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TimeStep 2

Figure 1: Indeterminism of message or-
der
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TimeStep 2
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A3

A2

A1

Send Msg to A2

Figure 2: Indeterminism in time step

executing a part of a simulation. If both p2 and p3 send a message at the same
time to p1, we cannot know in which order we need to apply them on p1. On
a centralized system these messages could be stamped with a clock value that
differentiate them. In a parallel or distributed context we cannot relay on this
clock value. Figure 2 illustrates the need for receive phases between time steps.
Agent A1 is scheduled at the end of the time step and sends a message to agent
A2 at that time. If the message is delayed on the network and agent A2 is
scheduled at the beginning of the next time step. Then agent A2 may miss
receiving its message at time step n + 1. For this reason, it is important to
define receive phases at the end of each time step.

As underlined previously, the full functionality of being able to communicate
with every process of the simulation, is only supported by Flame while other
PDMAS limit it to the local process or neighbour processes. We advocate for
inter-agent remote communications in PDMAS for two reasons. First, in models
focusing on individual motions as in a city/urban mobility, agents may need to
keep communicating with their contacts while moving. Due to the distribution
of the simulation, agents could move anywhere on the environment, on different
processes, and thus must be able to communicate with every process. Second, on
graph based models, limiting agent communication to the neighbourhood leads
to complex mapping constraints: non-planar graphs cannot easily be mapped
on grids while keeping neighbourhood constraints.

From these reflections, we propose a communication schema for PDMAS in
order to allow local and distant communications between agents without paying
attention to agent location. Our communication schema allows reproducibility
and guarantees that each message sent in time step n is received at the beginning
of time step n + 1.

4 Proposition
Before presenting the communication algorithm, we give information about the
Parallel and Distributed Platform that we develop. In this platform, the simula-
tion is divided in n parts and each of these parts are distributed on p processes to
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perform the simulation in parallel. These processes are called Agent Containers
(AC) and are in charge of scheduling and executing agents, of receiving mes-
sages from agents executed on other processes and of delivering these messages
to its own agents. ACs also manage movement of agents between processes.

GID, OwnProc, ExeProc, Type

the global id (GID) of the 
agent in the simulation

the type of the agent in the 
simulation

the ID of the process on which 
it is executed the agent

ID of the process 
which created the 

agent

Figure 3: Schema of the identification of an agent

In Multi-Agent Simulations, agents must be identifiable. In PDMAS agents
must be identifiable regardless of their process. For this reason we associate a
System ID, inspired from RepastHPC and presented in Figure 3, to each agent.
This System ID is composed of four values: a global unique ID (GID), the ID of
the process which created the agent (OwnProc), the ID of the process on which
the agent is currently executing (ExeProc) and the ID of the agent type (Type).
With this System ID, we can know at any time where an agent has been created
and where the agent is currently executed.

ACs execute four different phases at each time step to implement all the
communication requirements: (1) Run agent’s behaviours, (2) Receive messages,
(3) Migrate agents, and (4) Update agents. In this paper we only focus on phases
2 and 4, that is to say sending and receiving messages and agent updates to
perform communications even if they move on the environment. Phase 1 does
not differs from other MAS and phase 3 is not necessary for understanding.
The communication schema, the core of the contribution, is presented in the
two next sections. Section 5 details the communication schema between agents
and Section 6 details remote communication with mobile agents.

5 Communication schema (Receive message phase)
As said previously, for coherency and reproducibility reasons, every message
sent at time step n must to be received at the beginning of time step n+1. Due
to the stochastic nature of agents, we cannot however know how many messages
must received, and from how many processes, at the end of a time step and
so we cannot know when processes can proceed the next time step. For this
reason we must use a termination algorithm. MPI proposes synchronization
mechanisms like barrier, which are synchronization points, but they do not solve
this problem. If we use a barrier to bound time steps, some faster processes
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will reach the synchronization point and then block until the last process reach
it. Processes that did not reach the barrier could however send new messages
that will not be processed by the recipient processes as they are blocked on the
barrier. Thus messages are lost. This is the reason why mechanisms propose by
MPI are no longer sufficient in this case.

To overcome this problem, we use a termination algorithm to reach an agree-
ment between processes to switch to the next time step at the right time: when
all processes have terminated to process the current time step. Our termina-
tion algorithm is based on a bi-directional ring with a coordinator. In our case,
we use the bi-directional ring to check that all processes have terminated their
messages receipt and that all processes can proceed to the next time step. We
decided to use a bi-directional ring instead of a single ring, for efficiency because
we divided the path in two executed in parallel.

In our proposition, agents send messages in their behaviours using method
like communicate(MSG) but they do not directly receive messages. As said
before ACs are responsible of receiving messages and to deliver these messages
to agents. To proceed to the next time step, we need to be sure that each sent
message is received. For this reason, an AC needs to acknowledge (Ack) each
message of each agent in order to be sure that they are no pending messages.

Receive phase

Process 1 
(AC1)

Process 2 
(AC2)

Process 3 
(AC3)

Send Msg to AC2

Send Msg to AC1

A1

Send Ack to AC2

Send Ack to AC1

Send END to AC1

Send NEXT

Send END to AC1

If(nb_send==nb_recv)

Send NEXT

A2

TimeStep 2

TimeStep 1

Figure 4: An instance of receiving phase executed at each time step by each
Container of Agent

The AC algorithm consists in waiting the Ack for all messages sent by its
agents. Then it sends an END message to a coordinator, to inform that the AC
has terminated the processing of its messages and wait to receive messages from
the coordinator or from others processes. When the coordinator has received
an END message from all the processes of the simulation, he sends a NEXT
message using the bi-directional ring termination algorithm. At the end of the

6



termination algorithm, all processes are sure that they can execute the next
time step. The complete algorithm is presented in Algorithm 1.

if (AC is coordinator) then
while ((NbSendMessage 6= NbAckReceived) && (nbEndReceived 6= NbProcesses-1))
do

RecvMsg(Msg)
switch Msg.TAG do

case DATA_MSG DeliverApplyMSG(Msg) ; SendAck(Msg.Source);
case ACK NbAckReceived++;
case END nbEndReceived++;

endsw
end
SendNextTimestep(dNbProcesses/2e);
WaitForTermination();

else
while ((NbSendMessage 6= NbAckReceived) && (NextTimestep 6= false)) do

RecvMsg(Msg);
switch Msg.TAG do

case DATA_MSG DeliverApplyMSG(Msg);SendAck(Msg.Source);
case ACK NbAckReceived++;
case NEXT NexTimestep ← true;

endsw
end
if (AC.ID = dNbProcesses/2e) then

SendNextTimestep(PREVIOUS_AC);
SendNextTimestep(NEXT_AC);

else if (AC.ID > dNbProcesses/2e) then
SendNextTimestep(NEXT_AC);

else
SendNextTimestep(PREVIOUS_AC);

end
end
Algorithm 1: Receiving phase executed at each time step by each AC

By this way time steps are bounded by received messages phase. This algo-
rithm works fine for agents without mobility. In case of agent mobility an AC
needs to know where the target agent is run to deliver a message as agents may
moves from a process to another. We explain the algorithm used to overcome
this problem in the next section.

6 Proxy system (Agents update phase)
Multi Agent Systems often use mobile agents: agent that are not fixed on the
environment but rather move. This is, for instance, the case of wolves and sheep
in the classical prey-predator model. In PDMAS it is necessary to distribute
the environment on several processes. With agent mobility agents may move
from a process (or AC) to another (process or AC) to keep the continuity of the
environment and thus perform its behaviour. If we want to send a message to an
agent, we need to know on which process the agent is now run. To respect the
single threaded process constraint of HPC context, we use a Proxy System (PS)
which consists in letting a trace of each agent on the process which creates it at
the beginning of the simulation. This trace is updated during the simulation.

Algorithm 2 details how the proxy for agents is updated. We update PS when
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an agent move from a process (or AC) to another (process or AC). Each AC
contains an hashmap of proxies for each agent that it creates at the beginning
of the simulation. When an agent is going to move, the container looks if this
agent have been created by itself thanks to the System ID of agents. If it is
an agent that the process (or AC) has created, the AC changes, in its proxy
hashmap, the current process of the agent where the agent is executed to the
future process on which the agent will be moved. On the other cases, the AC
sends a message (that contains the future process on which the agent will be
moved) to the creator of this agent in order to inform the AC that one of its
agent move from a process (or AC) to another (process or AC).

This phase of proxy update depends on the same termination rules as the
message receipt, because we cannot know how many updates we receive and
from how many processes we can receive updates. For this reason we also use
the previously termination algorithm base on bi-directional ring. As this update
phase is completed before we start a new time step then the proxy hashmap are
always up-to-date during the agent run step.

while ((!End of Migration) && (nbEndReceived 6= NbProcesses-1)) do
if (Agent.GetOwnerProc() = AC_ID) then

MapProxy[Agent.GID] ← AC_ID;
else

SendMsgMajProxy(Agent.GetOwnerProc(), Agent.FutProcess);
NbSendMigration++;

end
end
if (AC is coordinator) then

while ((NbSendUpdates 6= NbAckReceived) && (nbEnd 6= NbProcesses-1)) do
RecvMsg(Msg);
switch Msg.TAG do

case DATA_UPDATE_AGENT MapProxy[Msg.GID] ← Msg.FutProcess;
SendAck(Msg.Source);
case ACK_UPDATE NbAckReceived++;
case END nbEndReceived++;

endsw
end
SendFinishUpdating(dNbProcesses/2e);
WaitForTermination();

else
while ((NbSendUpdates 6= NbAckReceived) && (FinishUpdating 6= false)) do

RecvMsg(Msg);
switch Msg.TAG do

case DATA_UPDATE_AGENT MapProxy[Msg.GID] ← Msg.FutProcess;
SendAck(Msg.Source);
case ACK_UPDATE NbAckReceived++;
case NEXT FinishUpdating ← true;

endsw
end
if (AC.ID = dNbProcesses/2e) then

SendFinishUpdating(PREVIOUS_AC);
SendFinishUpdating(NEXT_AC);

else if (AC.ID > dNbProcesses/2e) then
SendFinishUpdating(NEXT_AC);

else
SendFinishUpdating(PREVIOUS_AC);

end
end
Algorithm 2: Updating phase executed at each time step by each AC
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In this way, we always know where an agent is executed by interrogating
and sending messages to the process that creates the agent at the beginning of
the simulation. If the agent is not executed on this process then the process
which receives the message forwards this message to the right process on which
the agent is now run (Figure 5). The message will only be acknowledged by the
right container process. As a process waits until its gets all its acknowledgements
before sending its END message, then it guarantees that the sent message will
be delivered at time step n + 1. In addition, for the user, this is an hidden
functionality, he does not pay attention to where is the agent located, local or
remote. The only mandatory information is the System ID of the agent you
want to contact and the message will be received.

Receive and Forwarding phase

Process 1 
(AC1)

Process 2 
(AC2)

Process 3 
(AC3)

Send Msg to AC2A1

A2

A1 wants to send message to A2

Bi-directional RING Bi-directional RING

Forward A1 Message 

Send Ack to AC1

Not executed here

TimeStep 1

TimeStep 2

Figure 5: An instance of updating phase executed at each time step by each AC

7 Experimentation
In this section we present some results using our communication schema for
Parallel and Distributed Multi-Agent simulation. We have implemented the
communication schema in the Parallel and Distributed Multi-Agent Platform
called FractalPMAS that we develop. To assess the performance of the commu-
nication schema, we have implemented a reference model defined and already
implemented in most known PDMAS platforms in [11]. This model respects the
main properties that can be found in Multi-Agent Systems: perception, com-
munication, mobility. In this model each agent is composed of 3 behaviours,
performed at each time step: walk behaviour which allows agents to move in a
random direction on the environment, interact behaviour which allows agents
to interact and send messages to other agents and finally compute behaviour
which allows agents to generate a workload.
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In this reference model we also have implemented a way to evaluate the
performance of our remote communication schema between agents. That is to
say, instead of sending message to agents in the perception field, each agent
sends messages to randomly chosen agents which are run on an other process if
they are in its perception field.

About the HPC experimental settings: we have run the reference model on
a 764 core cluster. Each node of the cluster is a bi-processor, with Xeon E5 (8*2
cores) processors running at 2.6 Ghz frequency and with 32 Go of memory. The
nodes are connected through a non blocking DDR InfinyBand network organized
in a fat tree.

Execution results on the scalability of a 10 000 agents model are given on
Figure 6, with the ideal speed-up reference. Note that the reference time used to
compute the speed-up is based on a 2 cores run of the simulations as RepastHPC
cannot be run on a single core. To assess scalability we vary the number of cores
used to run the simulations while we fix the number of agents. We then com-
pute the obtained speed-up. Figure 6 represents the scalability of the platform
with our communication schema for local and remote communications between
agents.
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Figure 6: Scalability of FPMAS
platform running simulations using
10 000 agents, FFT 100 and 200 cy-
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Figure 7: Running time for FPMAS
platform running simulations using
10 000 agents, FFT 100 and 200 cy-
cles

As we can see both scale well, even if the local communications scales bet-
ter. The difference between two speedup are not clearly noticeable. Obviously,
remote communication offers lower performance due to the intensive exchanges
between processes. Figure 7 represents the running time of simulations for 200
time steps and for local and remote communications.

Figure 8 represents the workload of our proposition on 8 cores and we vary
the number of agents from 1000 to 30 000, and comparing the local communi-
cation running time and the remote communication running time.

Obviously, remote communications cannot be better than local communica-
tions, but remote communications support well the workload. For example, for
10 000 agents there is a difference of 1̃0% between running time for local and re-
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Figure 8: Workload behaviour for FPMAS platform running simulations using
8 cores

mote communications and for 30 000 agents there is a difference of 3̃0%. These
values are acceptable but we need to improve mechanisms. This implementation
is only a proof of concept.

To assess the viability and the performance of our communication schema,
we compare in Table 1 the running time for the model defined previously [11]
with performance obtained for other PDMAS platforms. In terms of running
time FPMAS is better than other platforms. Communications (local or remote)
does not impact clearly the results on this model. Compared to others platforms,
better results could be explain by the way used to modelled and to structure
the agents and the simulation compared to other platforms.

Table 1: Comparison of running time for platforms studied in [11] with 10 000
agents
Cores 4 8 16 32 64 128
FPMAS (local com.) 2097.09 877.59 380.09 175.96 66.63 26.32
FPMAS (remote com.) 2142.68 893.6025 391.52 185.8075 67.0575 39.2125
RepastHPC 8772.93 3276.91 1277.03 724.99 497.53 367.76
Flame 17418.79 9282.20 4773.86 2428.22 1520.65 836.29

8 Conclusion and perspectives
In this paper we have presented a communication schema for Parallel and Dis-
tributed Multi-Agent simulation that fit the constraints set by HPC systems.
This communication schema is based on the MPI communication interface and
allows communication with local and remote agents. Our contribution aims at
proposing a communication schema which offers more efficiency while guaran-
teeing properties as reproducibility and coherency.
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In our future work, we intend to better examine the efficiency of synchro-
nization using our communication schema and also to improve the scalability of
the communication schema. More improvements could be made in the imple-
mentation which is only a proof of concept. Then we will use this platform to
assess load balancing in PDMAS.

Acknowledgement: Computations have been performed on the supercom-
puter facilities of the Mésocentre de calcul de Franche-Comté.
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