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Abstract—This paper presents a comparison of several open-
loop methods for hysteresis compensation on a lab-made micro-
/nanopositioning device. The classical Preisach model with the in-
verse multiplicative structure, and the Classical/Modified Prandtl-
Ishlinskii models with model inversion, are considered. The
classical Preisach method though suited for asymmetric hysteresis,
does not have an analytic inverse model. However, it can be
used directly in the inverse multiplicative structure, thus avoiding
the computationally intensive numerical inversion of the Preisach
model. The classical Prandtl-Ishlinskii (PI) model is accurate and
has an analytic solution, which makes it interesting for real-time
applications. However, the model captures only the symmetrical
hysteresis curves. Modified Prandtl-Ishlinskii (MPI) model has
all of the advantages of the classical PI model and extends it
for asymmetric hysteresis. The considered methods are compared
experimentally, and illustrative results are given for tracking
triangular references of different frequencies.

Index Terms—Piezoelectric actuator, micro/nanopositioning,
hysteresis, Preisach model, Prandtl-Ishlinskii model, Modified
Prandtl-Ishlinskii model.

I. INTRODUCTION

Piezoelectric actuators (PEA’s) are widely used at micro-
/nanoscale (e.g. Scanning Tunneling Microscope (STM) [1] and
Atomic Force Microscope (AFM) [2]) because of their simple
configuration, high precision, fast response, and theoretically
unlimited displacement. However, nonlinearities such as hys-
teresis, friction and creep, degrade system performance [3],
especially hysteresis which remains a major limitation to the
precision and causes positioning errors.

Various methods have been developed for hysteresis com-
pensation and they can be generally divided into two cate-
gories: closed-loop and open-loop methods. The closed-loop
techniques such as high gain feedback [4], H∞ based con-
trol [5], disturbance observer [6], [7] have demonstrated a
significant improvement of the control performance, but are
limited w.r.t vibration dynamics compensation and are sensitive
to measurement noise due to feedback-loop sensors. The open-
loop techniques are mainly based on cascading the calculated
inverse model of hysteresis with the real system leading to
its linearization. The most common techniques include the
Preisach model [8], [9], the Prandtl-Ishlinskii (PI) model [10],

[11], [12], its modified version (MPI model [13]) for asymmet-
ric hysteresis and the Bouc-Wen model [14]. Their performance
is determined by the accuracy of the inverse model [15].

The hysteresis compensator can be constructed either by
inverting the hysteresis model or by using this model directly
in the inverse multiplicative structure [16], [17]. The classical
Presiach model is accurate and suited for asymmetric hysteresis
[18]. However, its inverse model cannot be found analytically,
and the numerical solution can be computationally consuming
or too complex to implement in real-time. To overcome this
limitation, one possible solution is to use the hysteresis model
in the inverse multiplicative structure [19]. Prandtl-Ishlinskii
(PI) model is accurate, since it is derived from the Preisach
model. Moreover, its inverse is analytic which makes it well
suited for real-time applications [20]. However, classical PI
model cannot capture asymmetric hysteresis loops. To that end,
Modified Prandtl-Ishlinskii (MPI) model has been developed
(see for example [21]).

In the literature, several alternative models to Preisach model
have been proposed, which are computationally less cumber-
some while having the same application range [22]. However,
to the authors best knowledge, there is still a clear lack of
studies that compare the open-loop compensation methods,
of the Preisach and the alternative models, which could be
really useful for practitioners. Therefore, in this paper, inverse
classical and Modified Prandtl-Ishlinskii models are compared
to the inverse multiplicative structure of the Preisach model, for
hysteresis compensation of piezoelectric actuator in the hori-
zontal axis of a lab-made micro-/nanopositioning device. The
paper is organized as follows: the experimental setup is given
in Section II. In section III the Preisach model and its inverse
multiplicative compensator are presented. Section IV describes
the classical and the Modified Prandtl-Ishlinskii models with
the model inversion. The compensators are implemented in
real-time and the experimental results are shown in Section
V. Section VI concludes the paper.

II. EXPERIMENTAL SETUP AND SYSTEM DESCRIPTION

The experimental setup is a 3DOF micro-/nanopositioning



Fig. 1. Experimental setup of micro-/nanopositioning platform

platform developed at GIPSA-lab, Grenoble, France, shown
in Fig. 1 (see also [7], [23]). However, in the present pa-
per, only the horizontal (X) axis is considered. This axis
is actuated with a piezoelectric actuator Tritor T-402-00 of
gain 235 [nm/V] and bandwidth 630 Hz. A capacitive sensor
CS005 (gain 200 [V/mm] and bandwidth 8.5 kHz) is used
to measure the axis displacement. The applications are de-
signed in Matlab&SimulinkTM and xPC TargetTM software on
a development PC. The signal acquisition is performed with
a sampling frequency of 20 kHz, using a Target PC equipped
with data acquisition cards. The considered X axis (Plantx)
can be modeled as a cascade interconnection of a voltage
amplifier V Ax(s), the piezoelectric actuator Piezox (hysteresis
nonlinearity Hx, followed by linear piezo dynamics Dpx(s))
and the capacitive sensor CSx(s) as illustrated in Fig. 2. Since
the bandwidth of the voltage amplifier and the bandwidth of
the capacitive sensor are relatively high w.r.t. the bandwidth
of the piezoactuator, they can be assumed as static gains (Gvx
and Gcapx, respectively). For static hysteresis identification, the
frequency of the input signal is chosen relatively low (1 Hz)
w.r.t the bandwidth of the piezoactuator (630 Hz), so that the
piezo dynamics Dpx(s) can be neglected (i.e. qpx(t) = xp(t)
in Fig. 2).

Fig. 2. Block diagram of the considered X axis with inverse-based hysteresis
compensator.

III. INVERSE MULTIPLICATIVE STRUCTURE FOR PREISACH
MODEL

A. Classical Preisach model

Mathematically, the classical Preisach model can be written
as [18]:

xp(t) = H(vpx(t)) =

∫∫
α≥β

µ(α, β)γ[vpx(t)] dαdβ (1)

where µ(α, β) is the Preisach weighting function, γ[vpx(t)] is
the Preisach operator having an output of +1 or 0 and α, β
are the upper and lower switching values of the input vpx(t),
respectively.
Assuming that vpxmin ≤ β ≤ α ≤ vpxmax , the operator γ[vpx]
can be represented by a simple 2-state relay with hysteresis
(see Fig. 3(a)), and can be integrated over the limiting triangle
T0 as illustrated in Fig. 3(b).

(a) (b)

Fig. 3. Preisach model of hysteresis: (a) Elementary Preisach operator, (b)
Integration over the limiting triangle T0.

To define the final hysteresis operator, the elementary
Preisach operators are multiplied by the weighting function
µ(α, β) and superposed as shown in (Fig. 4)

Fig. 4. Block diagram of the Preisach model.



So as to both simplify the calculation and suppress the double
integration (1), the Preisach function is defined as follows:

Xp(α, β) = xpα − xpαβ (2)

where xpα is the hysteretic system output once the input vpx(t)
is increased from 0 to α and xpαβ is the system output once
the input vpx(t) is decreased from α to β.

If the hysteresis loop contains several extrema αk, βk, the
total hysteretic output xp(t) for an input voltage vpx(t) is
determined by (2) depending on the current slope of vpx(t)
as follows:

v̇px(t) > 0

xp(t) =
∑N
k=1 [Xp(αk, βk−1)−Xp(αk, βk)]

+Xp(vpx(t), βN )

(3)

v̇px(t) < 0

xp(t) =
∑N−1
k=1 [Xp(αk, βk−1)−Xp(αk, βk)]

+Xp(αN , βN−1)−Xp(αN , vpx(t))

(4)

The Preisach model still requires a property so called the
wipe-out property, which allows to erase the pair (αN , βN−1)
from the history once vpx(t) exceeds αN , and the pair (αN , βN )
once vpx(t) becomes smaller than βN (see [24]).

For practical application in hysteresis compensation, equa-
tions (3) and (4) are based on an approximation of Xp as a
polynomial expansion in α and β as follows:

Xp(α, β) = θ0β + θ1α+ θ2β
2 + θ3βα+ θ4α

2

+θ5β
3 + θ6β

2α+ θ7βα
2 + θ8α

3 (5)

To identify the parameters θ: (i) A sinusoidal inputs of
frequency 1 Hz and amplitudes from 0 to 120 V with a step of 5
V are applied. (ii) Values of Xp(α, β) for different pairs (α, β)
are determined from these experimental hysteresis curves (see
equation (2)). (ii) The Least Squares method is used and the
following parameters are found:

θ = [−0.137, 0.15, 0.0014,−0.0045, 0.00298,

0.0000025,−0.000007, 0.000019,−0.000014]
(6)

Using the estimated function Xp(α, β) (see (5) and (6)) in
equations (3) and (4), and taking into account the wipe-out
property (see [24]) to update the values of α and β in real-time,
the Preisach model is simulated. Hysteresis curve for sinusoidal
input of variable amplitude: 30, 60, 90 and 120 V and frequency
of 1 Hz is presented in Fig. 5.

B. Hysteresis compensation with inverse multiplicative struc-
ture of Preisach model

The inverse of the Preisach model is generally constructed
using numerical inversion [24], [25] since the input voltage
signal vpx(t) is implicitly involved in the complex dual integral
formulation (1). To obtain the analytic inversion, one possible
solution is the use of inverse multiplicative structure which
has been initially developed for Bouc-Wen model [16] and
subsequently extended to Preisach model [19].

Fig. 5. Experimental and identified Preisach model of hysteresis for input
signal of frequency 1 HZ and variable amplitude 30, 60, 90 and 120 V.

Assuming that exists a revertible function ρ such that the direct
Preisach model xp(t) = H(vpx(t)) (1) can be written as:

xp(t) = ρ(vpx(t)) + Γ(vpx(t)) (7)

For a desired expansion xp(t) = xpr (t), the required input
voltage vpx can be expressed from (7) as:

vpx(t) = ρ−1(vpx(t))[xpr (t)− Γ(vpx(t))] (8)

where

Γ(vpx(t)) = H(vpx(t))− ρ(vpx(t))vpx(t) (9)

Taking into account the equations (7) and (8), the Preisach
model and its exact inverse multiplicative structure that allows
the design of the compensator analytically and without inver-
sion of the model, are illustrated in Fig. 6. However, real-time

Fig. 6. The inverse multiplicative structure of the Preisach model.

implementation of (8) is compromised by the non-causality of
the solution. To overcome this problem, the solution can be
approximated as follows [17]:

vpx(t) = ρ−1(vpx(t− Ts))[xpr (t)− γ(vpx(t− Ts))] (10)

where Ts is the sampling time.
That leads to the so called approximate inverse multiplicative
structure used in this work.

IV. INVERSE CLASSICAL AND MODIFIED
PRANDTL-ISHLINSKII MODELS

A. Classical and Modified Prandtl Ishlinskii Models

In this section so called classical Prandtl-Ishlinskii (PI) and
Modified Prandtl-Ishlinskii (MPI) approaches are given [10],
[13]. The elementary hysteresis operator of the classical PI



model is the backlash operator (see Fig. 7(a)), which plays
the role of an elementary hysteretic mapping between the
input signal vpx(t) and the output displacement xp(t) of the
piezoactuator as follows:

xp(t) = HxrH
[vpx, xp0](t)

= max{vpx(t)− rxH ,
min{vpx(t) + rxH , xp(t− Ts)}},

(11)

with rxH being an input threshold for vpx and Ts the sampling
time. The classical PI model is a sum of weighted elementary
backlash operators (Fig. 7(b)):

xp(t) = Hx[vpx](t) = wxH
THrxH

[vpx,xp0](t), (12)

where rxH is the vector of thresholds (0 = rxH0
< rxH1

<
... < rxHn < +∞), wxH is the vector of weights, HrxH

is
the vector of backlash operators and xp0 is the vector of initial
states of the backlash operators.

The Modified Prandtl-Ishlinskii (MPI) model is composed of
PI backlash operators followed by one-sided dead-zones. The
output signal of a one-sided dead-zone operator (Fig. 7(c)) for
an input signal xp(t) can be given by:

xps(t) = SrxS [xp](t) =

{
max{xp(t)− rxS , 0}, rxS > 0

xp(t), rxS = 0

(13)

where rxS is an input threshold for xp.
The PI saturation operator Sx is the linear weighted super-

position of dead-zone operators (see Fig. 7(d)):

xps(t) = Sx[xp](t) = wxS
TSrxS

[xp](t), (14)

The MPI model is a cascade interconnection of the PI hysteresis
model Hx defined by (12) and the PI saturation operator Sx
defined by (14)

xps(t) = Sx[Hx[vpx]](t)

= wxS
TSrxS [wxH

THrxH
[vpx,xp0]](t)

(15)

where rxS is the vector of thresholds (0 = rxS0
< rxS1

<
... < rxSn < +∞) and wxS is the vector of weights.

The parameters to be identified are the weights of the back-
lashes wxH and the weights of the inverse dead-zones w′

xS .
The identification procedure is as follows: (i) The threshold
values rxH and r′xS and the initial states xp0 are set as follows:

rxHi =
i

n+ 1
max{vpx}, i = 0, ..., n, (16)

r′xSi =
i

m+ 1
max{xp}, i = 0, ...,m, (17)

xp0i = 0, i = 0, ..., n. (18)

(ii) A triangular voltage input of variable amplitude: 30, 60,
90 and 120 V and of frequency 1 Hz is chosen as an iden-
tification signal. (iii) The Quadratic Programming algorithm
of Matlab Optimization ToolboxTM is used to fit the model
curve into the experimental data, by modification of weights

(a) (b)

(c) (d)

Fig. 7. (a) Weighted backlash operator. (b) Superposition of backlash
operators. (c) Weighted dead-zone operator. (d) Superposition of dead-zone
operators.
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Fig. 8. Hysteresis identification: (a) Before identification (PI), (b) After
identification (PI), (c) Before identification (MPI), (d) After identification
(MPI).

wT
x =

[
wT
xH w

′T
xS

]
in order to minimize least-squares of the

following error:

Ex[vpx, x̃p](t) = Hx[vpx](t)− S−1x [x̃p](t)

= wT
xHHrxH

[vpx,xp0](t)−w′T
xSSr′xS

[x̃p](t)
(19)

where x̃p(t) = y1(t)
Gcapx

is a measured output displacement at
time t. The model accuracy is determined by the number of
backlashes (n+ 1) and dead-zones (m+ 1).

The thresholds rxS and the weights wxS of the dead-
zones are calculated similarly as in equations (24) and (25),



respectively, using the thresholds r′xS and weights w′xS of the
inverse dead-zones (for i = 0, ...,m).

Fig. 8(a) (resp. Fig. 8(c)) shows the experimental and the
simulated hysteresis with the initial weights, while Fig. 8(b)
(resp. Fig. 8(d)) presents the results after the identification
procedure for PI (resp. MPI) approach.

Despite the chosen high accuracy (n + 1 = 16 backlashes),
the PI model does not catches the saturation (see Fig. 8(b)),
since it exhibits only symmetric hysteresis. This can be im-
proved significantly using MPI approach (see Fig. 8(d)), where
n + 1 = 16 backlashes and m + 1 = 16 dead-zone operators
have been used.

The numerical values for the identified weights for PI (resp.
MPI) model are given in equation (20) (resp. (21) and (22)).

wT
xH =10−6 · [0.1386, 0.1101, 0.0276,−0.0651, 0.1568,

− 0.0698, 0.0491,−0.0413, 0.0396, 0.0105,

− 0.0016, 0.0232,−0.0957, 0.0954, 0.0323,

− 0.0685]

(20)

wT
xH =10−6 · [0.4001, 0.0492, 0.0814,−0.0242, 0.0886,

0.0074, 0.0548, 0.0265,−0.0374, 0.0378,

0.0093, 0.1146,−0.2047, 0.0989, 0.1547,

− 0.1286]

(21)

w
′T
xS =[3.0803,−1.2216, 0.1782,−0.2045, 0.0502,

0.0478, 0.0894,−0.0221,−0.0336, 0.0163,

0.0620, 0.2135,−0.0247,−0.1913, 0.4753,

− 0.2476]

(22)

B. Hysteresis compensation with inverse Classical and Modi-
fied Prandtl-Ishlinskii models

To compensate for the hysteresis of the piezoactuator, its
model is inverted and cascaded with the real system. For
brevity, only the equations for inverse MPI model are given.
The inverse of MPI model is expressed by:

vpx(t) = H−1x [S−1x [xps ]](t)

= w′xH
T
Hr′xH

[w′xS
T
Sr′xS

[xps ],vpx0](t)
(23)

with the transformed vector of thresholds r′xH :

r′xHi =

i∑
j=0

wxHj (rxHi − rxHj ), i = 0, ..., n, (24)

vector of weights w′xH :

w′xH0
=

1

wxH0

, i = 1, ..., n

w′xHi = −
wxHi(

wxH0
+

i∑
j=1

wxHj

)(
wxH0

+
i−1∑
j=1

wxHj

) , (25)

and vector of initial states vpx0 of the inverted backlash
operators:

vpx0i =

i∑
j=0

wxHjxp0i +

n∑
j=i+1

wxHjxp0j , i = 0, ..., n. (26)

The inverse model of saturation operator has been already
determined by r′xS (see (17)) and w′xS (found in the identifi-
cation procedure (see (19)). The obtained MPI inverse model
of hysteresis is cascaded with the plant as shown in Fig. 2.

V. EXPERIMENTAL RESULTS

In this section the experimental results for hysteresis com-
pensation of piezoelectric actuator in the horizontal X axis
of the 3DOF platform are given. Fig. 9 shows hysteresis
compensation result for the considered methods. The difference
between the approaches is highly observed in the saturation
zone (see the inset in Fig. 9), for which the uncompensated
system has 10 % of hysteresis. Due to its symmetrical property,
the classical PI model lacks accuracy for high amplitudes for
which the saturation occurs (the compensated system has 3.3
% of hysteresis). Unlike the PI model, the Preisach and MPI
models can capture the asymmetric curves and the compensated
system has 1.2 % and 0.5 % of hysteresis, respectively (the per-
centage of hysteresis in the saturation zone has been evaluated
by taking the ratio between the hysteresis loop width and the
displacement range). Tracking triangular waveform signals of
frequency 1, 10 and 50 Hz are shown in Fig. 10(a), Fig. 10(c)
and Fig. 10(e), respectively. The corresponding tracking errors
are given in Fig. 10(b), Fig. 10(d) and Fig. 10(f)), respectively.
The rms and maximal tracking errors for uncompensated and
compensated system and for different scanning frequencies are
given in Table I.
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Fig. 9. Experimental hysteresis compensation for 1 Hz triangle input signal.

TABLE I
RMS AND MAXIMAL TRACKING ERROR - NUMERICAL VALUES

uncomp Preisach PI MPI

1 Hz rms (µm) 4.6996 0.4182 0.7975 0.3133
max (µm) 7.3042 0.8807 2.1765 0.6841

10 Hz rms (µm) 4.6659 0.5522 0.9998 0.4436
max (µm) 7.2417 1.3547 2.7494 0.9556

50 Hz rms (µm) 4.660 1.1560 1.1797 0.9688
max (µm) 7.4270 2.4660 3.0836 2.1547
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Fig. 10. Experimental results for triangular waveforms tracking: (a) 1HZ, (c)
10Hz, (e) 50Hz, corresponding tracking error: (b) 1HZ, (d) 10Hz, (f) 50Hz.

VI. CONCLUSION

In this paper inverse-based Preisach, PI and MPI approaches
have been implemented and validated experimentally on the
horizontal (X) axis of a 3DOF micro-/nanopositioning plat-
form. The obtained results show that in all cases a significant
improvement can be achieved w.r.t. any compensation. Though
still computationally intensive, the multiplicative inverse struc-
ture of the Preisach model allows to avoid model inversion
numerically and gives good results for asymmetric hysteresis.
The classical PI model is analytic and less time-consuming.
However, it gives satisfactory results only for reasonably small
input voltages and its performance deteriorates for higher
amplitudes due to its property of symmetry. The experimental
results confirm, that the MPI model has all the advantages
of its classical counterpart and generalizes it for asymmetric
hysteresis loops, thus making it both accurate and suitable for
real-time implementation.
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