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Abstract

Dynamic stabilization by simultaneous primary and superharmonic resonances for high order nonlin-

earity cancellation is demonstrated with an electrostatically-actuated, piezoresistively-transduced nanome-

chanical resonator. We prove experimentally how the combination of both the third-order nonlinearity

cancellation and simultaneous resonances can be used to linearly drive a nanocantilever up to very large

amplitudes compared to fundamental limits like pull-in occurrence, opening the way towards resonators

with high frequency stability for high-performance sensing or time reference.

PACS numbers: 85.85.+j, 05.45.-a, 46.40.Ff, 46.15.Ff
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Nanoelectromechanical systems (NEMS) are being developed for many applications such as

ultrasensitive mass1–3 and gas sensing4, subattonewton force detection at milliKelvin temperature5

or single-spin detection6. Recently and due to the early occurrence of their nonlinearities7, reso-

nant nano-scale mechanical devices have been used as platforms to explore fundamental questions

in nonlinear classical mechanics8.

Large amplitude vibrations, while maintaining harmonic signals without distortion, are essen-

tial to the frequency stability of a resonator, and hence to the performance of a resonant nanosensor.

The relative frequency noise spectral density of a resonator within its bandwidth is given by9:

Sf (ω) =

(
1

2Q

)2
Sx(ω)

P0

(1)

where Q is the quality factor, Sx is the displacement spectral density and P0 the displacement

carrier power, i.e. the root mean square drive amplitude of the resonator 1
2
A2.

The maximum amplitude is usually set by the onset of nonlinearity10, either for stability

reasons11 or noise mixing in the carrier side bands12. Some work has been carried out in the

past few years to overcome this limitation and stabilize the oscillation frequency of the resonator

using an internal resonance that couples two different vibrational modes13 or through hysteresis

suppression by nonlinearity cancellation7,10,14. This is usually achieved by adding a negative con-

tribution to the third order (Duffing) nonlinear term by means of an electrostatic gate for instance.

Unfortunately, this technique is limited by higher order nonlinear terms which may be of impor-

tance even for small amplitudes, i.e. a fraction of the gap between the resonator and the electrode

(typically below 20% of the actuation gap for electrostatically-actuated NEMS)7. The amplitude

response can become a multivalued function of the frequency and five possible amplitudes for one

given frequency is a clear signature of the physical significance of the fifth-order nonlinearities15.

It has been shown how the use of simultaneous primary (drive force at ωn, resonance at ωn) and

superharmonic (drive force at ωn/2, resonance at ωn due to the second order nonlinear term) res-

onances can tune and dynamically delay the onset of this multivalued, highly unstable behavior15.

In this paper, we demonstrate experimentally how the combination of these two techniques,

namely the nonlinearity cancellation and simultaneous resonances, can be used to stabilize and

drive a nanomechanical resonator almost linearly up to very large amplitudes compared to funda-

mental limits like pull-in occurrence.

The NEMS device (see Figs. 1(a) and 1(b)) consists of a cantilever beam of length l = 5µm,

electrostatically driven and connected to two suspended piezoresistive gauges at a distance

2



d = 0.15 l from its anchored end. The cantilever vibration induces stress in the piezoresistive

gauges which in turn is transduced into a resistance variation. It is fabricated on 200mm Silicon-

On-Insulator wafers using complementary metal oxide semiconductor-compatible materials and

processes. The readout scheme and process is fully detailed in16.
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FIG. 1: (a): Design parameters of the NEMS device (l = 5µm, a = 3.5µm, g = 200nm, d = 700nm,

h = 300nm, lg = 500nm, hg = 80nm). The gap g is the in plane distance between the cantilever

and the electrode. (b): Food-coloured SEM image of the in-plane piezoresistive structure. (c): Electrical

measurement scheme of the piezoresistive NEMS device for both 2Ω down mixing technique (Vdc = 0) and

simultaneous resonances (Vdc ̸= 0). Vac and Vdc are respectively the alternating current (AC) and the direct

current (DC) voltages applied to the drive electrode. Vb is the bias voltage applied to the nano-gauges, at a

frequency slightly shifted from that of Vac to down-mix the output voltage at a low frequency (typically a

few 10kHz). LIA, PS and LPF are lock-in amplifier, power splitter and low pass filter, respectively.

The considered NEMS has shown excellent performance in terms of frequency stability, with

more than 100 dB dynamic range, and achievable mass resolution of few tens of zeptograms

when operating in the linear domain16,17. We describe here how the electrostatic actuation of

this nanoresonator is suitable to implement the simultaneous resonances and increase its dynamic

range even further.
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A variational approach, based on the extended Hamilton principle18 has been used in order to

derive the nonlinear equations of motion of the resonator in bending sketched in Figure 1(a). A

reduced-order model is generated by modal decomposition transforming the continuous problem

into a multi-degree-of-freedom system10,14. Assuming that the first mode is the dominant mode

and neglecting the nonlinear damping, the resonator dynamics can be described by the following

dimensionless nonlinear ordinary differential equation for a single degree-of-freedom a1:

ä1 + µȧ1 + ωna1 + α2a
2
1 + α3a

3
1 + α5a

5
1

= 4VacVdcζ cos (Ωt) + V 2
acζ cos (2Ωt) (2)

The dot denotes derivation with respect to time, ωn the natural frequency, µ the constant damp-

ing coefficient, α2, α3, α5, the coefficients of the quadratic, cubic and quintic nonlinearities

respectively7. The amplitudes of the first and the second harmonic of the drive frequency Ω are re-

spectively proportional to VacVdc and V 2
ac, where Vac and Vdc are the AC and DC voltages applied

to the nanoresonator and ζ is a constant that depends on the geometric parameters.

When Ω is tuned around ωn

2
, the resonant response at ωn is obtained by both the first and the

second harmonic 2Ω. More precisely, the 2Ω-excitation mainly generates the primary resonance

at ωn, while due to nonlinearities, the Ω-excitation actuates a superharmonic resonance at ωn. The

response at ωn is thus made of simultaneous primary and superharmonic resonances. The latter

one is generated via a ”slow” excitation compared to the resonant frequency. Experimentally, this

can be achieved using the ”2Ω mode” readout scheme described in Fig. 1(c). By contrast, if

the frequency doubler is removed and the drive frequency is tuned around ωn with Vdc ̸= 0 and

Vac ≪ Vdc, an ”1Ω mode” is simply obtained for conventional primary resonance only.

The device under test was wire-bonded to a radio frequency (RF) circuit board and loaded in

a vacuum chamber for measurements at room temperature. In order to avoid signal shortage by

parasitic impedances, a down-mixing technique19 was used to readout the resistance variation of

the two nanowire gauges at a lower frequency ∆ω. Differential read-out was performed with in-

phase and out-of-phase bias voltages Vb (one gauge is under compressive stress while the second

one is under tensile stress)16. In order to analyze the dynamic behavior of the resonator under

primary resonance and discuss the onset of nonlinearities, the conventional 1Ω mode (frequency

doubler removed) was first used. The resonator was actuated using high DC voltages and a fixed

AC bias voltage at the gauges (Vb = 1.56V peak-to-peak) so as to reach the nonlinear regime.

The frequency response was measured using a lock-in amplifier in frequency sweep-up and sweep-
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down in order to obtain a full characterization of the resonator bifurcation topology. A constant

quality factor Q = 5000 was measured on linear frequency resonance curves.

Figure 2 shows two nonlinear frequency responses in 1Ω mode. The right-hand-side resonance

curve obtained for Vac = 150mV and Vdc = 5V displays a hysteretic softening behavior charac-

terized by an amplitude jump-up at the bifurcation point B2 and an amplitude jump-down at the

bifurcation point B3 which is around 75% of the gap.

The response obtained for Vac = 75mV and Vdc = 8V has a lower amplitude than the pre-

vious one because the actuation force is proportional to Vdc.Vac and has a direct consequence

on the displacement amplitude. The DC voltage increase also affects the resonator stiffness i.e.

shifts down the resonance frequency and amplifies the nonlinear electrostatic stiffness as well.

Under those drive conditions, the mechanical Duffing nonlinearity is negligible with respect to

the electrostatic one resulting in an amplified softening behavior (a stiffening behavior was also

observed under different experimental conditions). Despite a lower amplitude, the influence of the

high-order nonlinear terms and specifically of the quintic term (α5 ∝ V 2
dc) is clearly visible: in

frequency sweep-up, only one jump-up has been identified at the bifurcation point B2. However,

in frequency sweep-down, two jumps have been observed: a jump-up at the bifurcation point B1

and a jump-down at the highest bifurcation point in the softening domain B3 where the cantilever

oscillation amplitude is around 52% of the gap.

Obtaining a linear frequency response with this resonator at high amplitudes can be per-

formed in principle under primary resonance only (1Ω mode) by cancelling out the cubic term

(α3(Vdc) = 0) in Equation (2) and thus suppressing the hysteresis. α3 depends on the mechanical

and electrostatic parameters and in particular on the DC drive voltage. Assuming that the sec-

ond harmonic in Equation (2) is negligible, the optimal DC drive voltage cancelling α3 can be

computed from7:

VdcOP
= 3

√√
5.16 ∗ g14h6 + 104g10h6

(l−d)−4 − 4.53g7h3

10−9(l − d)4
(3)

The mechanical displacement between the anchors and the gauges being negligible, the resonator

is dynamically equivalent to a resonator of length l − d.

Applying Equation (3) to the resonator yields a relatively low optimal DC voltage VdcOP
≈ 1V .

Reaching large amplitudes (larger than the standard nonlinearity offset) in a linear fashion would

then require significantly high AC voltages (Vac > 0.5V ). Consequently, the assumption of
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FIG. 2: Nonlinear resonance frequency responses measured using a 1Ω down-mixing technique and show-

ing the location of the different bifurcation points {B1, B2 and B3}. Wmax is the nanoresonator displace-

ment at its free end normalized by the gap. The hysteresis suppression is limited by high order nonlinear

terms which leads to a highly unstable behavior for Vdc = 8V and Vac = 75mV .

negligible second harmonic terms is not valid anymore and Equation (3) is not applicable. More

importantly, the non-linear terms of order five influence the dynamic behavior of the resonator

already at low amplitudes as illustrated by the response (Vac = 75mV , Vdc = 8V ) plotted in

Figure 2. The nonlinearity cancellation is thus limited by potential dynamic instability such as

pull-in phenomena. Finally, no linear and stable behavior could be observed using the cancellation

of the third-order terms with the resonator under primary resonance only.

In order to overcome this issue, we combined the use of this third-order term cancellation

technique with the use of simultaneous primary and superharmonic resonances, which has been

shown to delay the onset of the quintic non-linear terms15. In this case, Equation (2) can be solved

using the method of multiple time scales and thus, the amplitude X and phase β modulations of

the response can be written as:

Ẋ = −ϵ (20Xα5ζ
2
1 cos β + 9α2ω

4
n)

81ω9
n (4ζ

2
1 sin β)

−1 − ϵµX

2
+O(ε2) (4)

β̇ = −40ϵα5ζ
4
1{6 + cos(2β)}
81ω9

n

− 6ϵα3X
2 + 5ϵα5X

4

16ωn

+2σ − 2ϵζ21 (2α2 cos β + 6α3X + 15α5X
3)

9ω5
nX

+O(ε2) (5)
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where ε is the small nondimensional bookkeeping parameter and σ is the detuning parameter.

In Equations (4) and (5), both slow (superharmonic) and fast (primary) dynamics are present

due to terms proportional to α5 or α2, the coefficients of the quintic and quadratic nonlinearities.

The AC voltage sets the 2Ω excitation while the DC voltage only amplifies the Ω excitation.

Unlike the case of primary resonance only shown in Figure 2, tuning the bifurcation topology in

the present simultaneous resonances configuration can be obtained by simply increasing the DC

voltage, i.e. amplifying the superharmonic excitation amplitude.

In practice, simultaneous primary and superharmonic resonances can be easily implemented

with the 2Ω downmixing readout scheme described in Fig 1(c), with Vdc ̸= 0. Moreover, high AC

voltages should be used to increase the first harmonic cos(Ωt) in Equation (2). The contribution

of the AC voltage in the nonlinear electrostatic stiffness was taken into account in Equation (2)

and the optimal drive DC voltage was analytically and numerically computed (α3(Vdc, Vac) =

0) for Vac = 2V , resulting in VdcOP
≈ 0.5V . Fig. 3 shows a resonance peak obtained with

these values. In this case, the resonator behavior is almost perfectly linear up to extremely high

amplitudes compared to the actuation gap (above 95% of the gap) and only a slightly softening

behavior remains. Computations predict that for this set of parameters the nonlinear electrostatic

and mechanical stiffnesses are balanced and that the oscillation amplitude of the cantilever is close

to 200nm at its free end (i.e. the width of the gap). The observed remaining softening part under

these computed drive conditions are attributed to fabrication uncertainties and approximations in

VdcOP
calculations.

In this experiment, the second-order nonlinear term α2 giving rise to superharmonic resonance

is used to control the stability of the nanoresonator around its primary resonance by retarding the

effect of the fifth-order nonlinearity. The latter yields a highly unstable behavior with five possible

amplitudes for one given frequency at amplitudes below 50% of the gap g as shown in Fig. 2.

We demonstrate here how the use of simultaneous primary and superharmonic resonances permits

the dynamic stabilization of the nonlinear nanoresonator in order to maintain a linear behavior at

large-amplitude vibrations close to the gap. At this vibration level, the free end of the resonator

reaches a distance of a few nm to the electrode without a damageable pull-in as would occur

without the use of simultaneous resonance.

In order to experimentally confirm such an oscillation level, the DC voltage was gradually in-

creased from 0.5V up to 2V . Obviously, the vibration amplitude of the resonator should increase,

eventually hitting the actuation electrode. Besides, the cantilever behavior should subsequently
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FIG. 3: (a): Slightly softening frequency response measured with the 2Ω down-mixing technique at the

optimal DC voltage Vdc = 0.5V for Vac = 2V (Vb = 1.56V ). (b): Zoom in the frequency region of the

resonance peak. Unlike the peaks obtained under primary excitation only in Figure 2, the combined use

of third-order term cancellation with simultaneous primary and superharmonic resonances enable a stable

and linear behavior of the nanomechanical resonator at very large amplitudes close to the actuation gap (the

onset of unstability being here above 95% of the gap g).

become more softening. Figure 4 shows the frequency response obtained for Vdc = 2V : the in-

crease in the electrostatic softening nonlinear stiffness is evidenced by the frequency shift between

the two bifurcation points (softening domain) which is significantly enlarged compared to Fig. 3.

However the output signal at the peak is still Vout ≃ 5.4mV , i.e. the same value as at Vdc = 0.5V .

The observed plateau is not due to any kind of electrical saturation and is very reproducible across

multiple measurements. We attribute this to the fact that the resonator reached a stable vibration

amplitude equal to the gap (200nm). At one given bias voltage, this can be interpreted as a mea-

surement of the experimental output voltage sensitivity per unit of displacement of the cantilever

free end and confirms the very high measured amplitude compared to the gap, see Fig. 3.
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FIG. 4: Frequency response with Vdc = Vac = 2V (Vb = 1.56V ). The horizontal branch intercepting the

bifurcation point B3 is not due to any saturation in the readout scheme. It rather shows that the cantilever

free end comes in physical contact with the actuation electrode in a reproducible way. This further confirms

the high vibration amplitude reached by the device in Fig. 3.

In this letter, a dynamic stabilization approach has been demonstrated on a nanomechanical res-

onator electrostatically actuated based on piezoresistive detection (160nm thick) fabricated using

a hybrid e-beam/deep ultraviolet lithography technique. The device has been characterized using

a 1Ω down-mixing technique in its nonlinear regime to investigate the stability domain of the can-

tilever dynamics under primary resonance. It has been shown that the high-order nonlinearities

limit drastically the operating domain of the nonlinearity cancellation. In order to overcome this

limit, the sensor has been actuated under its primary and superharmonic resonances simultane-

ously by using a 2Ω readout scheme. Specifically, the bistability domain of the resonator can be

significantly reduced and so it can operate almost linearly for displacements well beyond the mul-

tistability limit and almost up to the gap, while retarding undesirable behaviors and suppressing

pull-in (of course, impact on surrounding elements is undesirable to avoid harmonic distortion).

This technique opens promising perspectives for time-reference or sensing purposes: the fre-

quency stability of the device should be significantly improved compared to its operation in linear

regime below the bistability limit. In particular, the mass resolution one can expect with this de-

vice without reaching any damaging amplitude and this technique is about 20 zeptograms (five

times smaller than the performance reported in16). Specific devices will be fabricated in the near
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future to substantiate this fact.
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13 D. Antonio, D. H. Zanette, and D. López, Nature communications 3, 806 (2012).

14 L. C. Shao, M. Palaniapan, and W. W. Tan, Journal of Micromechanics and Microengineering 18,

065014 (2008).

15 N. Kacem, S. Baguet, R. Dufour, and S. Hentz, Applied Physics Letters 98, 193507 (2011).

16 E. Mile, G. Jourdan, I. Bargatin, S. Labarthe, C. Marcoux, P. Andreucci, S. Hentz, C. Kharrat, E. Colinet,

and L. Duraffourg, Nanotechnology 21, 165504 (2010).

17 M. S. Hanay, S. Kelber, A. K. Naik, D. Chi, S. Hentz, E. C. Bullard, E. Colinet, L. Duraffourg, and

10



M. L. Roukes, Nature Nanotechnology 7, 602 (2012).

18 A. H. Nayfeh and M. I. Younis, Journal of Micromechanics and Microengineering 15, 1840 (2005).

19 I. Bargatin, E. B. Myers, J. Arlett, B. Gudlewski, and M. L. Roukes, Applied Physics Letters 86, 133109

(2005).

11




