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Abstract

This paper deals with the use of piezoelectric patches for nonlinear dynamic identifica-

tion. The patches are glued on the structure to identify amplitude-dependent damping

and natural frequency; their positions are defined in order to perform the excitation con-

centrated on the first bending mode. Their locations on the structure allow to perform

”stop sines” tests, as, unlike electrodynamic shakers, piezos are embedded on struc-

tures and do not modify the studied structure after the excitation signal is switched off.

Although, despite the piezo and the stop-sine, the signal is still modulated by other fre-

quency components or polluted by random signals, a post processing with the extended

Kalman Filter allows a very good determination of the modal damping and the natural

frequency, especially when they depends on the free vibration amplitude.
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1. Introduction

In order to compute the vibration levels of built-up structures, the prediction of

damping remains a great challenge. Simulation tools, Computer Aided Design and

Finite Element Method, are used to predict both inertia and stiffness with a pretty good

accuracy, but damping is often badly estimated. As a consequence, the vibration levels
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are also wrongly predicted. The damping might be induced through several common

ways such as viscoelastic materials, pressure loss in fluids or solid friction. The latter

remains badly modeled, whereas the joints, such as welded points, bolted joints or

rivets, are widely used to link the parts of the mechanisms and the structures.

1.1. State of the art

Among all the studies that focus on friction-damping, it is commonplace to sep-

arate the works that highlight energy dissipations coming from macro-sliding, and

micro-sliding. In the first category, the damping is due to localized friction points,

see Berthillier et al.[1] or Poudou et al. [2] for instance. In this case, simulations and

tests are easy to perform because the contact region is generally localized and the slip-

ping occurs all over the contact area. In the second case, the damping comes from

partial sliding between the parts. Thus the sliding region is generally badly known and

the motion is governed by stick-slip waves between the parts. It was shown experi-

mentally by many authors (Goodman et al. [3], Beards et al.[4], Pian [5], Ungar [6])

that, in turn, the damping is strongly dependent to the vibration amplitude. This is due

to the pressure and the shear stress variations. This leads to difficulties in modelling

this case, see Festjens et al. [7] and Caignot et al. [8]. In simulations, geometrical

defects and loading trajectories have to be carefully taken into account. To avoid this

difficulty, it is also possible to measure and identify meta-models, see Festjens et al.

[9], on specifically designed test-benchs. Several testing devices have been designed

in order to achieve this goal Fig.1. The advantages of most of the experimental setups,

according to their design properties and their experimental process, were exposed in

Dion et al. [10]. Special attention has been payed to the coupling between tangential

and normal loads in the joints because this coupling makes the experiments quite hard

to perform, as the limit of sliding is depending on the normal load dynamics.

In previous works, Peyret et al. [22, 10] proposed to study the Energy Losses

(EL) on a new benchmark, Fig.1.j. This new academic assembly test was introduced

because it was experimentally difficult to ensure constant normal stress in the previous

benchmarks such as those suggested by Goodman et al. [3] and Metherel et al. [12],

see Fig.1.b and Fig.1.f. Peyret’s device is constituted of three parts linked together by
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Figure 1: Exemples of testing devices develloped to highlight friction induced damping

in joints. a. Beam assembly with a single bolted joint from Ahmadian et al. [11]-

b. Beam assembly with two bolted joints from Metherell et al [12] or Esteban et al.

[13]-c. Beam assembly symetrically screwed with two bolted joints from Song et al.

[14]- d. structure with two blocks, one spring and beam assembly with two bolted

joint and with special lap joint geometry from Goyder et al [15] - e. beam assembly

with distributed bolted joints in free conditions from Heller et al [16, 17]- f. beam

assembly with distributed bolted joints in clamped-free conditions from Goodman et al

[3], Nanda et al.[18, 19]- g. Polyarticulated structure with rotative friction joints from

Beards et al [4] - h. beam assembly with an active rotative joint from Gaul et al. [20]- i.

cantilever quartz beam dedicated to the study of microsliding in the clamp from Nouira

et al [21]- j. Clamp clamp cutted beam with pure microsliding in the interfaces from

Peyret et al [22]
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two planes ∂ΩF . The right and left parts are clamped to the ground and the third part

is excited thanks to piezoelectric patches glued in the middle of the part. The aim is to

excite the device on its first bending mode. The main advantage of this device is, that,

in the interfaces, on the first vibration mode, the bending-induced normal stresses are

nil. Thus, this allows to measure pure-shear stress, and its effect on the damping of the

first bending mode. This test bench is the one, we study in the present paper, but the

framework, ”piezos”, stop-sine, ”Kalman” might also be used for others specimens.

Each of these experimental configurations had been tested with specific excitation

device and excitation signals. There are several experimental ways to highlight non-

linear effects such as amplitude-dependent natural frequencies and damping, which

are very commonplace for friction dampers. Many works are based on steady-state

analysis in order to build Frequency Response Functions (FRF), [11, 4, 13] to esti-

mate the EL, through the frequency bandwidth or the quality factor of each modes.

EL can also be estimated through quasi-static analysis [11, 12, 3]. In this case, the

objective is to build energy ratios for various loading trajectories. This experimental

procedure is very close to the procedure performed with Dynamic Mechanical Ana-

lyzer (DMA) for viscoelastic properties identification. Transient analysis can also be

performed: the classical approach is to excite the structure with an impact hammer,

[23]; A more original approach is to obtain free-decay response by disconnecting the

sine-excitation device to the structure since a steady-state response very close to the

modal response was obtained, [16], [14]. This procedure is called stop-sine in the

present paper. This procedure allows to get the so-called backbones of the system; that

is to say, the amplitude-dependence of the natural frequency and the modal damping.

These characteristics are very useful because they belongs to the kernel of the system

and they do not depend on the excitation signal. For all this reasons, stop-sine has

been used in this paper. In order to apply such kind of signal, one has to be able to

get, firstly a stationary harmonic motion close to a modal vibration, and secondly a

free vibration motion collinear to the previous vibration mode. To get these two dis-

tinct motions without any displacement jump, the system must have the same vibration

properties before and after the excitation stops. It is very difficult to cut the mechanical

link between the structure and the classical excitation devices like vibrating tables or
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electromagnetic shakers. In fact, cutting the electrical link leads to residual electro-

magnetic forces. Thus, in this paper, we propose to embed piezoelectric patches on the

structure in order to provide the excitation force. As they are embedded the impedance

modification during the excitation stop remains negligible.

In order to post-process the tests and to identify the parameters of the specimen,

several methods can be used. For steady-state tests, FRF and force-displacement maps

allow to identify the damping using the frequency bandwidth around the resonnance

frequency. To evaluate amplitude-dependent damping during transient tests, the log-

arithmic decrement can be used on time-signals. To evaluate amplitude-dependent

frequencies and damping, time-frequency maps obtained with spectrogram or wavelet

[24, 16, 17, 21] are commonly used. In this paper, we will compare Hilbert Transform

and an Extended Kalman Filter to get instantaneous frequency and damping.
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Figure 2: Schema of the test-bench. Definition of each subdomains and each boundary

conditions
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2. Piezoelectric Excitation Design

The aim of this section is to justify the use of piezos for stop-sine tests. In order

to measure the dependence of the first natural frequency and modal damping to the

amplitude of vibrations, one expect to find the best positions and shapes for the actua-

tors. To demonstrate the efficiency of such actuators, we assume that vibrations can be

decomposed on the normal modes. In the case where non linearities come from partial

sliding in the joints, this assumption is commonplace and has been justified by several

authors such as Festjens et al. [9].

Firstly, the actuators ΩP have to transmit as well as possible the axial stress to

the structure ΩM along the interface ∂ΩPG. As the actuators are glued on the main

structure, this goal is achieved when the surface defects does not perturbate the stress

path. In our case, the actuators are thin enough to be less sensitive to surface defects,

see Figure 2.

Secondly, the positions of the actuators have to provide a great Electromechanical

Coupling Coefficient (EMCC) Ki for the first mode and lowers EMCC for other modes.

The EMCC can be computed thanks to the ”Open-Circuit” angular frequencies ωOC
i

and to the ”Short-Circuit” frequencies ωS C
i , see eqn (1).

K2
i =

(ωOC
i )2 − (ωS C

i )2

(ωS C
i )2

(1)

These frequencies can be computed thanks to the resolution of elastodynamic equa-

tions enhanced with electrostatic equations and coupled with piezoelectric constitutive

equations:

Elastodynamics equations Electrostatics equations and piezoelectric coupling

on ΩM and ΩP on ΩP

Ti j, j = ρüi Di,i = 0

S i j = 1
2

(
ui, j + ui, j

)
S i j = sE

i jklTkl + dki jEk

S i j = si jklTkl Di = diklTkl + ∈T
ikEk

Ei = ϕ, j

To determine the behavior of complex geometry structures, previous work suggested

weak formulations for the development of numerical methods to approximate the be-
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havior of such structures. It is impossible to make a complete state of the art in this

paper as the literature is abundant but Benjeddou’s survey [25] gives an overview. In

standard FE codes, the formulation with mechanical displacement and electric potential

is often used:∫
Ωp

ci jklδui, juk,ldV +
∫

Ωp
eki jδui, jϕ,kdV +

∫
Ωp
ρ ∂

2ui
∂t2 δuidV = 0

−
∫

Ωp
eikluk,lδϕ,idV +

∫
Ωp
∈ikϕ,kδϕ,idV = 0

(2)

FE approximation leads to the following Differential Algebric Equation (DAE): M

0


 Ü

Φ̈

 +

 Km Kc

−KT
c Ke


 U

Φ

 =

 0

0

 (3)

Thanks to these equations and constraining the displacement field to satisfy the Dirich-

let BCs on ∂ΩMF , the electric potential to satisfy the ground BCs ∂ΩPG and the electric

potential to be uniform on both electrodes ∂ΩPE1 and ∂ΩPE2, one can compute the

”Open Circuit” frequencies. 

U = 0 on ∂ΩMF

Φ = 0 on ∂ΩPG

Φ = Φ1 on ∂ΩPE1

Φ = Φ2 on ∂ΩPE2

(4)

Note that many users do not constrain the electric potential to be uniform on each

electrodes. In this case, see Fig. 3, the EMCC may be wrong mainly for the uncoupled

modes, see Table 1. This problem has been addressed in Chevallier et al. [26] and

[27]. It is possible to understand ”graphically”, on Fig. 3, that the electrode makes the

average of the potential all over surfaces of the patches; due to the anti-symetry of ϕ,

the average potential is nil on Modes 2-5.

In order to compute the ”Short Circuit” frequencies, one has just to add the follow-

ing constraint to the previous equations:

Φ1 = Φ2 (5)

Table 1 shows that, as expected, it is possible to design the actuators in order to get

only one coupled mode among the five first modes. If the design is robust, one can

expect to command only this mode.
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Figure 3: Patch voltages obtained with an eigenfrequency study with clamped mechan-

ical BCs and 0V electrical BCs.

Mode f OC
i Hz f S C

i Hz Ki% f OC
i Hz f S C

i Hz Ki%

1 820.53 821.97 5.90 820.53 821.97 5.90

2 898.76 899.17 3.03 898.76 898.76 0.00

3 1852.52 1852.59 0.87 1852.52 1852.52 0.00

4 2004.61 2006.15 3.92 2004.61 2004.61 0.00

5 2029.17 2029.32 1.21 2029.17 2029.17 0.00

Table 1: OC and SC Frequencies w/ (right) and w/o (left) Electrodes BCs ; EMCC w/

and w/o Electrodes BCs

Equations 3, 4 can be transformed into the subspace spanned by the five first eigen-

modes, see Thomas et al. [28]:
q̈i + 2ξiω0iq̇i + ω2

0iqi = Kiω0i
√

CV(t)

U(t) =
N∑

i=1
Φiqi(t)

(6)

where C denotes the capacitance of the patches, and V(t) denotes the excitation signal

in Volt. Therefore the Frequency Response Function of the structure under electric

excitation is given by:

X̂( jω)
V̂( jω)

=

N∑
i=1

Φi
q̂i( jω)

V̂( jω)
=

 N∑
i=1

Φi
Kiω0i

√
C

−ω2 + 2 jωξiω0i + ω2
0i

 (7)

Fig. 4 shows the Frequency Response Function of the structure under electric excitation

with piezoelectric patches located in the center of the beam on both sides with opposite

polarization and a serial electric wiring. The sensor A is placed on the left of the
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beam and measure on ey direction, see Fig. 2. As expected, if the patches are well-

manufactured and well-glued, the response only show the first mode (blue curve). If

there is a misalignment of 2mm of the patches along direction ex, the transfer function

highlights a few coupling (red curve). And if the patches are not linked together, all

the modes can be coupled (black curve). To conclude this section, let’s say that a good

design can allow to obtain a perfectly uncoupled excitation in order to follow only the

first mode of the structure but as the perfection is not human, the robustness of the

experiments can be improved by a good choice off excitation signal, see next section.
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Figure 4: Frequency Response Function of the structure. Blue: perfectly manufactured

specimen. Red: Misalignement of 2mm of the patches. Black: maximum coupling

when only a pair of patches is excited and the symmetries are broken.
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3. Excitation Signal

In order to get the dependence of the natural frequency and the modal damping to

the amplitude of vibration, we assume that modal decomposition is frequency inde-

pendent and we use a stop-sine excitation signal. The stop-sine signal is performed

with tuned frequency targeted to the first natural frequency. The greatest difficulty is

to produce an exact interruption of the excitation without introducing any perturbation

and any transient response. In this section, we demonstrate that this technique allows

to obtain a very little coupling between the modes. Moreover, we demonstrate that the

interruption time is not of great importance. The dynamic model of the structure can

be written in the modal base with this expression:
q̈i + 2ξi(qi)ω0i(qi)q̇i + ω0i(qi)2qi = fi cos (ωt)

U(t) =
N∑

i=1
Φiqi(t)

(8)

Considering the piezoelectric components for the excitation:

fi = Kiω0i
√

CV (9)

For steady state, assuming a first order Fourier Series Decomposition, modal solutions

are sought of the form:

qi(t) = Ai cos (ωt) + Bi sin (ωt)

q̇i(t) = −Aiω sin (ωt) + Biω cos (ωt)

q̈i(t) = −Aiω
2 cos (ωt) − Biω

2 sin (ωt)

(10)

Using this solution form in equation 8:(
Aiω

2
0i + 2ξiω0iωBi − Aiω

2
)

cos (ωt)+
(
ω2

0iBi − 2ξiω0iωAi − Biω
2
)

sin (ωt) = fi cos (ωt)

(11)

Thus, harmonic balance, between each Fourier term leads to:
Bi = fi

2ξiω0iω

(ω2
0i−ω

2)2
+4ξ2

i ω
2
0iω

2

Ai = fi
(ω2

0i−ω
2)

(ω2
0i−ω

2)2
+4ξ2

i ω
2
0iω

2

(12)

The solution can be built using Modal Decomposition:

Up(t) =

N∑
i=1

Φiqi(t) (13)
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This leads to:

Up(t) =

 N∑
i=1

Φi fi
(
ω2

0i − ω
2
)

(
ω2

0i − ω
2
)2

+ 4ξ2
i ω

2
0iω

2

 cos (ωt)

+

 N∑
i=1

2Φi fiξiω0iω(
ω2

0i − ω
2
)2

+ 4ξ2
i ω

2
0iω

2

 sin (ωt)

(14)

We define:

Ci =
(
ω2

0i − ω
2
)2

+ 4ξ2
i ω

2
0iω

2 (15)

Thus Equation 14 becomes:

Up(t) =

N∑
i=1


Φi fi

(
ω2

0i − ω
2
) N(k,i)∏

k=1
Ck

N∏
k=1

Ck

 cos (ωt) +

N∑
i=1


2Φi fiξiω0iω

N(k,i)∏
k=1

Ck

N∏
k=1

Ck

 sin (ωt)

(16)

Let us recall that one expects to get the maximum of colinearity with the first mode

in order to track its parameters (ξ1 and ω01) evolution according to its instantaneous

amplitude q1(t). Up(t) is fully collinear to the first mode Φ1 if the commands fi (i =

2...N) of the other modes are nil. As it is not in most of the cases, even if we placed the

piezos in order to achieve this goal, it is possible to reach the maximum of colinearity

with the first mode when C1 is minimum, namely:

∂C1

∂ω
= −4ω

(
ω2

01 − ω
2
)

+ 8ξ2
1ω

2
01ω = 4ω

(
ω2 − ω2

01 + 2ξ2
1ω

2
01

)
= 0 (17)

i.e. when the structure is excited at resonance frequency:

ωR = ω01

√
1 − 2ξ2

1 (18)

After the excitation stops, at time tc, the transient states qi(t) are given by the homoge-

neous equations:

q̈i + 2ξiω0iq̇i + ω2
0iqi = 0 (19)
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For each states, one reaches a solution of the form:

qi(t) = (Ki cos (ωPi (t − tc)) + Li sin (ωPi (t − tc))) e−ξiω0i(t−tc)

q̇i(t) = −ξiω0i (Ki cos (ωP (t − tc)) + Li sin (ωPi (t − tc))) e−ξiω0i(t−tc)+

ωPi (−Ki sin (ωPi (t − tc)) + Li cos (ωPi (t − tc))) e−ξiω0i(t−tc)

(20)

The excitation cutting time tc is chosen such that (t − tc) = 2kπ
ωP

with k ∈ N:

Ki = qi(tc)

Li =
−ξiω0iqi(tc)−q̇i(tc)

ωPi

(21)

At tc, the steady state gives the following initial conditions for the transient states: qi(tc) = Ai cos (ωtc) + Bi sin (ωtc)

q̇i(tc) = −Aiω sin (ωtc) + Biω cos (ωtc)
(22)

The transient response can be also built using Modal Decomposition:

Ut(t) =

N∑
i=1

Φi (Ki cos (ωPi (t − tc)) + Li sin (ωPi (t − tc))) e−ξiω0i(t−tc) (23)

Obviously, if Up(t) is collinear to the first mode, qi(t) and q̇i(t) are quasi nil for i = 2...5.

To achieve this goal, in the first simulations: f1 is greater than fi, i = 2...5. To illustrate

the fact that the cutting time has no influence, Figure 5 shows the signal computed with

previous equations taking into account two different cutting times. In the time-domain,

Fig.5, one can see that the signals are every similar. This is confirmed by the phase

diagram, see Fig. 6, where the signals are perfectly superimposed. This Figure also

highlights the fact that the value of tc only leads to a phase offset.

If the signal UP(t) is not collinear to the first mode, the transient response, i.e. for

t > tc may be modulated by other frequency components. The parameters that lead to

this situation are the excitation frequency ω and the commands fi. The influence of the

command is shown on Fig. 7. On can see that if f2 >> f1, it is impossible to get an

unmodulated signal even if the excitation frequency is equal to the resonant frequency.

Notice that the greater is the modal damping, the greater is the modal coupling.

The influence of the excitation frequency is shown on Fig. 8. On can see that if

ω = 1.2ω01

√
1 − 2ξ2

1 , it is impossible to get an unmodulated signal even if f1 is greater

12
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than f2. To summarize, the influence of the ω and fi on the performance of stop-sine

tests, the ratios K1/K2 and L1/L2 are plotted according to the ratios ωe/ωR and f1/ f2,

see Fig. 9. From this figure, one can conclude that the excitation frequency ωe might

be in a narrow bandwidth around the resonance frequency ωR; And that f2 has to be

ten times lower than f1 in order to get a good decoupling between the modes. This

means that the previous study on the placement of piezos is of great interest in order to

minimize the ratios fi/ f1.

4. Post-Processing using Kalman Filter

4.1. Tracking of damped sinusoidal components

The filtering of damped sinusoidal components into a composite signal cannot be

carried out by classical spectral analysis methods. ARMA filters [29] are not able to

separate sinusoidal components and random noise into a same frequency bandwidth.

Liftering techniques in cepstral analysis [30] and curve smoothing introduce important

distortions in phase spectrum.

As instantaneous phases of modulated signals need to be accurately tracked, here

a technique based on Extended Kalman filtering has been selected. Contrary to Vold-

Kalman filtering, no frequency information is required. Different versions of state-

space model have been proposed to model an amplitude and frequency modulated sine

for robustness and stability reasons [31, 32, 33, 34, 35]. An appropriate state-space
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Figure 9: Excitation frequency ω and modal command f2 influences on the ratios

K1/K2 and L1/L2
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model is chosen and detailed in the following paragraph, and formulas for parameteri-

zation are proposed.

4.2. Discrete state space formulation of an amplitude and frequency modulated sinu-

soid

The goal of this paragraph is to develop a state space formulation which is relevant

on a short time scale. A sinusoid whose amplitude and frequency are modulated over

time can be described in the complex domain as an analytic signal:

x (t) = a (t) exp ( jφ (t)) (24)

where a(t) is the instantaneous amplitude and φ(t) is the instantaneous phase. The

discrete form of x(t) at time step tn = n∆t is xn = x(n∆t). The complex variable xn can

be divided into its real and imaginary parts xn = x1,n + jx2,n = qn + jx2,n, with qn = x1,n

the modal displacement. A sinusoid that slightly varies over time can be approximated

by:

xn = an exp ( j (2π fnn∆t)) (25)

where fn is the instantaneous frequency. As the parameters fn and an of the sinusoid

slightly vary over time, they are almost equal between two consecutive time steps.

Then a transition formulation can be given from xn to xn+1:

xn+1 ≈ an exp ( j (2π fnn∆t)) × exp ( j (2π fn∆t)) (26)

This approximation is only true if modulations of an and fn are slower than the period

of the sinusoid. This constraint is assumed to be verified. Then a linear transition is

obtained between the imaginary part x2 and the real part x1, of xn and xn+1:

x1,n+1 = x1,n. cos (2π fn∆t) − x2,n. sin (2π fn∆t)

x2,n+1 = x1,n. sin (2π fn∆t) + x2,n. cos (2π fn∆t)
(27)

or written in a matrix form x1,n+1

x2,n+1

 =

 cos
(
2π fn∆t

)
− sin (2π fn∆t)

sin (2π fn∆t) cos (2π fn∆t)


 x1,n

x2,n

 (28)
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The instantaneous amplitude an is given by:

an =

√
x2

1,n + x2
2,n (29)

As an and fn should be allowed to vary over time, it is proposed here to use the

following non linear state-space formulation:

xn+1 = Φ(Xn) + Wn (30)

where Xn = (x1,n, x2,n, x3,n)T and Wn the process noise. A state variable x3,n =

2π fn∆t was added to track the evolution of the instantaneous frequency fn. The transi-

tion between two time steps is composed by a sum of two parts: the stationary part and

the evolutionary part.

The stationary part links two successive points of a stationary sinusoid by Φ(.).

Then Φ(.) is assumed as the non-linear transition function and is given by Φ(Xn) =

FnXn, where :

Fn =


cos

(
x3,n

)
− sin

(
x3,n

)
0

sin
(
x3,n

)
cos

(
x3,n

)
0

0 0 1

 (31)

The two first components are related to the complex amplitude and are obtained by

the previous linear relation. The third component x3,n+1 = x3,n constrains the frequency

not to change strongly between two time steps. Up to now, the non-stationary behav-

ior of the sinusoid was not modeled because it is not possible to formulate an exact

equation for its evolution. We suppose that Wn is a random variable whose probability

law is Gaussian : Wn = N(0,Q), where Q is its variance matrix. Then variations of

amplitude and frequency are allowed by random values of Wn.

In a first glance, it could seem strange to choose a random variable for an effect

which is generally deterministic. For instance, the variation of frequency excitation

due to an engine is mainly deterministic. Anyway, this state space does not need to

represent accurately the evolution of a sinusoid on a long period, but only step by step.

Then on a short time scale, a random evolution of an and fn is enough to model a

non-stationary sinusoid.
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This state space formulation is nonlinear: the transition function Φ(Xn) is varying

over time and depends on the frequency modulation.

In reality, only the real part x1,n of the analytic signal Xn can be observed. Unlike

the transition phase, the observation phase is completely linear

Un =

[
1 0 0

]
Xn + Vn

Un = x1,n + Vn

(32)

where Vn is a noise observation random process.

Finally, a nonlinear discrete state space model has been formulated to model the

transition and observation of sinusoid components mixed with random processes

 Xn+1 = Φ (Xn) + Wn

Un+1 = HXn+1 + Vn+1

(33)

where φ(.) is the nonlinear transition function given by φ(Xn) = F(Xn)Xn and H(.)

is the observation matrix given by :

H =

[
1 0 0

]
(34)

4.3. Application to the Extended Kalman Filter

Kalman filtering refers to a family of algorithms that track the temporal evolution

of a dynamic model based on noised measurements:

Xn+1 = f (Xn,Wn)

Un+1 = h (Xn+1,Vn+1)
(35)

described here in discrete time domain. An efficient algorithm in terms of means and

covariances can be derived when f (.) and h(.) are linear. Indeed it estimates the state

probability distribution by its two first moments. Unfortunately, they are no longer suf-

ficient to characterize the distribution in the nonlinear case. Then some approximations

have to be done in order to find a practical algorithm.

The extended Kalman filtering is an adaptation of the classical Kalman filtering to

problems with state dynamics governed by nonlinear transformations. Although it is
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not required here, it should be noticed that it can also handle a nonlinear transformation

from state variables to measurement variables. It generally exhibits a good robustness

because it uses linear approximation over small ranges of state space. Without any

input control, the state model is given by the first equation in system eq. 33 where

Wn is the process noise assumed to be Gaussian N(0,Q). The observation model is

described by the second equation in system eq. 33 where HXn+1 is the observation

function and Vn+1 the observation noise assumed to be Gaussian N(0,R). State and

observation noises are assumed to be uncorrelated. The Extended Kalman Filter [36]

is defined using predict and update phases. The predict phase gives an a priori estimate

of the state and covariance based on previous time step tn:

Predicted state

X̂n+1 |n = F̂n|nX̂n|n (36)

Predicted estimated covariance

P̂n+1|n = F̃n|n P̂n|n F̃T
n|n + Q (37)

And the update phase corrects the deviation of these estimations based on new

observation at time step tn+1:

Innovation

Ỹn+1|n = Un+1 − HX̂n+1|n (38)

Innovation covariance

S n+1 = HP̂n+1|n HT + R (39)

Kalman gain

Kgn+1 = P̂n+1|n HT (S n+1)−1 (40)

Updated state estimate

X̂n+1|n+1 = X̂n+1|n + Kgn+1Ỹn+1|n (41)

Updated estimate covariance

P̂n+1|n+1 = (I − Kgn+1H) P̂n+1|n (42)
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As the transition function φ is non-linear but differentiable, it is well locally ap-

proximated thanks to its Jacobian:

F̃n|n =
(
∇X(F (X) X)T

)T ∣∣∣∣
X=X̂n|n

(43)

In the case of M modulated components, the first order derivative is required:

∇Xn =

(
∂

∂x1,n

∂
∂x2,n

... ∂
∂x3M−1,n

∂
∂x3M,n

)T
(44)

and the approximation becomes:

F̃n,i =


cos

(
x̂3,n

)
− sin

(
x̂3,n

)
−x̂1,n sin

(
x̂3,n

)
− x̂2,n cos

(
x̂3,n

)
sin

(
x̂3,n

)
cos (x̂3n) x̂1,n cos

(
x̂3,n

)
− x̂2,n sin

(
x̂3,n

)
0 0 1

 (45)

4.4. Non linear damping and frequency identification with Extended Kalman Filter

The most accurate excitation in the context of our study is a stop sine, tuned near the

natural frequency. When the sine is stopped, the structure response is governed by the

free vibrations motion. This motions is spatially colinear to the eigenmode studied (see

figure 10). This property is significant and allows studying non linear dynamics with

accuracy. Decreasing magnitude is used to study non-linear damping and backbone, by

assuming that the damping depends on the displacement magnitude. The non linearity

is assumed to be identify as an evolution of the natural frequency and damping of the

first bending mode versus vibration amplitude.

In order to identify the instantaneous damping and frequency, three time-identifications

methods are compared:

• The zero counting method consists in estimating the frequency with the time gap

(number of samples) between two zero-crossing point of the time signal.

• The Hilbert method consists in the synthesis of the analytic signal (complex)

composed with the original one and its Hilbert transform which composes the

imaginary part. The complex signal allow to compute instanateous amplitude

ans phase. The instantaneous frequency is the time derivative of the instanteous

phase [10].
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Figure 10: time signal and envelop of the tuned stop sine

• The Kalman Filter method [37] is used in order to avoid edge effects and oscilat-

ing envelop.

Figure 11: Evolution of the natural frequency of the first bending mode versus the

displacement magnitude with three identification techniques.

Figure 11 and Figure 12 show the evolution of the natural frequency and the evolu-

tion of modal damping versus the displacement magnitude respectively. The curves are

to be read from the right to the left, because the time-signal starts from large amplitudes

and reaches null amplitudes, see Fig. 10.
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Figure 12: Evolutions of the damping versus the displacement magnitude for 4 different

normal loads and a monolithic specimen

On Figure 11, the starting frequency is mistuned and the very first free oscillations

cannot be used for non linear identification. During this short phase, the identification

process shifts from the forced frequency to the natural frequency. The identification

process starts from 0.7 µm and ends at 0 µm. The natural frequency of the bending

mode of our specimen is amplitude dependent. Friction in the interfaces acts as a

softening effet.

The damping also depends on the displacement magnitude. Figure 12 represents

the evolution of the first bending mode damping according to the displacement mag-

nitude. The results obtained for the reference beam are compared with those obtained

for the cut beam loaded with four different normal loads. These curves highlight that

the damping depends on the displacement amplitude and on the normal load. As the

normal load increases, the damping increases. This is due to the fact that there is less

friction and partial sliding when the normal load is greater. The damping increases

as the displacement magnitude increases. This is due to the augmentation of the slid-

ing area according to a behavior very close to the one described by Mindlin [38] and

more recently by Peyret et al. [22]. The damping evolution may be different after the

vibration amplitude for which total sliding occurs, see Festjens et al. [7].

As both the damping and the natural frequency lead to the same exponential term

that makes the vibration amplitude decrease, see eqn (20), one can wonder if the damp-
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ing increasing can be an artefact due to the frequency decreasing. Nevertheless, thanks

to the signal decomposition we did, eqns (28) and (29), we get enough information to

identify them separately and to be self confident in their own evolutions.

5. Conclusions

The goal of this study is to analyze transient vibrations in order to identify the rela-

tionship between the natural frequency, the modal damping and the vibration amplitude

considering each mode separately. To achieve this goal, we propose a solution based

on three key points : the load is applied by piezoelectric patches, the excitation signal

is a stop-sine, the signal processing algorithm, for parameters identification, is based

on the Extended Kalman filter.

In comparison with a shaker, the piezoelectric patches are embedded on the struc-

ture. Their mechanical behavior does not shift enough to modify the natural frequency

of the structure when the electrical excitation is stopped. Moreover the patches are

embedded on the structure on a position which provide a great electro-mechanical cou-

pling for the desired mode and a very small coupling with the others.

In spite of the great advantages given by the patches and due to manufacturing

errors, there is still a risk of coupling with others modes. To avoid the excitation of

the others modes, we use the stop-sine to excite the structure at a frequency as close as

possible to the resonance frequency. This allows to have stationary vibrations close to

the desired mode. Thus, at the excitation cutting-time, the initial conditions of the free

vibrations are colinear to the eigenmode we want to observe.

The processing of the signal by Kalman filtering allows to denoise the signal, even

if it remains small coupling between the modes. Thanks to the measurements, the

combined action of patches and ”stop sines”, the modal uncoupling is very efficient

and the processing of the signal by the Hilbert Transform can also efficiently be used

to obtain the parametric identification for instantaneous frequency and damping.

The main limitation of this process is the effective power of the piezoelectric patches

that remains low especially for the excitation of massive and stiff structures.
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Appendix

Appendix A: Piezoceramic manufacturer data

The piezoceramic manufacturer’s useful data are the following.

Mass density: ρ = 7800kg.m−3
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Elastic compliance: sE
11 = 16.1 × 10−12m2N−1, sE

33 = 20.7 × 10−12m2N−1

Strain piezoelectric constants: d31 = −180×10−12CN−1, d33 = 400×10−12CN−1, d15 =

550 × 10−12CN−1

Relative dielectric constants: ∈T
r11= 1650, ∈T

r33= 1750
(
→∈T

11= 14.6nFm−1, ∈T
33= 15.5nFm−1

)
Material coupling factor: k31 = 0.35

Appendix B: Specimen informations

The specimen is a machined, made of steel C35. The Young modulus of the ma-

terial is equal to 220 GPa and its Poisson ratio is equal to 0, 3.The dimensions are

summarized on Figure 13.

Figure 13: Geometry of the specimen.

Appendix C: Acronyms

EKF Extended Kalman Filter

EMCC Electro-Mechanical Coupling Coefficient

EL Energy Losses

FRF Frequency Response Functions

BC Boundary Conditions

SC Short Circuit

OC Open Circuit

FE Finite Element
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Appendix D: Nomenclature

Ti j Mechanical stress tensor (order 2)

ui displacement field

S i j Mechanical Strain Tensor (order 2)

si jkl Material constitutive tensor (order 4)

, j denotes the partial derivation in all the equations, according to the coordinate e j

j j in all the equations, denotes the discrete sum according to the coordinate e j

P Polarization of the piezos

Ki Electro-Mechanical Modal Coupling Coefficient

Di Electric Displacement field

Ei Electric Field

di jk Electromechanical coupling tensor (order 3)

si jklE Piezo Material constitutive tensor (order 4)

ϕ Electric Potential

ω0i, ξi Natural frequency and Modal damping of the ith mode

fi Modal electromechanical force for the ith mode

ωOC
i , ωS C

i Natural angular frequency in Open Circuit and Short Circuit of the ith mode

ω Angular frequency of the harmonic excitation

x(t), xn Continuous-Time and Discrete-Time analytic signal of displacement

x1,n, x2,n Real and imaginary parts of the analytic signal.

x3,n Instantaneous phase of the signal

a(t), an Continuous-Time amplitude, Discrete-Time amplitude

φ(t) Instantaneous phase

fn Instantaneous frequency

Wn Process noise

Vn Noise observation random process

Kgn Kalman gain
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