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In this paper, we investigate the effect of high modes of buckling on the mechanical
behavior of a pre-shaped curved beam. In a first stage, the presented modeling develops
further the snapping forces solution and bistability conditions in order to include high
modes of buckling. In a second stage, we develop the analytical solution of the stresses
inside the beam during deflection between the two sides of buckling.

The buckling with or without mechanical conditions on antisymmetric modes, the
force characteristics, bistability conditions and stresses are described in this paper based
on mathematical approach in order to provide a clear physical understanding of the
curved beam behavior and its design parameters. The accurate knowledge of the design
parameters is important in order to achieve the best integration of the curved beam in
a complete microstructure.

The analytical results are compared with and without considering high modes of
buckling and have shown to be in excellent agreement with FEM simulations. The results
show the importance of the high modes in calculating stresses and snapping forces.

Keywords: Pre-shaped curved beam; Buckling; Bistable mechanism; Stress state; MEMS.

1. Introduction

In microsystems, numerous applications can benefit from bistability, such as

switches, valves, relays, positioners [Chen et al., 2011], braille displays [Niu et al.,

2012], reconfigurable robotic devices [Hafez et al., 2003] and digital microrobotics.

[Chen et al., 2008, 2010; Chalvet et al., 2011, 2013]. Bistable structures are generally

simple and allow assigning a binary state to every reachable position.
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The stability of a bistable system can be ensured either by active or passive

maintain. In active maintain [Fukuta et al., 2006; Abadie et al., 2009; Driesen

et al., 2010], the mechanism needs some external energy to keep its place, while

it’s not the case in passive maintain where the mechanism is inherently stable at

each position. Generally, passive maintain has many advantages such as low energy

consumption due to short actuation time and self-stability which allows improving

the repeatability with an open loop control. Many passive maintain examples can

be found in literature, we can mention magnetic maintain [Zhang et al., 2007; Wu

et al., 2010; Barth and Kohl, 2010], bistable electro active polymers [Yu et al., 2010],

and compliant mechanisms [Oberhammer et al., 2006; Chen et al., 2009a,b, 2010;

Huang and Yang, 2013].

Further, compliant mechanisms exhibit many advantages such as increased pre-

cision and reliability, no friction, reduced wear, and low manufacturing costs.

Curved beam can be considered as a bistable system that combines the advan-

tages of passive maintain and compliant mechanisms.

In this paper, we develop the analytical solution of the snapping forces and

stresses with considering high modes of buckling. The impact of high modes of

buckling on the snapping forces, the bistable behavior and the stress state is dis-

cussed based on a mathematical approach.

Bistable curved beam designs are still paying the price for the lack of physical

intuition by resorting to the FEM modeling, where there is difficulty to consider all

complex and nonlinear effects. Euler elastica theory was the starting point to study

the beam buckling for large deformation. Based on Lagrangian approach, Vangbo

[1998] carried out one of the first studies on pre-compressed curved beams that

takes compressibility into account for small deformations. The obtained expressions

consider high modes of buckling. Buckling behavior of a suspended microbeam as a

result of electrothermal expansion is investigated by Chiao and Lin [2000]. Emam

and Nayfeh examine in their studies [Emam and Nayfeh, 2004; Nayfeh and Emam,

2008] the vibration and dynamics of postbuckling configurations of a beam. Park

and Hah [2008] demonstrate that bistability of buckled beams depends not only on

a ratio of its initial rise to its thickness, but also on its residual stress. Cazottes

[2009] in his thesis has studied the bistability of a pre-compressed curved beam

when it is actuated either by force or by moment. Elastica models for static and

dynamic analysis with solutions and experiments are given by Camescasse [2013]

in his thesis. Chen et al. [Chen and Hung, 2012; Chen and Tsao, 2013], carried out

one of the last studies on extensible elastica theory of a curved beam.

Concerning the case of a pre-shaped curved beam, Qiu et al. [2004] have cal-

culated analytically the snapping forces by neglecting high modes of buckling and

they provide an approximation of the solution with high modes for high values of

the initial height-to-thickness ratio. Their analytical results are approved by FEM

simulations and experiments.

This paper recalls in a first stage the solution of the snapping forces of a pre-
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shaped curved beam with clamped-clamped boundary conditions. The solution is

obtained in [Qiu et al., 2004] using an approximation of neglecting high modes of

buckling.

In section 3, we develop analytically the solution of the snapping forces with

considering high modes of buckling. The analytical expressions obtained with high

modes implicitly include the effects of all modes of buckling on the curved beam

behavior. Existence and magnitude of bistability are discussed with respect to the

snapping forces evolution.

In section 4, evolution of stresses inside the curved beam is calculated analyt-

ically with and without the approximation of high modes. Calculating the stress

state is important for the design, particularly for miniaturization and optimization

purposes under elastic or failure limits.

Finally, the analytical results with and without high modes of buckling are

compared with FEM simulations. This comparison shows the interest to consider

high modes of buckling in the modeling of the curved beam behavior.

2. Buckling of a beam

2.1. Buckled beam model

Buckling a beam is defined as a sudden deformation which occurs when the excess

of compression energy stored in the beam is converted into bending energy. In other

words, transverse deflection occurs when the compressive force P exceeds a critical

value P0, the beam enters in the first buckling mode (Figure 1).

Fig. 1. Buckling of a beam before and after a critical axial compression.

The postbuckling configuration of the beam can be considered as a compliant

mechanism that shows bistability. The buckled beam shows stability of its posi-

tion at two possible configurations which are symmetrically distributed in the two

buckling sides (Figure 2).

In most cases, and in this paper, the action can be a lateral force applied in the

middle of the beam. Otherwise, the action can be also a force applied in different

points [Camescasse, 2013], an electromagnetic field [Park and Hah, 2008], an electro-

static field [Krylov and Dick, 2010; Tajaddodianfar et al., 2014] or moments applied

in determined locations on the beam [Stoimenov et al., 2007; Cazottes, 2009].

There are two possible approaches to deal with the post-buckling problem, based

on static and dynamic models. In dynamic modeling, there are two types of modes,



December 10, 2015 14:41 WSPC/INSTRUCTION FILE ”Final manucript”

4 HUSSEIN HUSSEIN, PATRICE LE MOAL, GILLES BOURBON, YASSINE HADDAB, PHILIPPE LUTZ

Fig. 2. Transition between the two stable positions of a buckled beam as a result of a lateral
force applied in the middle of the beam.

buckling modes that depend on axial stress and resonance modes that depend on the

system frequency. In contrast, since it does not consider the time, static modeling

exhibits only buckling modes.

Generally, the resonance frequency of a clamped-clamped preshaped curved

beam is higher while reducing the beam dimensions. MEMS devices generally range

in size from 20µm to few millimetres. An interest to dynamic modeling can be re-

ferred to studies in [Emam and Nayfeh, 2004; Nayfeh and Emam, 2008; Cazottes,

2009; Camescasse, 2013; Tajaddodianfar et al., 2014]. In this study, we investigate

the static modeling.

Curved beams can be divided on the basis of the fabrication process to three

kinds [Zaidi et al., 2011]:

• Pre-compressed curved beams where the beam is fabricated rectilinear then

it is compressed [Vangbo, 1998; Cazottes, 2009; Camescasse, 2013].

• Pre-stressed curved beams where during fabrication, the beam is buckled

due to residual stress which is added by heating or oxidation [Pane and

Asano, 2008].

• Pre-shaped curved beams where the beam is directly fabricated at the first

buckling shape mode without residual stresses [Qiu et al., 2001].

The behavior of the pre-compressed curved beam is symmetrical between the

two sides of buckling, in terms of the snapping force, beam shape and stresses evolu-

tion. However, in the case of microfabrication, the monolithic constraint makes this

solution difficult to use. The pre-stressed curved beam makes the integration into a

monolithic device easier, but the residual stress is difficult to control by fabrication

[Zaidi et al., 2011]. However, for the pre-shaped curved beam, despite the fact that

symmetry is lost and that bistability exists under some conditions, fabrication and

integration are simpler. Some solutions are presented in the literature to improve

the symmetry property of pre-shaped curved beams [Jensen et al., 2001; Qiu et al.,

2004].

In this paper, we investigate the modeling of a pre-shaped curved beam fab-

ricated directly at the first buckling shape mode. The model of the curved beam
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presented in Figure 3 has the following characteristics: axial force P , thickness t,

depth b, span l, deflection d, beam shape w(x) and applied lateral force in the middle

of span f . Moreover, h is the height of the fabricated curved beam at x = l
2 .

Fig. 3. Clamped-clamped curved bistable beam at initial position and after deflection.

2.2. Buckling equation

Based on small deformation hypothesis, Timoshenko [1961] gives the buckling equa-

tion of a curved beam:

d2

dx2

(
EI

d2w

dx2

)
+ P

d2w

dx2 = 0 (1)

where E is the Young’s modulus and I =
∫∫

z2dydz is the quadratic moment.

Considering a uniform beam in terms of material properties and sections:

EI
d4w

dx4 + P
d2w

dx2 = 0 (2)

Introducing the clamped-clamped boundary conditions implies the modal nature

of the solution. The solution is an infinite sum of buckling modes:

w(x) =

∞∑
j=1

ajwj(x) (3)

where aj is the jth constant mode which reflects the contribution of each buckling

mode in the total solution, and wj(x) is the jth buckling shape mode:

wj = 1− cosNj
x
l

Nj = (j + 1)π

}
j = 1, 3, 5...

wj = 1− 2x
l − cosNj

x
l +

2 sinNj
x
l

Nj

Nj = 2.86π, 4.92π, 6.94π, 8.95π...

}
j = 2, 4, 6...

(4)

where Nj is the jth mode of the normalized axial force N and N =
√

Pl2

EI .
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2.3. Snapping forces without high modes of buckling

The approximation of neglecting high modes of buckling simplifies the calculation

[Qiu et al., 2004]. Normalization is taken in order to simplify the solution:

X =
x

l
;Wj(X) = wj(x);W (X) =

w(x)

h
=

∞∑
j=1

AjWj(X);F =
fl3

EIh
; ∆ =

d

h
(5)

The variational calculation in [Qiu et al., 2004] leads to three kinds of solutions.

The first kind is when the curved beam is in the compressible phase:


F = F1

N <

{
N2 mode 2 is not constrained

N3 mode 2 is constrained

Aj 6= 0; j = 1, 5, 9, 13...

(6)

The second kind is when N reaches N2 without mechanical constraints:
F = F2

N = N2

Aj 6= 0; j = 1, 2, 5, 9, 13...

(7)

The third kind is when mode 2 is constrained and N reaches N3 :
F = F3

N = N3

Aj 6= 0; j = 1, 3, 5, 9, 13...

(8)

Mode 2 is constrained by connecting two curved beams in the middle as shown

in Figure 4. Otherwise, for a simple curved beam without constraints, the stability

margin for the second stable position is too low. In this paper, we are interested

only to the first and third kinds of solutions. The results for the second kind are

similar to those of the third kind in calculation.

Fig. 4. Transition between the two stable positions of two curved beams connected in the middle,
mode 3 appears during transition.

The terms Aj , for j = 1, 5, 9, 13..., have the following values:

A1 = −1

2

N2
1

N2 −N2
1

+
4F

N2
1 (N2 −N2

1 )
(9)
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Aj =
4F

N2
j (N2 −N2

j )
for j = 5, 9, 13... (10)

Two characteristics equations that describe the curved beam behavior are de-

rived from the variational calculation:

∆ = 1− 2
∑

j=1,5,9...

Aj (11)

N2

12Q2
=
N2

1

16
−

∞∑
j=1

A2
jN

2
j

4
(12)

where Q is the height-to-thickness ratio Q = h/t.

The following equations summarize the first and third solution kinds of the

snapping forces that are calculated in [Qiu et al., 2004] without high modes of

buckling. For the first kind:


F1 =

3π4Q2

2
∆

(
∆2 − 3∆ + 2 +

4

3Q2

)
N2 = 3π2Q2(−∆2 + 2∆)

W (X) = A1W1(X); A1 =
1−∆

2

(13)

For the third kind:
F3 = 6π4(

4

3
−∆)

N = N3

W (X) = A1W1(X) +A3W3(X)

A1 =
1−∆

2
;A2

3 = − 1

16

(
∆2 − 2∆ +

16

3Q2

) (14)

3. Snapping forces with high modes of buckling

In this section, we develop the solution of the snapping forces taking into account

the high modes of buckling. The stability equilibrium is then analyzed in the two

sides of buckling based on the snapping forces solution.

3.1. Snapping forces

Combining equations (9) and (10) with (11) and (12), the two infinite series become:∑
j=1,5,9...

Aj = −1

2

N2
1

N2 −N2
1

+ 4F · Sum1 (15)

∞∑
j=1

A2
jN

2
j =

1

4

N2
1 (N4

1 − 16F )

(N2 −N2
1 )2

+ 16F 2 · Sum2 (16)



December 10, 2015 14:41 WSPC/INSTRUCTION FILE ”Final manucript”

8 HUSSEIN HUSSEIN, PATRICE LE MOAL, GILLES BOURBON, YASSINE HADDAB, PHILIPPE LUTZ

where Sum1 and Sum2 have the following shapes:

Sum1 =

∞∑
j=1,5,9...

1

N2
j (N2 −N2

j )
(17)

Sum2 =

∞∑
j=1,5,9...

1

N2
j

(
N2 −N2

j

)2 (18)

Imposing j = 4k + 1, Sum1 in (17) can be decomposed in two infinite sums:

1

4π2N2

[ ∞∑
k=0

1

(2k + 1)2
−

∞∑
k=0

1

(2k + 1)2 − ( N2π )2

]
(19)

The first sum in (19) is equal to:

∞∑
k=0

1

(2k + 1)2
=
π2

8
(20)

The second sum can be concluded from the following equation [Remmert, 1991]:

π tan(
π

2
x) =

∞∑
k=0

4x

(2k + 1)2 − x2
(21)

Then, Sum1 is equal to:

Sum1 =
1

8N3

[
N

4
− tan(

N

4
)

]
(22)

Introducing (22) in (11), a new equation is derived:

F =
N3

N
4 − tan N

4

(
N2

N2 − 4π2
−∆

)
(23)

The sum in (18) can be obtained by deriving the sum in (17) with respect to N :

∂(Sum1)

∂N
= −2N · Sum2 (24)

Then, Sum2 is equivalent to:

Sum2 =
3

64N4

[
1−

tan(N4 )
N
4

+
tan2(N4 )

3

]
(25)

Introducing (25) in (12), the following equation is obtained for the first kind of

solution:

3

16N4

(
1 +

tan2 N
4

3
−

tan N
4

N
4

)
F 2

1−
4π2

(N2 − 4π2)
2F1+

N2

12Q2
−
π2N2

(
N2 − 8π2

)
4 (N2 − 4π2)

2 = 0

(26)

Equations (23) and (26) are the characteristic equations which allow defining

the relations between F , N and ∆ for the first kind of solution. In this case, the



December 10, 2015 14:41 WSPC/INSTRUCTION FILE ”Final manucript”

MODELING AND STRESS ANALYSIS OF A PRE-SHAPED CURVED BEAM: INFLUENCE OF HIGH MODES OF BUCKLING 9

problem can be solved by numerical method. The idea is to change N in (26) from

0 to the point where there are no real solutions. 2 values of F are obtained for each

value of N . Introducing these values in (23) , the relations N −∆ and F −∆ are

obtained.

Figure 5 shows evolution of N in function of ∆ for different values of Q. Shapes of

the curved beam during snapping between two sides of buckling are shown in Figure

5 with first, second and third kind of solution. Noting that the normalized axial force

N is equivalent to zero at (∆ = 0, F = 0) and at (∆ = 20/π2, F = 3840/π2). The

normalized displacement at the end of deflection is close to 2, but not exactly as it

is for the pre-compressed beam.

Fig. 5. Evolution of the normalized axial force N in the first kind of solution in function of Q
ratio. N is constant in the second and third kinds of solution. The shape of the curved beam in
the first, second and third case.

Furthermore, Figure 5 illustrates the values of Q providing the transitions be-

tween the first, second and third kinds of solution. In the first kind of solution, the

maximum value of N that can be reached during snapping increases with increasing

the value of Q. N exceeds N1 only for:

Q ≥
√

64π2

117− 7π2
≈ 1.16 (27)

Noting that at N = N1, the normalized force has a unique value F = 2π4 .

On the other side, the third kind of solution is simpler. Making N constant at

N3 = 4π, the third kind simplify the previous equations. Evolution of the force can

be directly concluded from (23):

F3 = 64π2

(
4

3
−∆

)
(28)

Equation (28) exhibits a perfect linear interaction between force and displace-

ment in the third kind of solutions. Figure 6 shows evolution of F in function of ∆

for different values of Q.
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Fig. 6. Evolution of the normalized snapping force F of the pre-shaped curved beam for different
Q values when mode 2 is constrained.

On the other side, the mode constant A3 which appears in the third kind of

solutions is obtained by recalculating (26) without canceling A3, then introducing

(23) in the new equation:

A2
3 = − 3

4π2
∆2 +

14

9π2
∆ +

1

18
− 20

27π2
− 1

3Q2
(29)

Noting that the sign of A3 changes with the direction of deflection.

In light of the equation of A3, the third mode cannot appear unless Q respects

the following condition:

Q ≥
√

162π2

27π2 + 32
≈ 2.314 (30)

Further, ∆top and ∆bot (Figure 6), which are the exact positions where the third

mode appears, can be concluded from (29):

∆top,∆bot =
28

27
± 2π

3

√
1

6
+

16

81π2
− 1

Q2
(31)

The exact values of Ftop and Fbot (Figure 6) can be concluded simply by intro-

ducing the values of ∆top and ∆bot respectively in (28).

3.2. Bistability conditions

Physically, the curves in Figure 6 present the amount of the lateral force produced

by the beam in the center point after displacement. In this context, the bistability

that we look for is provided by the negative portions of F produced by the beam

that will push to the other buckling side.
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As we can conclude from figure 6, the value of the snapping force is not symmetric

between the two sides of buckling. This comes from the bending energy which starts

its evolution from the initial shape per fabrication.

The shift-up of the curves in Figure 6 affects the bistability behavior. Mechan-

ical conditions must be considered in order to involve bistability, while the greater

margin of stability remains in the first side of buckling.

The stable positions are the points where F is equivalent to zero and the beam

tends to return to its position after a small displacement. Thus, canceling F in (26)

for the first kind of solution, three values of N are obtained. Putting these values

in (23), three values of ∆ are obtained:

∆ =

{
0,

3

2
±
√

1

4
− 4

3Q2

}
(32)

We conclude from (32) and Figure 6 that the beam exhibits two stable positions,

only for Q >
√

16
3 ≈ 2.31. The second ∆ is unstable position because every variation

of its state will create a tendency to move away.

Moreover, due to mode 3, when Q ≥
√

6 ≈ 2.45, there are three new values of

∆ where F is equal to zero:

∆ =

{
0,

4

3
,

3

2
+

√
1

4
− 4

3Q2

}
(33)

The first and last ∆ values in (33) are the two stable points. In the other side,

the ∆ positions which cancel F for the second kind of solution are:

∆ =

{
0, 1.96,

3

2
+

√
1

4
− 4

3Q2

}
(34)

A curved beam where the unsymmetrical modes of buckling are not constrained

(including mode 2) will never show bistability unless Q > 5.65. The bistability in

this case is very limited and no important force is obtained in the second side of

buckling.

Table 1 summarizes the conditions on Q in order to reach N1, N2, N3 and the

bistability feature. The normalized axial force N inside the curved beam reaches N1

during deflection between the two sides of buckling only for Q > 1.16 and reaches

N2 for Q > 1.65 when mode 2 is not constrained and reaches N3 for Q > 2.31 when

mode 2 is constrained. The bistability exists only for Q > 5.65 when mode 2 isn’t

constrained and for Q > 2.31 when mode 2 is constrained.

4. Stress State

In this section, axial and bending stresses are calculated with and without the

approximation of high modes. This allows obtaining the evolution of the maximal

total stress inside the curved beam during deflection.
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Table 1. Conditions on Q in order to reach mode
1, mode 2, mode 3 and the bistability feature for the
curved beam.

Mode 2 Mode 2
unconstrained constrained

Mode 1 Q ≥ 1.16 Q ≥ 1.16
Mode 2 Q ≥ 1.65 does not appear
Mode 3 does not appear Q ≥ 2.31
Bistability Q ≥ 5.65 Q ≥ 2.31

4.1. Stresses without high modes

Stresses inside the beam are decomposed into axial stress and bending stress. Axial

stress is constant along the beam and has a maximum when the deflection is around

the middle while bending stress changes along the beam sections and increases as

far as the deflection is closer to the other side. The axial stress p is equivalent to:

p =
Et2

12l2
N2 (35)

The bending stress T starts evolution from the initial shape:

T = Ez

(
d2w

dx2 −
d2w

dx2

)
(36)

where w(x) is the initial shape of the beam and z is the distance in the cross section

to the neutral line.

For the first kind of solution, axial stress is simply concluded from (13) and (35):

p = π2Eth

l2
Q

4
(−∆2 + 2∆) (37)

Also, bending stress is obtained using (13) and (36):

T =
2π2Ezh

l2
∆ cos 2π

x

l
(38)

The same for the third kind of solution, axial and bending stresses are calculated

from (14), (35) and (36):

p = π2Eth

l2
4

3Q
(39)

T =
2π2Ezh

l2

(
∆ cos 2π

x

l
− 2

√
−∆2 + 2∆− 16

3Q2
cos 4π

x

l

)
(40)

The total stress inside the beam is simply the sum of the axial and bending

stresses. However, analyzing (38) and (40), the extremum of the bending stress is

noticed at the midpoint x = l
2 and at boundaries x = [0, l] when the first kind of

solution is present and only at the middle when mode 3 is present. Also, the stress

is maximized when z is at the limits z = | t2 |. Then, putting these values in the stress
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equations, the absolute value of the maximal total stress during deflection can be

written as follows, for the first kind of solution:

σ∆
max = π2Eth

l2

(
−Q

4
∆2 +

(
1 +

Q

2

)
∆

)
(41)

And for the third kind of solution:

σ∆
max = π2Eth

l2

(
∆ + 2

√
−∆2 + 2∆− 16

3Q2
+

4

3Q

)
(42)

Analyzing the last two equations, we notice the presence of 3 different forms of

evolution curves for the maximal stress during deflection, as shown in Figure 7.

Fig. 7. Evolution of the maximal stress in the beam during deflection for different values of Q.

The first form of stress is when only the first kind of solution exists. The second

form is when the third kind of solution appears during deflection. The third form

is when the maximal stress point is higher in the third kind of solution domain.

The first form exists for Q <
√

16
3 ≈ 2.31, while the third one appears for

Q > 2
√

31
3 − 4

√
5 ≈ 2.36. The second form of stress exists between the last two

values of Q. Noting that there is a small difference between the last two values of

Q, which means that the second form of stress is a rare case.

The maximal stress point in the first two forms is at ∆ = 2 when Q ≤ 2 and at

∆ = 1 + 2/Q when Q ≥ 2. Thus, for Q ≤ 2, the maximal stress σmax is equivalent

to:

σmax = 2π2Eth

l2
(43)

When Q is between [2; 2.36], σmax is equivalent to:

σmax = π2Eth

l2

(
1 +

1

Q
+
Q

4

)
(44)
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In the third form, the maximal stress point is at:

∆ = 1 +
1√
5

√
1− 16

3Q2
(45)

Introducing this value in (42), for Q > 2.36, σmax is equivalent to:

σmax = π2Eth

l2

(
1 +

4

3Q
+
√

5

√
1− 16

3Q2

)
(46)

Noting that the maximum of σmax in the last form is for Q = 16/
√

3. However,

based on the previous equations, σmax is ranging between:

σmax = π2Eth

l2
·


2 Q < 2

[2; 2.01] Q ∈ [2; 2.36[

[2.01; 3.31[ Q ∈ [2.36;∞[

(47)

These values of σmax in (47) are calculated when ∆ is ranging between 0 and

2. Although, the end of deflection can be considered at the second stable position

that corresponds to a transversal displacement ∆ lower than 2. In this case, the

new range of σmax is as follows:

σmax = π2Eth

l2
·
{

[1.93; 1.97] Q ∈ [2.31; 2.34]

[1.97; 3.31[ Q ∈ [2.34;∞[
(48)

4.2. Stresses with high modes

In the other side, the problem with high modes is complex and hard to handle

without approximations. Difficulty lies in the fact that the maximal stress point is

difficult to determine analytically.

Axial stress (35) remains the same, while bending stress changes with the con-

sideration of high modes. Bending stress in this case is concluded by introducing

(4) into (3) and (3) into (36):

T = π2Ezh

l2

2 cos 2πX −
∑
j

Aj(j + 1)2 cos (j + 1)πX

 (49)

The index j in the previous equation refers to j = 1, 5, 9... for the first kind of

solution, and to j = 1, 3, 5, 9... for the third kind of solution.

Drawing equations with changing ∆, N, and Q variables along the beam shows

that the midpoint at x = l
2 is a local maximum point, and in some cases, the global

maximum will not remain at the midpoint but rather a point beside it. However,

there are no big difference between stress values at the local and global maximum

points. An approximation to suppose the midpoint as the global maximum point is

taken. The infinite sum in (49) is calculated by referring to the second sum in (19).

The maximal total stress for the first kind of solution is then concluded:
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σN,∆max = π2Eth

l2

[
N2

N2 − 4π2
+

N2

12π2Q
+N2

(
N2

N2 − 4π2
−∆

)
tan N

4

4π2
(
N
4 − tan N

4

)]
(50)

The maximum of the stress in the first kind of solution is at the final point. Not-

ing that the final point where N is equivalent to zero is at ∆ = 20/π2. Introducing

these values in (50), the maximal stress becomes:

σmax = π2Eth

l2
× 240

π4
(51)

Idem for the third kind of solution, the maximal total stress can be obtained by

setting the value of N and taking into account the constant A3:

σ∆
max = π2Eth

l2

[
4

3
+

4

3Q
+

4

9

√
−243

π2
∆2 +

504

π2
∆ + 18− 240

π2
− 108

Q2

]
(52)

The maximum of the third solution of stress is remarked at ∆ = 28/27. In-

troducing this ∆ value in (52), we obtain the total maximum stress for the third

solution of stress:

σmax = π2Eth

l2

(
4

3
+

4

3Q
+

4

27

√
192

π2
+ 162− 972

Q2

)
(53)

We should note here that the global maximum point is at x = l/2 when the

deflection ∆ is at the two specific positions taken in (51) and (53). In this context,

(51) and (53) are exact.

Based on the above, the maximal stress with considering high modes of buckling

is ranging between:

σmax = π2Eth

l2
·
{

2.46 Q < 2.42

[2.46, 3.41[ Q ∈ [2.42,∞[
(54)

Noting that the maximum for the maximal stress in the third kind of solution is for

Q =
√

156
2+ 64

27π2
.

5. Simulations and Discussion

In this section, results with and without the approximation of neglecting high modes

of buckling, are compared with finite elements simulations using ANSYS.

Simulations are made on a mechanism of two curved beams connected in the

middle in order to prevent unsymmetrical buckling modes from occurring. In theory,

the snapping force f will be doubled with the number of beams while the deflection

d and stresses inside the beam remain the same.

A comparison between the snapping force theory with and without high modes of

buckling and simulation of a silicon curved beam with 5mm length, 20µm thickness,

10mm depth, 80µm height and a Young’s modulus of 169 GPa is presented in Figure

8.



December 10, 2015 14:41 WSPC/INSTRUCTION FILE ”Final manucript”

16 HUSSEIN HUSSEIN, PATRICE LE MOAL, GILLES BOURBON, YASSINE HADDAB, PHILIPPE LUTZ

Fig. 8. Comparison of the snapping-force behavior during deflection between theory and FEM
simulation.

Curves in Figure 8 show a good agreement between the present theory and FEM

simulation. The curve without high modes of buckling was compared previously by

Qiu et al. [2004] with FEM simulations and experiments.

The presented modeling with high modes shows to be more similar to the FEM

simulation in terms of the snapping forces. It allows obtaining the expressions

of the different values of Q and the main snapping points (∆top,Ftop,∆bot,Fbot)

that include the effects of all modes of buckling. In the example given in Fig-

ure 8, the relative difference between the negligence and the consideration of high

modes of buckling for the values of the snapping points (∆top, Ftop, ∆bot, Fbot) is

(38.53%, 2.93%, 2.32%, 1.39%) respectively.

The quite large error on the ∆top parameter could be a problem for the design

of a bistable system. Reminding that the bistable system, as we assume in this

paper, is composed of a passive bistable mechanism such a preshaped curved beam

and actuators for switching between both stable positions. The snapping points

in terms of displacements and forces respectively define the stroke and the force

that the actuators have to provide. Thus, the accurate knowledge of the relations

between the snapping points and the preshaped curved beam dimensions is very

important in order to achieve the best integration of the complete bistable system.

Noting that the curves in Figure 8, with and without high modes, meet at the

two stable positions.

In the other side, Figure 9 shows a comparison of the evolution of maximal

stresses, between the theory with and without high modes of buckling and simulation

of a curved beam with the same dimensions and properties.

The importance of high modes of buckling is more obvious in the calculation

of stresses. As shown in Figure 9, neglecting high modes will make a significant

difference between the calculated stress and the simulation. Differences appear in

the shape of the stress curves and in the highest stress point position.

Figure 10 shows the evolution of the maximal bending stress in the two cases,
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Fig. 9. Comparison between the maximal stress value during deflection between theory and FEM
simulation.

with and without high modes of buckling.

Fig. 10. Comparison between the bending maximal stress value during deflection with and with-
out high modes of buckling.

Comparing the results in Figure 9 and 10, we conclude that the bending stress

has the main contribution in the total stress value. The bending and total stress

curves have almost the same shape. The contribution of high modes of buckling is

more important in the calculation of the bending stresses.

In the first kind of solutions, the axial stress evolves after deflection from the

two sides of buckling to the middle (Figure 5), while the maximal bending stress is

higher when the curved beam is far away from its initial position (Figure 10).

In the third kind of solutions, the axial stress is constant along the beam (Figure

5), while the bending stress has a maximum around the middle of deflection (Figure
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10).

Calculating internal stresses in the curved beam is important for design purposes,

particularly for miniaturization and for determining the design limits under elastic

or failure limits.

The accurate determination of the relation between the beam dimensions and

the stress state allows identifying the limits of miniaturization and avoiding the

fracture of a miniature curved beam.

6. Conclusion

We investigated the effect of high modes of buckling in the modeling of a pre-shaped

curved beam. In a first stage, the presented modeling develops further the snapping

forces solution and bistability conditions in order to include high modes of buckling.

In a second stage, we developed the analytical solution of the stress inside the beam

during deflection between the two sides of buckling.

The buckling with or without mechanical conditions on antisymmetric modes,

the force characteristics, bistability conditions and internal stresses have been de-

scribed in this paper based on mathematical approach in order to provide a clear

physical understanding of the nonlinear bistable behavior of a curved beam. Finally,

the calculus was compared with and without high modes and with FEM simulations.

The results show that considering high modes of buckling allows improving the

accuracy of the snapping force curves, while the importance is more obvious for the

calculation of the stress state.

The presented work in this paper constitutes a basis for the design and the

optimization of a preshaped curved beam bistable mechanism. Future works aim to

define the capabilities of miniaturization of such bistable mechanism as a function

of the expected mechanical performances and the elastic or failure limits.
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