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Abstract 

This research on punch wear resulting from the blanking of copper alloy thin sheet has been 

conducted by means of experimental and numerical analyses. Firstly, the experimental 

method has consisted in measuring punch worn profiles from replicas, and secondly in 

obtaining the wear coefficient by using a specific tribometer. The numerical modelling of 

blanking process has been developed with the finite element method to compute the 

mechanical fields necessary to calculate wear. Thus, the Archard formulation for abrasive 

wear has been programmed to compute the wear depth and the resulting punch geometry. 

Finally the simulation results of wear prediction have been compared to experimental ones. 
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1. Introduction 

 

Among the shearing processes, blanking is one of the most frequently used due to its 

reliability and capability of mass production. The process is also very economical because it 

allows to easily obtain the appropriate size and shape of a large parts number. As in every 

production process, tools life time is of major concern for multiple reasons: the part quality 

mainly depends on tool wear, frequent tool changes slow down production time and increase 

maintenance costs. Therefore, predicting tool wear can be a key feature to improve the 

process efficiency. 

For the last decades, wear in blanking has been the subject of several experimental researches, 

mainly to understand its impact on the product quality (burr height). Maeda et al. [1,2] have 

investigated blanking tool wear distribution and its influence on the process parameters 

(blanking force, energy, burr height). Hernandez et al. [3] have studied the effects of tool wear 

on the shearing mechanism and resulting form errors. Monteil et al. [4] have developed a 

direct method for measuring punch wear, based on selective activation technique, which 

allows to quantify in real time the influence of blanked material or lubrication. However, 

compared to other forming processes such as deep drawing [5,6] and hot forging [7], the 

combination of experimental and numerical methods to predict tools wear has been less 

investigated in blanking. Hambli [8] has developed a finite element (FE) model and has 

implemented an algorithm to predict punch wear during steel metal sheet blanking. The 

Archard formulation [9] for adhesive wear was considered to calculate wear depth on the 

punch, and a comparison with experimental results was performed. Hambli [10] has also 

proposed a theoretical approach to predict tool wear based on the evolution of the punch edge 

radius within Blanksoft, an industrial software dedicated to the optimization of sheet metal 
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blanking processes. It is worth noting that the mentioned studies have been conducted with 

steel and stainless steel materials; less interest has been accorded to copper alloys. 

In the present paper, punch wear profile has been determined experimentally by a double-

replication method, and the wear coefficient of Archard formulation has been obtained by a 

specific tribometer. Then, FE simulation results have been used within a wear algorithm based 

on an Archard formulation applied to abrasive wear in order to predict the worn punch profile. 

The final section of this paper presents a comparison between experimental and numerical 

results of wear prediction. 

 

2. Experimental method 

 

The main objective of the experimental study conducted by Makich [11] has been to 

determine the influence of punch wear on the part quality during copper alloy thin-sheets 

blanking. A double-molding procedure has been developed to observe wear profiles, and a 

specific tribometer has been designed to determine the wear behaviour of several material 

couples. 

 

2.1 Blanking test description 

As shown in Fig. 1a, the blanking process consists in a metal sheet positioned over a die in 

which a punch passes through to plastically deform the metal until a crack propagates and 

leads to complete separation of the cut part. A sheet-holder is added to maintain the sheet 

during the travel of the punch to avoid elastic springback and movement of the sheet, thus 

increasing the quality of the cut edge profile. 
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Fig 1: a) Configuration of the studied blanking process b) Tensile test curve of the blanked material 
 

The blanking tests have been performed on a BRUDERER 50 tons press with a speed of 

500 strokes/min. The principal geometrical data of the model is illustrated in Fig. 1a and listed 

in Table 1. 

Parameter Punch radius Rp Sheet thickness e Punch – die clearance jpm 

Value 1.85 mm 254 µm 10 µm 

Table 1. Main geometrical characteristics of the blanking process 

In this study, the blanked material is a copper-iron alloy strip of 15 mm width and 0.254 mm 

nominal thickness. The mechanical properties of the blanked material have been obtained by a 

conventional tensile test. The true-stress – true-strain curve (Fig. 1b) has been approximated 

by the following equation: 

nkεσσ += 0        (1) 

The rational (true stress and strain) tensile test curve (Fig. 1b) has been linearly extrapolated 

to take account of large deformation plasticity within FE modelling. The chemical 

composition and mechanical properties are respectively provided in Table 2 and 3. 

Element Cu Fe P Others 

wt.% >99.61 0.05 – 0.15 0.025 – 0.04 < 0.2 

Table 2. Chemical composition of the blanked material 
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Parameter Symbol Value 

Young’s modulus E  121 GPa 

Poisson’s ratio ν  0.34 

Yield strength 0σ  332 MPa 

Material constant k  221 MPa 

Strain hardening exponent n  0.52 

Table 3. Mechanical properties of the blanked material 
 

2.2 Determination of the punch wear profile 

A double-print method has been developed in order to obtain the punch wear profile at 

different production stages without removing the punch from the mechanical press, and then 

not modifying the operating conditions. This in situ procedure of wear measurement by 

profilometry was divided into three major steps : 

� Obtaining the imprint of the punch (without dismantling) 

� Making a replica of the punch 

� Measuring the edges of the replica by profilometry. 

Observation of the punch by microscopy has revealed that the wear mechanism involved was 

purely abrasive. 

2.2.1 Imprint of the punch 

To carry out the imprint of the punch, a mold has been milled in a wedge block (Fig. 2a and 

2b) to be filled with a volume of silicone resin (designated Coltène® President plus jet Light 

Body). The extremity of the punch has been immerged in this mold for a couple of minutes, 

according to the resin drying time. Impressions have been taken every 12,500 strokes of the 

punch. 
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Fig. 2 : Experimental device used for producing an imprint of the punch : (a) global view on the 
mechanical press (b) detailed view of the wedge block 

 
2.2.2 Replica of the punch 

Once the impression of the punch has been performed, another silicon resin (called Rencast® 

FC 52 Isocyanate & Polyol) compatible with the first one has been used to produce punch 

replica. 

 

Fig. 3 : Replica of a punch after 787,500 strokes 
 
Fig. 3 gives a detailed representation of a punch replica after 787,500 punch strokes. Besides 

the presence of abrasive wear streaks, the precision of this method allows to observe 

regrinding streaks. 
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2.2.3 Extraction of wear profiles 

 

When the replica of the punch has been carried out, a variable focus optical microscope 

(InfiniteFocus®) has been used to extract 3D surfaces of the punch at four diametrically 

opposed locations. For each surface, an average profile has been determined and a 

representative state of wear for a given punch strokes number has been obtained by 

calculating an average profile from the four previous ones. Finally, a mathematical equation 

has been employed to fit this profile (Fig. 4), thus allowing to integrate the punch geometry in 

a numerical simulation. As already mentioned by Hernandez et al. [3], the worn punch profile 

may be decomposed in three zones: face wear, cutting edge wear and flank wear (Fig. 4). 

 

Fig. 4 : Initial profile, worn profile and corresponding fitting curve (766,500 punch strokes) from a punch 
replica with zoom on the cutting edge  

 

In addition, the initial profile obtained after regrinding is shown on Fig. 4. The initial and 

worn profiles have been positioned according to reference planes determined outside worn 

areas. 
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2.3 Determination of the wear coefficient 

 

The Archard wear formulation [9] describes the wear volume as dependent on the load NF  , 

the sliding distance s , and the wear coefficient K  . This coefficient depends on the material 

couple and is originally defined as the probability of contacts resulting in the removal of a 

particle. The wear coefficient has been measured experimentally in this study by means of a 

tribometer placed before the opening of the mechanical press, where the sheet coil is unrolled. 

 

2.3.1 Principle and description of the specific tribometer 

 

The tribometer developed by Makich [11] has been intended to measure a wear 

coefficient with specified parameters, and has been designed specially to be integrated on a 

production line (Fig. 5). Thus, it allows to directly test different operating conditions during 

the blanking tests on the mechanical press. 

As illustrated in Fig. 5, the configuration of the tribometer consists in a spherical pin (5 mm 

diameter; same material as the punch) lying on a flat sheet of the studied metal grade. A 

normal load (7 N) is applied on the pin, as the sheet translates in a continuous motion toward 

the mechanical press (37 mm/s; imposed by the stroke rate). 

Contrary to most of conventional tribometers such as pin-on-disc or ring-on-ring where the 

wear track remains the same during the tribological experiment, the open tribometer permits 

the rubbing surface to be constantly renewed. Therefore, the friction conditions with this 

tribometer get closer to the ones met during the blanking operation. Greban [12] has 

performed friction tests on a conventional pin-on-disc tribometer and noticed that, despite the 

ease of implementation of this method, the operating conditions were very different from 
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those found during blanking. Contrary to the pin-on-disc tribometer, the punch always rubs 

into a renewed material at each stroke, allowing to better evacuate wear particles for example. 

 

Fig. 5 : Tribometer location on the production line 
 
After a prescribed sliding distance of metal sheet, the spherical pin has been taken apart from 

the tribometer and the volume loss has been measured. This procedure has been repeated two 

times to obtain a mean value of the volume loss. 

 

2.3.2 Evaluation of the wear coefficient 

 

After a sufficient sliding distance, the material loss of the spherical pin has appeared to be 

comparable to a regular spherical cap. Then, the first approach for determining the volume 

loss has consisted in measuring the radius of the base of the cap and using the expression of a 

hemisphere volume (Fig. 6a and 6b). However, a closer look at the worn pin has revealed 

cavities and asperities contributing significantly to the volume loss. Therefore, a second 

approach has been considered by employing a 3D topographic acquisition method with a 

confocal microscope (Alicona®). The acquired image has been postprocessed with 

Gwyddion® software in order to create a reference plan, corresponding to the non-worn shape 

of the sphere. The wear volume has then been determined by integrating the volume under the 

reference plane with Surfcom® software (Fig. 7). 
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Fig. 6 : a) Wear aspect of spherical pin (2025 m sliding distance); b) corresponding wear profile at center 
line 

 

Fig. 7 : Deconvolution of the spherical shape of the pin 
 
Finally, the wear coefficient K  has been calculated by means of the Archard equation [9] by 

dividing the volume loss of the pin V  , by the constant applied load NF  multiplied by the 

total sliding distance s , thus leading to a value of 2.1 10-11 mm²/N for the tungsten 

carbide/copper-iron alloy couple. 

 

3. Wear modelling 

 

Wear is a phenomenon widely investigated due to its economical concerns. Mechanical wear 

can be sorted in several classes, the most commons in metal forming being the abrasive wear 

and adhesive wear. In the literature, several authors [13 – 15] have reviewed numerous 

models to predict wear phenomena. Hegadekatte et al. [16] have classified wear models into 
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two main categories: mechanistic models based on material failure mechanisms, and 

phenomenological models which are using principles of contact mechanics. In the first 

category, Suh [17] has developed the delamination theory of wear which involves dislocation 

mechanics. Kapoor [18] has studied wear under repeated loading where the material 

accumulates unidirectional plastic strain until a critical value, which leads to a failure termed 

ratchetting. In the second category, Archard [9] has proposed a simple linear model in terms 

of material volume loss, contact pressure and sliding distance of contacting parts. Over the 

past,  Archard’s equation has been modified to meet particular case studies. Rhee [19] has 

proposed a wear equation with separate exponents on the contact pressure and the sliding 

distance. Sarkar [20] has included the friction coefficient to take account of the asperity 

junction growth in wear phenomenon. Ersoy-Nürnberg et al. [5] have presented a wear 

coefficient to be variable with the accumulated wear work, which depends on dissipated 

energy. 

The Archard model has been considered in this study to be a suitable solution in connection 

with a finite-element model, since each variable can be calculated within the blanking 

simulation. Moreover, the proposed experimental method for punch wear measurement 

favoured a phenomenological approach, as it was based on observing and fitting a punch 

shape resulting from prescribed working conditions. 

 

     3.1 The Archard model 

 

The Archard wear model is widely used to predict the wear behaviour of surfaces. This model 

is based on a phenomenological approximation of the adhesive wear mechanism that takes 

into account the load and the sliding distance in the interface of two contacting bodies. 

The formulation has been adapted to other wear mechanisms and can be expressed as follows: 
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sFKV N ⋅⋅=        (2) 

where V  is the worn volume, NF  is the applied load and s is the sliding distance. The wear 

coefficient K  is originally defined as the probability that an asperity contact produces a wear 

particle. It is also interpreted as “the fraction of asperities yielding wear particles, as the ratio 

of the volume worn to the volume deformed, as a factor inversely proportional to a critical 

number of wear cycles, and as a factor reflecting the inefficiencies associated with the various 

processes involved in generating wear particles” [21]. This coefficient is established for a 

material couple, and can be measured experimentally by means of a tribological test (see 

section 2.3). 

 

     3.2 Numerical implementation of the model 

 

By considering a representative elementary volume of material, Eq. (2) can be written: 

dsdFKdV N ⋅⋅=      (3) 

Introducing the elementary contact area Ωd  allows to express the wear depth dW  from the 

relations Ω⋅= ddWdV  and Ω⋅= dpdFN  , where p  is the contact pressure: 

dspKdW ⋅⋅=      (4) 

For numerical applications, Eq. (4) is calculated over a time interval [tn, tn+1] corresponding to 

the n  and )1( +n  increments of the simulation. The incremental expression is then 

implemented following an Euler scheme: 
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where n
Pi

W  is the wear depth at increment n  calculated for a given punch node iP  of 

coordinates ix  , and 1+n
Pi

p  is the contact pressure at increment )1( +n  expressed at the same 

node. 
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iP
n
ns )( 1+  is the sliding distance between increments n  and )1( +n  and n

Pi
s  is the cumulated 

sliding distance at increment n provided by the FE solution. This value can be negative due to 

the non unidirectional movement of the nodes. 

However, as the punch is modelled by rigid elements, no calculation of mechanical variables 

is performed on this tool. Thus, the contact pressure and sliding distance values calculated on 

the sheet are used to determine wear on the punch. Wear depth on the punch PW  is then 

obtained by integration of the calculated wear depth from the sheet TW  along the 

corresponding punch profile l: 
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where x  and y  are respectively the coordinate vector of the punch nodes and the sheet 

surface nodes. 

According to the non-local modelling developed by Pijaudier-Cabot and Bazant [22], the 

product 
ii P

n
n

n
P sp )( 11 ++ ⋅  defined at punch node iP  is obtained by calculating the weighted 

average values of the product 
jj T

n
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n
T sp )( 11 ++ ⋅  obtained from the sheet 

nodes jT  (coordinates jy  ) and located near the considered punch node. Eq. (5) can then be 

expressed by using Eq. (6) as a discrete integral corresponding to the calculation of the wear 

depth at node iP  : 
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where cL  is the parameter which determines the number of sheet nodes N  considered for the 

weighting operation ( Pc tL 2=  in this study) and PN  is the number of punch strokes. This 

distribution allows to take account of the relative distance separating a given punch node from 

a sheet node, thus traducing a more realistic wear behaviour. 

The wear prediction is performed during the steady-state wear stage. Therefore, a 

multiplication of the wear depth from one punch stroke is appropriate to approximate the wear 

occurring after several punch strokes. However, this number of strokes should not be too high 

for two main reasons. The first one is that one must avoid reaching the accelerated wear state. 

The second reason is that according to the shape variation of the wear profile during the 

process, stress and contact pressure fields are expected to vary, thus modifying wear 

distribution along the punch profile. Choosing an elevated number of punch strokes will not 

take into account this wear distribution variation and will lead to a significantly different wear 

profile. 

The wear algorithm based on these equations has been programmed under Matlab® 

environment. Data including contact pressure, relative tangential motion, coordinates of the 

sheet and punch nodes, have been collected from the FE simulation. After processing, punch 

worn profiles have been built by normal projection of wear depth values. 

 

4. Numerical simulation 

     4.1 Modelling of the blanking process 

          4.1.1 Model main characteristics 

The process modelling has been performed with the FE code Abaqus/CAE 6.9®, using the 

large deformation theory. The solution has been obtained by the included implicit solver 

Abaqus/Standard® [23], following a quasi-static approach of the process simulation. The 

Newton iteration method has been employed to solve the nonlinear equilibrium equations. 
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Due to the revolution geometry of the problem, axisymmetry has been considered for the 

whole setup, so only one meridian plane of the problem has been modelled. 

The blanking tools have been modelled using 1D rigid elements. The sheet has been mainly 

meshed with quadrangular first order axisymmetric elements. The real worn punch geometry 

has been fitted by an exponential formula in order to improve the accuracy of the numerical 

modelling (Fig. 4). 

In the blanking process, deformations are concentrated in the shear band located between the 

punch and die cutting edges. Thus, the sheet mesh has been divided in three zones to obtain a 

fine mesh in the zone of large deformation, and a coarse mesh elsewhere to minimize 

simulation computational cost. Moreover, fine mesh has been required on the sheet surface to 

obtain accurate contact pressure and sliding distance data necessary for wear calculation 

(Fig. 8b). 

The sheet material behaviour has been described by an elasto-plastic Von Mises constitutive 

model with isotropic hardening, and the stress-strain data necessary for the non-linear 

behaviour of the sheet has been obtained by Makich [11] using tensile tests. 

 

Fig. 8. a) Axisymmetric blanking scheme b) Deformed mesh at 50% of punch penetration 
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          4.1.2 Contact formulation 

Contact between the die, the sheet and the sheet-holder has been modelled by Coulomb law 

with a value of 0.1 for the friction coefficient. Due to the lubrication applied during the 

blanking process, no friction has been considered between the punch and the sheet. 

For the contact formulation, the penalty contact algorithm has been used by defining a master 

surface (punch profile) and a slave surface (on sheet boundary). 

          4.1.3 Failure 

Examination of the experimental blanked edge generally reveals two main zones traducing the 

material behaviour during the process. The first one is the sheared zone, formed by the punch 

before failure occurs. The second one is the fracture zone and corresponds to the ductile 

fracture of the material as the punch continues to penetrate the sheet. Failure was not taken 

into account in the numerical model because it is supposed that only wear on the punch lateral 

face is involved after the onset of material failure. This hypothesis is suggested by the 

observations made by Maeda [2] and Faura [24] concerning the face wear of punch, which is 

less developed than flank wear. Indeed, blanking vertical force drops off when failure is 

initiated, reducing the contact pressure on the punch face; contact between the punch face and 

the sheet is also lost when the part or scrap is separated from the sheet. However, failure 

mechanism will decrease the stresses within the material and will create new contact surface, 

thus influencing wear results especially on punch flank. 

The maximum punch penetration (relative percentage of the sheet thickness) has been defined 

according to the experimental data of the shear zone height and fracture zone height of the 

sheet, which remained rather constant during the steady-state wear stage. 

As mentioned in Eq. (5), the computation of pressure and sliding distance has been required to 

calculate wear. Contact pressure in Abaqus® is defined as the normal stress between two 

faces at a point, and depends on the interpenetration of the surfaces. The sliding distance is 
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provided by the relative tangential motion, which is defined as the scalar product of the slip 

direction and the incremental relative nodal displacement vector. This vector measures the 

motion of a sheet node relative to the motion of the punch. The sliding distance computed is 

thus direction-dependent and cumulated at each increment. 

          4.1.4 Remeshing 

In metal forming processes, one of the major problems to deal with is the non linearities due 

to the large displacements and deformations. Some finite elements of the mesh can become 

severely distorted and no longer provide a good discretization of the problem. The remeshing 

solution retained in this work has consisted in creating a new mesh before the distortion of 

some elements became too important, and to transfer the mechanical variables field from the 

old deformed mesh to the new one. After the remeshing operation, a loss of structure 

equilibrium has been obtained so that several increments have been necessary to reach a new 

equilibrium state. 

 

 

 

 

 

5. Results and discussion 

Firstly, the punch has been modelled according to the experimental punch dimensions except 

for the punch cutting edge which has been approximated by a constant quarter circle. 

Secondly, experimental wear profiles from the method presented in section 2.2.3 have been 

employed to improve the cutting edge wear modelling and trying to predict worn profiles. 

Thirdly, a global discussion is presented at the end of this section. 
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     5.1 Setup test of the wear algorithm 

 

Since the value of the punch edge radius is closely related to the tool wear status [25], a first 

approach for testing the wear algorithm has consisted in varying the edge radius in the FE 

simulation and observing the effects on the punch wear distribution. In a first attempt, the size 

chosen for the radii has been sufficiently large to allow a significant penetration of the punch 

without remeshing the sheet. Indeed, a small radius requires small enough elements to avoid 

interpenetration of the sheet into the punch surface, but small elements will also degenerate 

more rapidly compared to larger elements for a given punch displacement. According to the 

dimension of each punch edge radius, the punch elements size has been adapted to always 

keep 10 elements within the quarter circle for accuracy purpose. 

Thus, the setup test has been performed with respect to the geometrical dimensions listed in 

Table 1 and by varying the radius of curvature at the punch cutting edge from a range of 

values (25 µm, 50 µm and 65 µm). Die wear has not been taken into account during the 

experimental study, so the hypothesis has been made that it worn the same manner as the 

punch. 

The wear coefficient for this study has been fixed to 2.10-3 mm²/N in order to get a significant 

quantitative wear depth for one punch stroke. 

The results of wear depth provided by the algorithm have been originally expressed along the 

curvilinear abscissa of the punch profile (Fig. 9). This representation gives a global view of 

wear but is not appropriate for comparing profiles. Thus, a nondimensionalized curvilinear 

abscissa based on the extremities of the edge radius has been introduced. As shown in Fig. 10, 

the middle of the quarter circle corresponds to the zero abscissa (point O  ), and the left and 

right extremities respectively represent the “-1” (point A  ) and “+1” (point B  ) abscissa. The 

nondimensionalized curvilinear abscissa of point M  is then calculated by dividing the arc 
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length OM  by OA (which corresponds to an eighth of the circle defined by the radius of 

curvature r  ). 

 
Fig. 9. Wear distribution for three punch edge radii at different punch penetrations 

 
Fig. 10. Nondimensionalized curvilinear abscissa scheme and wear distribution in the edge radius 

 

This first approach has revealed the three redundant types of wear observed along the punch 

profile for every performed simulation. As shown in Figs. 9 and 10, the punch face tends to 

wear slowly and rather steadily. Then, wear depth drops off in the lower part of the cutting 

edge radius to suddenly increase on the punch flank. Wear depth continues to grow as the 

punch penetrates the sheet. The location of the depicted zones remains the same during the 

penetration of the punch. These three types of wear are illustrated by the wear kinetics, 

corresponding to the evolution of the wear depth during the punch penetration (Fig. 11.). 
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Fig. 11. Wear kinetics at three representative locations of the punch 

 

The region of minimal wear (point b  in Fig. 11 and abscissa value of -0.4 in Fig. 10) has been 

identified as a “neutral” zone where the punch and the sheet surfaces move similarly, thus 

conducting to a small relative displacement. Contact pressure at this location tends to reach a 

local maximal value but this value keeps lower than the pressures under the punch. 

The resulting wear is then less important at this place than elsewhere. Moreover, this “neutral 

zone” is located at the same nondimensionalized abscissa for every punch cutting edge radius. 

 

     5.2 Wear prediction from real punches 

 

Once the algorithm has been tested on setup test, two worn punch profiles obtained during the 

experimental study have been integrated into the FE modelling. The aim has been to predict 

the shape of the worn geometry by calculating wear depth and multiplying the results by a 

determined punch strokes number. Thus, the mesh has been applied on the punch geometry 

defined by the fitting curve presented on Fig. 4. The first one corresponds to 766,500 punch 

strokes and the second one 1,266,500. For numerical concerns, these profiles have been 

chosen sufficiently worn (i.e. with a large curvature radius) and still in a steady-state wear to 
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allow a significant penetration of the punch, and then reduce the number of remeshing to be 

performed. Fig. 12 depicts the blanking force – punch penetration curves obtained with the 

studied profiles. 

 

Fig. 12. Blanking force versus punch penetration for two punch profiles 

 

Discontinuities on each curve correspond to the different remeshing steps performed during 

the simulation. It can be seen that the maximum force appears for a more important 

penetration and is higher for the most worn profile. This results correlates with those obtained 

by Choy and Balendra [26]. 

Wear calculation has then been performed starting from a worn geometry and by taking 

account of the experimental wear coefficient ( NmmK /101.2 211−⋅=  ). Fig. 13a represents 

the evolution of wear depth at each punch node from the first worn profile (766,500 strokes), 

during one punch penetration. 
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Fig. 13. (a) Wear evolution from worn profile at 766,500 strokes (b) Corresponding punch profile with 

node numbering 

Again, it can be noticed that the location of the three different types of wear remains the same 

during the penetration. Concerning punch flank, wear propagates as new contacts between the 

punch and the sheet are established. For example, wear depth at node 80 starts from a punch 

penetration of 20%. As shown in Fig. 14 for two punch nodes (nodes 30 and 67), wear 

evolution at different locations of the punch has been sufficiently consistent to extrapolate the 

wear depths to a punch penetration of 70% (according to the experimental shear zone height). 

The extrapolation has been performed using a logarithmic law of the form  bxay += )ln(.   

with 0>a  and 0<b  . 

 

Fig. 14. Wear evolution for punch nodes n°30 and n°67 from 766,500 strokes profile 
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Extrapolated values of wear depth at each punch node have then been reported on the 

corresponding normal vectors to generate worn profiles. The value PN  from Eq. (7) has been 

set to 37,500 punch strokes in order to compare the numerical results with the experimental 

corresponding profile (see Fig. 15). 

 

Fig. 15. Worn profiles at 766,500 and 804,000 punch strokes 

 

For the numerically predicted worn profile at 804,000 punch strokes (Fig. 15), a 

magnification factor of 50 has been applied to the computed wear values. This has been 

performed to clearly display the computed profile despite the low values of wear depth. 

 

 

 

     5.3 Discussion 

Numerically predicted worn profiles show most wear on the punch flank. Wear depth values 

in the cutting edge radius are less significant due to the presence of a neutral zone. However, 

wear is globally less important than the one observed experimentally. 
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Different causes of the non-correspondence between experimental and theoretical results may 

be identified. 

� The Archard phenomenological wear formulation neglects the tribological aspect of wear 

(surface roughness, third-body, …) by focusing mainly on the sliding distance and contact 

pressure effect. It can be appropriate to determine wear for simple interactions as in a 

tribometer system (constant load and sliding speed) but shows some limitations when 

applied in situations with varying parameters. 

� The wear coefficient determined by the specific tribometer shows lower values compared 

to bibliography. According to [27], the wear coefficient K  varies over the range 10-2-10-

6 mm²/N under unlubricated conditions for different material couples. This difference can 

be partly explained by the configuration of the tribometer which differs from conventional 

ones where wear particles are not evacuated and contribute to the wear mechanism. 

� The fitted punch profile based on experimental data allows to obtain a smooth FE mesh of 

the punch, but in counterpart it neglects the surface roughness of the tool, which can take 

an important role in the wear mechanism. Indeed, the surface asperities create local stress 

concentrations which deform the metal plastically and lead to the formation of wear 

particles. 

� The fitting curve used to model the experimental wear profile is more accurate than a 

constant curvature radius. However, the formulation can locally misrepresent the punch 

cutting edge. 

� One simulation of blanking is performed and then the wear results are multiplied by the 

number of punch strokes. A too important value may have favoured the neutral face wear 

and misrepresent the real evolution of wear. 

� Only the down travel of the punch has been modelled. It has been observed 

experimentally that after the separating of the cut part, the sheet tends to pinch the punch 
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due to remaining elastic stress. This contributes significantly to the flank wear during the 

up travel of the punch. 

 

6. Conclusion 

 

The experimental study carried out by Makich [11] has provided sufficient data to establish 

and adjust a punch wear algorithm for blanking of copper alloy thin sheet. First, a specific 

tribometer has allowed to test the material couple in a configuration closer to the conditions 

met during the blanking process. Second, an original double-print method for wear profiles 

extraction has shown interest in accurately modelling the punch geometry. The Archard 

formulation used to model the abrasive wear mechanism in blanking process has given a 

qualitative description of punch wear compared to the experimental observations. Third, an 

original method has been developed to transfer the wear calculation from the sheet nodes to 

the punch geometry. Finally, the combination of experiments with FE simulations of the 

process allows to explain the wear distribution along the punch profile, and to exhibit a 

minimal wear zone in the cutting edge radius. To improve the wear modelling especially on 

the punch flank, ductile fracture and crack propagation should be covered by further research. 
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