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Abstract

In Acoustic Emission (AE) applications, the processing @fitmuous signals resulting from high AE rates or the
superimposition of transients emitted fronffdrent emission sources, is a major problem. In complex sysstike
Organic Matrix Composites (OMC) fatigue tests, a high ABvatgtis produced due to the emergence of several
emission sources. Such a kind of tests often involves a lobife that corrupts the original signal. Conventional
threshold-based techniques are highly influenced by theerevel leading to erroneous hits detection. A suitable
denoising method is thus necessary to process the sigrmaklgérforming the hits detection and separation.

This work deals with the processing of continuous AE sigobtained from Carbon Fiber Reinforced Plastics (CFRP)
specimens under complex loading. When the size of each danuis large due to the sampling rate (generally from
2 to 5 MS5s), the signal is divided into short segments. The Discredwalét Transform (DWT) is then used for
signal denoising. An adjustment of its input parameter<ciieved in order to improve the denoising process. A
hit determination is thereafter performed in order to l@mabpotential hits contained in each signal segment. By
comparing the result obtained using the proposed appraoetiat of the usual threshold-based technique, we remark
that the problem of erroneous hits is overcome. The perfocamaf the proposed approach as well as the sensitivity
to the denoising parameters are evaluated by studying thadnof errors in hit detection on feature extraction and
damage assessment based on pattern recognition algarittnaproposed approach ensures a better identification of
natural clusters in AEs and improves the interpretationamhdge mechanisms.
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1. Introduction

Carbon Fiber Reinforced Plastics (CFRP) materials areasingly used in aeronautical and automotive industries
as well as in civil engineering thanks to their high matepiadperties 1-3]. Since the integrity of CFRP structures
needs to be regularly assessed, the Acoustic Emission gBhique is widely used to detect and localize eventual
damages4-7]. AE is a non-destructive method able to ensirsitu monitoring of the structure through a network
of distributed sensors, and can be used to detect damagegeay aarly stage well before the structure becomes
completely failed §]. When the structure is subjected to mechanical, thermahemical solicitations, a stress
field is generated in the material. As a consequence of thetitiep of these solicitations, the material degrades.
The appearance of defects leads to the creation of elastisahic waves that propagate through the material. This
wave propagation involves surface vibrations, which arasueable using appropriate sensors. AE consists hence
in a transient elastic energy release in materials whenasticrctural changes occur. It is dependent on some basic
deformation and damage mechanisms. In CFRP compositesy oenage mechanisms are delamination, matrix
cracking, debonding, fiber cracking, and fiber pull-ajt [
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Three types of AE transients can be distinguished: burstgjrmious and mixedlD, 11]. Bursts are generated by
defects according to the damage mechanisms and have ghadéions than the other types of transients. Continuous
AE transients are created when multiple signals emittea filtferent emission sources overlap in such a way that the
amplitude do not fall below the threshold level. The originansients are often hardly recovered and assigned to thei
emission sources. The background noise and rubbing in thetgte are the main sources of continuous emission.
Relevant AE information might be buried by noise preventing identification of particular damages. Mixed AE
transients combine bursts and continuous signals. Theypearovoked by damage growth and accumulation and
are often superimposed with ambient noise and rubbiry 13]. This latter type of AE transients is frequently
encountered in CFRP structures under complex loading,eniner material can be subjected to various solicitations
simultaneously (multi-axial stresses, frictions betw#enclamping jaws and the specimen14][ A high AE activity
can be encountered hence, especially when the materididdexbat a high loading rate as well as when its geometry
is complex. On one hand, a high loading rate is producedopdatiy when the cycling frequency is high. Some
experimental tests have demonstrated that the AE-hitimateases not only with the total number of load cycles but
also with the cycling frequencylp]. For highest rates, transients emitted fronffetient emission sources can be
superimposed. On the other hand, the inhomogeneity of soddterial (fibers, matrices, multiple plies...) engenders
anisotropy in the wave velocities. The wave reflections dtehaation (dispersion, geometric spreading...) are also
added to the complexity. Complications include steerintdpeirection of the group velocity caused by the anisotropy
of the material, wave attenuation due to damping by the matrd wave scattering engendered by the fib&k [

Under in-service conditions, the background noise is son@stso important that it cannot be neglected. Several
sources of perturbation can be the cause. In this studygiise generated by the hydraulic system of mechanical test-
ing machines is assimilated to a source of perturbationahagerating conditions. The hydraulic fluid is increasyngl
hot in such machines when the duration of test is long. Ileediow characteristics and pressure waves propagate
through the fluid. A lot offluidborne noisean be so generated leading to force fluctuations. Thesk eswibra-
tion, known asstructureborne noiseransmitted through the structurg7]. The AE signals can beficted by this
noise when it hides them patrtially or, in many cases, corafyletVhen the level of noise is permanently exceeding the
AE detection threshold, which is the case in continuous sions the AE system is obliged to terminate the hit after
a predefined maximum duration. This latter is configured @mAE system in order to avoid recording long signals.
As the threshold is permanently exceeded in such a sitydtierAE signal is entirely recorded without a correct hit
separation. The consequent AE features can bé&sctad and the footprint of the noise is not negligible. Mdshe
commercial parameter-based AE systems employ the coowahtihreshold-based technique for hits detection and
determination. The AE features are calculated withoutfBnient consideration of noise variations that can mislead
the interpretation of real AE events happening in the maiteifhe AE systems also employ predefined band-pass
filters in order to avoid the impact of external perturbasioHowever, if the noise is generated at frequencies that are
comprised within the frequency band of the filter, it cannetsippressed. Thus, the conventional threshold-based
technique could not be suitable when dealing with contistemission, without a further signal processing.

The approach proposed in this study is based on denoisingtbeded AE signals prior to the hits determination.
The Discrete Wavelet Transform (DWT) is one of the powerfuthods that has been widely employed for signal
denoising, which has been useful for improving the signataise ratio much better than using signal filtering, ad wel
as for signal processing to detect multiple defect sigest{ir8—20]. The DWT is based on the Wavelet Transform
(WT) theory R1, 22], which provides relevant information about non-statigr&ignals in the time-frequency domain.
The WT has been used in many studies related to the StructeedifiHVionitoring (SHM) field 23-28]. Some other
studies have reported on the use of the WT on AE signals for @isiag purpose39-32].

This work proposes a signal processing approach for theogerpf conditioning AE signals issued from continu-
ous emission caused by ambient noise and high AE-hit-rdte.dficiency of the proposed approach is evaluated on
experimental AE signals obtained from PLBs performed on EERecimens in a noisy environment witlfeient
levels, and from a quasi-static test at a high speed of satii@n under a high noise level. The improvement in the AE
data analysis by the proposed approach is emphasized.

2. Description of the AE signal processing approach

Figure 1 describes the proposed approach as implemented using abMattie. The entire AE signal is post-
processed through several steps. It is either handled astefshis small in size, or partitioned into equal time-
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segments when its size is large. Massive data signals carcbamtered at a high sampling rate with a long acquisition
duration. Signals are then denoised using the DWT with apjai@pdenoising parameters to enhance the signals
quality. The conventional process of hits determinatioth AR features extraction is thereafter performed. The final
step is the data clustering, which involves classifyingAliehits into groups (clusters) representing the AE sources.
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Figure 1: Principle of the proposed AE signal processing@egh.

2.1. Wavelet signal denoising

Denoising using wavelets is based on the WT theory, which adamily of wavelets to obtain inner products
of the signal to be denoisesgt). A family of wavelets consists of a seriessiin waveletgienerated by dilating and
translating another wavelet The wavelet transformiV(a, b) gives the so-calledvavelet coficients which can be
considered as functions of translatibiishift or time location) with each fixed scale factorThey give information
about the signad(t) at different levels of resolution and also measure the similaatwbens(t) and eactson wavelet
In fact, the WT is the convolution betweesft) and the wavelet function, i.e. a wavelet can be used foufeat
discovery if the chosen wavelet is similar to the feature gonents hidden in the signal.

The procedure of DWT signal denoising used in this work inetithree steps. Firstly, the signal is decomposed
up to a defined decomposition le\n] The detail cofficients are thus obtained. Secondly, a thresholding is pa&d
on theN signal details using a threshold selection rule (fixed fdBtein’s Unbiased Risk Estimate principle...) and
either a soft or hard thresholding3, 34], by considering a basic model of the noise. Finally, th@algs reconstructed
using the original approximation cieients of theN" level and the modified detail cfiients of all levels.

The selection of the wavelet function in many engineeringliaptions has been based on trial and ergdf.[On
one hand, when choosing the wavelet function for SHM apfitiog, it is important to consider its ability to perform
the DWT. On the other hand, no unique choice can be recommeiodedl SHM applications. Some functions
might be better used in certain situations than others. Tib&e of the wavelet function is application dependent and
requires careful scrutiny in its use and its results.

2.2. Hits determination

In the parameter-based AE syster8$§][ the hits detection is performed by comparing the signa tefined
threshold, which is set beforehand above the noise levee tiiteshold is either fixed during the test (stationary
noise), or floating within a defined range (under conditiohkigh and varying background nois€3q, 37]. In the
conventional threshold-based method, whenever the ssgmphsses the threshold, the hit detection and determmati
are carried out by considering three timing parametersk BPefinition Time (PDT), Hit Definition Time (HDT) and
Hit Lockout Time (HLT). The hit determination involves, dafig the time-start, the true peak and the time-end
of the detected hit. The AE features can be then extracted &aiven AE signab(t) [8, 38]. The conventional
features include Amplitude, Duration, Counts, Countp¢ak, Rise time, RMS, ASL, PAC-Energy, Signal Strength
and Absolute Energy. Frequency features are Average FneguErequency Centroid, Peak Frequency, Initiation
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Frequency, Reverberation Frequency and Partial Poweurg=at Hereinafter, the definitions of some AE features
whose the expressions have not been explicitly providederiterature:

e PAC-Energy Epac) [uV.S]: A scaled version of Signal Strength to match the analBgystems with 20 dB of
gain. Itis also called MARSE energy (Measured Area undeiRéetified Signal Envelope). The sum of the
signal envelope is calculated over the duration of the ARt converted into counts at 100kMzPAC-Energy
is expressed as:

Epac= ) IH[SO]l - At- 100- 10, (1)
t

whereH is the envelope — calculated by the Hilbert Transform — ofsilgeal above the threshold.

e Signal Strength tr) [pV.s]: It is the integral of the rectified voltage signalesvthe duration of the AE hit and
can be defined as:

L
Str=>"Is(t)]- At- 10*2 )
t=1

e Absolute Energy Eap9 [aJ]: The integral of the squared voltage signal above lineshold divided by the
reference resistance Q) over the duration of the AE hit.

L
Eaps= ) ISP - At/R- 10%%, (3)
t=1

2.3. Data clustering

The clustering algorithm used in this study has been prelyoproposed by the author89]. It is based on
the idea that several parameterizations may be suitable fiven dataset but it is ficult to precisely find an op-
timal one. Therefore, the user can provide to it multipleapagterizations: type of algorithm (e.g. Kmeans, FCM,
Gustfason-Kessel, Hidden Markov Models), parametersaseatalgorithms (e.g. type of distance, fuzziness param-
eter), all possible (and relevant) combinations of featuamd so on. Given those parameterizations, a criterion is
optimized based on the entropy of the cumulated appeardndesters which allows getting a subset of relevant
parameterizations. The partitions (sequence of clustdtgined with those parameterizations are then combined.
The number of clusters is finally optimized based on an in&diom-theoretic criterion called Normalized Mutual
Information NMI [40Q]. This clustering fusion algorithm is also able to quanttig uncertainty around the estimation
of the clusters. This algorithm has been studied witfedent clustering methods (Kmeans, GK and Hidden Markov
Models) on simulated and real datasets. It has been showthth&K algorithm #1] provided more relevant results.
It accounts for its use in the present paper.

3. Experimental procedure

3.1. Materials and methods

A unidirectional CFRP ring with an outer diameter of 124 mnthi@kness of 1.5 mm and a width of 16 mm
is used in the experiments (see Fig@)e The mounting is performed according to the ASTM D2290 dtad test
procedure for apparent hoop tensile strength of plastieinfarced plastic pipe by split disk method. The ring is fixed
using two clamping jaws consisting of two separate halfrdgrs. FouMicro80-type (Mistras Group Ltd.) sensors
are mounted directly on the clamping jaws using spring cltopensure a permanent contact. Sensors 1 and 4 are
on the upper half-cylinder, whereas sensors 2 and 3 are dowiee one. It was decided to deport the sensors away
from the composite ring in order to avoid their deteriomatituring the test. Indeed, unidirectional CFRP have highly
energetic failure that can damage the sensors if they aceglan the specimen. Thus, acoustic waves pass through
the interface between the specimen and the jaws before bajptgred by the sensors. Potential wave reflections
should be so expected. The AE sensors are wide-band and maypegting frequency-range of [200-900 kHz] and
a resonant frequency of 325 kHz. The AE system settings anersin Tablel.
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Figure 2: Configuration of the tests performed on a CFRP ifapa photograph of the mounting on the testing machibga basic diagram of the
mounting.

Table 1: Settings of the AE system.

Threshold 40 dB
Pre-Amplifier 20 dB
Analog Filter 20 kHz — 1 MHz
Sampling Rate 2MSs
PDT 60us

HDT 120us

HLT 300us

Max. Duration 200 ms

The aim is to recover AE transients from simple and complgrals. To this end, simple AE bursts are firstly
generated using Pencil Lead Breaks (PLBs) on the outwafdcgiof an intact specimen under low and high noise
levels created by the hydraulic system of the testing ma&chis the hydraulic system is located at the bottom of
the machine, sensors 2 and 3 are intended to be nfteeted by the generated background noise. A PLB is the
Hsu-Nielsersource frequently employed to simulate an AE event. Theudraof a brittle graphite lead generates
an intense acoustic signal, quite similar to a natural AB@®uhat the sensors detect as a strong bdgt [These
simple AE signals are created in the material while the nrezls at rest (no applied loading). A comparison is then
addressed between raw and denoised signals in order to denaterthe ficiency of the approach. The footprint of
the noise on the AE features is studied. Thereafter, a tetest at a high loading rate under a high noise level is
performed on the same specimen until its total failure. Hmsite force is applied using a hydraulic jack linked to
the lower clamping jaw. This experimental configurationhisrt complex as it involves a multi-axial stress state at
the level of the gap between the half-cylinders, frictioesAeen the specimen and the clamping jaws, as well as the
consideration of the deported sensors. This results in #E signals with a high hit-rate similar to that obtained
under in-service conditions. By synthesizing the expenitsigthree types of signals will be considered:

e Simple AE signal 1: a PLB under a low noise level.
e Simple AE signal 2: a PLB under a high noise level.
e Complex AE signal: a high loading-rate tensile test undeigh hoise level.

The dfectiveness of the implemented approach is assessed by Gognpame AE features determined by the algo-
rithm to those obtained by a commercial AE system.



3.2. Simple AE signal 1: PLB-burst with a low noise level

As the channels 2 and 3 are mounted closer to the hydrauliersythan channels 1 and 4, they are subjected
to a higher perturbation . Under a low noisy environment, Aliesignals received by the four channels are not
noticeably impacted, as the threshold is higher than theenlevel. Figure8 and4 show the Duration-Amplitude
graphs and time-signals, respectively, of the hits detielojechannels 2 and 3. A further analysis of the measured
signals from all channels and their corresponding Durafiamplitude graphs can be found in a previous publication
of the authors43].

For the purpose of reducing the impact of noise, the raw &grfachannels 2 and 3 are denoised using the DWT
before performing the hit detection. The parameterizatibthe denoising procedure is important to enhance the
quality of the denoising proces33] and is application-dependent. When dealing with unknowisentevel, it would
be convenient to adopt a soft thresholding with a selectibs of the universal threshold (denotsdtwolog) equal
to +/2log(n), wheren is the total number of wavelet ciients, and by considering a non-white noise mo@d).|
This has been confirmed by testing this parameterizationuorexperimental signals. Another important issue is
the choice of the mother wavelet and its order as well as therdposition level. Th®aubechiesvavelet g4, 45|
is found to be #icient to reduce the noise level in the recorded signals geszkin this work. Various orders of
the Daubechiesvavelet with diferent decomposition level®() are thereafter tested on the raw signals. In order
to evaluate the performance of the signal denoising, thebeurof detected hitsNyits) and the signal-to-noise ratio
(S NR between the obtained denoised signal and the residuad neisoved from the raw signal are calculated for
each tested parameterization. Tablsummarizes the obtained values for the signals of chanreaisl 3.

Table 2: Denoising performance evaluation of the signaldiahaoels 2 and 3ffected by a low noise level, wittdbx’ standing for thex-order of
the Daubechiesvavelet and DL” for the decomposition level.

Channel 2 Channel 3
Nhis SNRAB] Nhis  SNRAB|
Raw signals 1772 - 2020 -
DL=4 61 3.387 1 1.169
d4 DL=6 1 2.316 2 0.706
DL=8 1 2.296 2 0.698
DL=4 66 3.396 1 1.180
dbé6 DL=6 1 2.313 1 0.706
DL=8 1 2.299 1 0.699
DL=4 51 3.398 1 1.187
db8 DL=6 1 2.308 1 0.707

DL=8 1 2.297 1 0.701

In order to choose the best parameterizatis andS NRmust be as small as possible. Indeed, by applying a
single PLB, generally one hit or at most few hits should becketd. Besides, the higher is the extracted noise from
the raw signal, the lesser is tiBeNR For the sake of simplicity, the same parameterization @ptetl for denoising
the signals of both channels 2 and 3. The best parametenzatihancing the quality of these signals is obtained
with the “db8” wavelet and 8 decomposition levels. As we can see in Fidgutke noise level is reduced under the
threshold for the channels 2 and 3. Consequently, the nuailtlee detected hits is decreased to only one hit for each
channel (Table).

3.3. Simple AE signal 2: PLB-burst with a high noise level

When the hydraulic fluid reaches an important fluctuationsVitg, a high noise is generated in the testing ma-
chine. Another PLB is created near sensor 1. As we can segime®, all the hits detected by the AE system are
saturated at a duration of 200 ms, which corresponds to #efined maximum duration. Thus, the hits separation
and the calculated AE features performed by the AE systereraomeous. The raw time-signals corresponding to
the four channels (see FiguBg show that the recorded bursts are so noisy that the ameliteder drops below the
threshold during the acquisition period, especially foarmmels 2 and 3.
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Figure 3: PLB bursts under a low noise level: Duration vs. Atage graphs of the detected hits by the AE systeinafid by the proposed
approach+(). This figure shows that the number of AE hits on channel 2 arschuich higher than expected due to the noise level.
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Figure 4: [Color representation] Comparison of the raw antbaeed signals of channels 2 and 3 after a PLB under a low feisé Denoising
using the tIb8” wavelet and 8 decomposition levels——) Raw signals;{——) denoised signals; and--— ) threshold level.

Each channel’s signal is denoised using various ordersedD#ubechiesvavelet with diferent decomposition
levels in order to find the best parameterization. The perémice evaluation of the denoising is presented in Table
as performed in the last subsection. The results for charihahd 3 are presented here as they are nféeetad by
the noise than channels 1 and 4.

Consequently, a good quality of denoising can be obtain@mjube ‘db45” wavelet with 14 decomposition
levels for both channels. This parameterization is alsdiegpn the signals of channels 1 and 4. Fig@rehows
a comparison of the raw and denoised signals of the four &anis we can see, a considerable improvement of
the signals’ quality is made, especially for channels 2 an@hz waveform of the PLB burst is well recovered from
the noise. The resulting Duration-Amplitude graphs areaggnted in Figur® where it can be remarked that the
saturation of the hits at the predefined maximum duratiovs @liminated and the PLB bursts can be identified.

Another issue can be also addressed here, which is the ifttatpthe noise on the AE features. For that purpose,
the frequency contents of the detected hits in both raw andided cases are examined. Figdrghows the time-
frequency diagrams — obtained by the Wavelet Transform (Wbiftke raw and denoised signals of channel 2. As we
can see, the frequency content of the hit associated to tBeblakst in the raw signal is venyfizcted by the noise. We
can point out that the denoising process has considerabtynated the noise contribution in the frequency content
of the signal, whereas that of the PLB-burst is kept. Figi{eg allows to distinguish between the noise footprint and
the PLB-burst (comprised mainly within the range 20-50 ktha} has beenficiently conserved after denoising, as
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Table 3: Denoising performance evaluation for signals cen? and 3 fiected by a high noise level, witldbx' standing for thex-order of the
Daubechiesvavelet and DL” for the decomposition level.

Channel 2 Channel 3
Nnits SNR-10%)[dB] Npts SNR-10)[dB]
DL=6 237 8.80 532 4.41
db8 DL=10 30 8.16 250 3.89
DL=20 34 -2.81 215 -88.92
DL=10 14 8.06 215 3.81
dbl0 DL=14 13 7.99 202 3.73
DL=20 22 -25.25 159 -44.63
DL=10 10 7.68 7 3.18
db20 DL=14 10 7.60 63 3.10
DL=10 6 8.07 26 2.95
dbso DL=14 6 7.99 21 2.87
DL=7 7 8.31 35 3.15
dbd5 DL=10 5 8.02 11 2.84
DL =14l | 5 7.95 10 2.76
Channel 1 Channel 4
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Figure 5: [Color representation] PLB bursts under a higls@deével: Duration vs. Amplitude graphs of the detected hitdk AE systemd) and
by the proposed approach)( The figures show that the saturation is eliminated.

we can observe in Figurgéb). Accordingly, the frequency features (such as averageiéecy, centroid frequency
...) of a noisy signal are potentially altered, which mayeg@rroneous information about the AE data and falsify
further interpretations. The eventual alteration of the-frequency AE-features is also studied. Tabkhows some
calculated AE features for raw and denoised signals of adlarinand 4, as their raw PLB-bursts are available. It can
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Figure 6: [Color representation] Comparison of the raw antbidd signals of the four channels after a PLB under a higgerlevel. Denoising
using the tb45” wavelet and 14 decomposition levels——) Raw signals; ) denoised signals; and(- — ) threshold level.

be noted that the signal amplitudes are conserved and rot@lby the denoising process. Obviously, the raw-signal
durations are erroneous as they are equal to the predefingéchoma duration (200 ms), those of the denoised signals
would be more correct. However, the number of counts of thB-Bursts is very fiected by denoising, as they are
superimposed with the number of counts of the noise-sigRAE€-Energy is almost divided by two; the alteration of
the duration and the number of counts is compensated by &ic@ti®n of the amplitude.

Table 4: Hrect of denoising on non-frequency AE features.

Channel 1 Channel 4

Raw Denoised Raw Denoised
Amplitude [dB] 91 91 92.5 92.3
Duration us] 210° 3832 2100 4421
Counts 28792 528 31333 605
PAC-Energy iV.s] 2350 1294 2400 1200

3.4. Complex AE signal: a high loading-rate tensile testemalhigh noise level

A tensile test at a high loading-rate is performed on the sspeeimen. This test is performed after that of the
PLB with a high noise level, so this latter is expected to edhme or higher. This configuration simulates an in-
service-like loading under severe working conditions aggllts in complex experimental signhals where continuous
signals and AE transients could be superimposed. Prdygtittad test consists in applying an increasing tensiledorc
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Figure 7: [Color representation] Comparison of the WT diagrafiraw and denoised signals of channel 2 (PLB test under arfogte level).

(a ramp function) on the composite ring through the clamgamgs until the total failure. The applied force is going
from O N to 60 kN at a loading rate of 625 MB446].

3.4.1. AE raw data

Signals acquisition is launched before the beginning ofdhading and is stopped after. The AE software records
all the detected events produced in the material and detesaill eventual hits. Features obtained by the AE system
are presented hereafter and compared to those calcul&egas$t-processing the signals by the proposed approach.
Since channels 1 and 4 have quite similar responses (antagynfor channels 2 and 3), only the responses of
channels 1 and 2 are considered hereinafter. A selectionatfifes determined by the AE system is presented in
Figure8.

Figures8(a)and8(b) show the amplitude of the detected hits and the applied fexegted by the machine on the
specimen over time. First of all, as we can note, the amm@itndreases with force, which begins to rise a little before
the 4" second; then it falls again when the force tumbles down Bhioefore the ¥ second with the complete failure
of the ring. The hits detected outside the period of loadingld correspond to noise as there was no other emission
source in the material. We also remark that the level of theiplitudes is reduced after the rupture of the specimen.
Indeed, on one hand, the noise generated by the hydrautensys related to the applied force. When this latter falls,
the fluid turbulence decreases, and therefore the noiskisereduced. On the other hand, the contact between the
upper and lower clamping jaws is broken. So, channel 1 (goalsly channel 4) is less impacted by noise after the
failure of the composite ring. It should be also mentioneat the amplitude of the “noise hits” in channel 2 is higher
than that in channel 1 since the level of noise is higher imnk&2, as shown also in the previous section. The next
figures can prove this interpretation. Hits’ durations oi#d using the AE software are represented as a function of
time (Figures3(c) and8(d)). For channel 1, all the hits recorded until the total faglof the specimen have durations
equal to the maximum duration (200 ms). After the total f&lof the specimen (end of loading), various hits are
detected. Concerning channel 2, all the detected hits aral ég the maximum duration. This is a total saturation
of the AE system throughout time. In the Duration-Amplitugtaphs (Figure8(e)and8(f)), we note a saturation of
hits at the maximum duration. As it was explained previoutlg AE software has considered a number of signal
segments with a duration of 200 ms as detected hits becagisartplitude is stagnated above the threshold during a
certain period within the test. These hits can be thus pam@parated. This potentially erroneous hit separation may
be caused either by noise or by damage accumulation in therisddéading to a high AE activity. This phenomenon
is quite significant in channels 2 and 3 as they are more ireddmt the generated noise. Fig@shows time signals
of channels 1 and 2 as retrieved from the streaming file inrdodlee processed by the algorithm.
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3.4.2. Signal denoising

The recorded time signals are post-processed and theingsAlE features are compared to those calculated by the
method of the AE system. Initially, the signals of each cleduaine taken entirely; so that the denoising as well as the
hit determination and separation are performed on eachlsidter loading it one shot. This strategy has the drawback
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Figure 9: Raw time-signals obtained from channels 1 and Zduhe tensile test.

of requiring a lot of computer memory when treating massigdiles as the size of each acquisition is large due
to the sampling rate, which is generally from 2 to 5 M # this kind of tests. Time signals of the four channels are
denoised using tlierent Daubechies wavelets, decomposition levels andhbieselection rules33, 34, in order

to find a suitable methodfiéciently applicable to this kind of tests. Tablesummarizes the employed denoising
parameters.

Table 5: Denoising parameters tested on the raw signalsnelotéor the tensile test under a high noise level.

Denoising parameters Wavelet Decomp. levels Threshottseh rule

DenParl db10 7 minimax (ch.1) heursure (ch.2)
DenPar2 dbl10 7 sqtwolog
DenPar3 db45 7 sqtwolog
DenPar4 db45 14 sqtwolog

Figure 10 shows a comparison of the Amplitude and Duration of both rad denoised signals of channels 1
and 2. By comparing the filerent denoising methods, we remark that the hits obtainied t3enParl’ are not well
denoised; whereas 'DenPar3’ is better than 'DenPar2’ sineiminates more giciently noise hits detected before
the loading. When increasing the decomposition level to ddhetter improvement in signal denoising is noticed.
Since increasing the decomposition level is time consunilgye is no need to adopt 7 levels. Accordingly, the best
adjustment of the denoising process is obtained usingdb45"” wavelet , 7 decomposition levels, a soft thresholding
with a selection rule of the universal threshold 'sqtwolagid considering a non-white noise model.

Moreover, from Figured0(a) and 10(c) (channel 1), we can note that the hits detected before aed thie
effective period of loading in the raw signal are now eliminaésdthey were representing the noise. As shown in
Figures10(b)and10(d) (channel 2), although the noise hits are eliminated afeerapture of the ring, the amplitude
of those detected before the start of the loading is redugedbout 10 dB. Another important observation can be also
taken from Figure40(a)and10(b) the amplitudes of the hits detected during the loadingctvisire associated to
various AE evolving sources, are approximately conser@althat the denoising process did not alter tieative
AE information. Besides, in Figurd$)(c)and10(d)the hidden information by thefiect of noise is now considerably
revealed in channel 1 and especially in channel 2. Howewenescontinuous emission still persists: about twelve
hits during the loading have a duration equal to 200 ms (th&ifdiam Duration), which can be also observed in
Figures10(e)and10(f) showing the Duration-Amplitude graphs.

3.4.3. Signal segmentation

In order to overcome the problem of loading heavy signal filed trying to totally eliminate the hits saturation, a
signal segmentation is adopted. The signal to be processkds divided into short segments having equal durations
of 0.5 s. Then, each signal segment is successively denarsgotential hits are determined. This strategy has
the advantage of surmounting the limitation of computer mmThe obtained results are presented in FidLire
where the amplitude and duration of the hits detected dfteisignal segmentation are compared to those obtained
previously by processing the entire signal using 'DenRar3’

The most important ascertainment is that the saturationgrhena is now eliminated. All the separated hits have
so a duration less than the pre-defined maximum durationctramnel 2, the hits detected before loading are greatly
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Figure 10: [Color representation] Comparison between thectled hits in the raw data) and those detected after denoising witlffetient
parameters. Signals processed entirely one-shot for clsahraad 2.(a) and(b) Amplitude over the acquisition timé¢) and(d) Duration over
the acquisition timefe) and(f) Duration vs. Amplitude.

reduced. In fact, if the AE signal is processed entirely, itavelet denoising procedure constructs an estimation
of the noise model based on the full length of the signal, tvlticuld not be fairly accurate. Whereas, if the AE
signal is segmented, the noise variation in each segmesggssmportant than that in the entire signal. So, the noise
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model is updated in each segment and is estimated more telguespecially when dealing with non-stationary
noise characteristics. It can be concluded that a blockweseslet denoising is more accurate to cope with highly
non-stationary noise encountered in AE. An example of aadigagment extracted from the response of channel 2
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during the loading is shown in FiguE. The raw, non-segmented denoised, and segmented denjsats are
compared. It can be remarked that the signal obtained atgnentation is better denoised than that resulting after a
one-shot denoising.

Voltage (V)

-6 1 1 1 1 1 1 1 1 1

55 555 56 5.65 5.7 575 58 5.85 5.9 595 6
Time (s)

Figure 12: [Color representation] An example of a signakseqt extracted from channel 2—+—) Raw signal; {——) non-segmented and
denoised signal; and(——) segmented and denoised signal. Denoising using the panani2énPar3’.

A deep observation of the hits’ shapes that can be extragtéuebalgorithm leads to classify these hits into three
categories whose samples are shown in Fig@re piece of hit, a typical burst of a natural AE source, andatively
long hit exhibiting more than one waveform-packet that mayehgendered by the superimposition of multiple AE
hits. The separation of the first and the last hits seems t@bproperly performed.

The hits belonging to the first category (Figur&a) have a low number of counts and short durations; whereas
the other two categories have medium and large number oftgoand medium and long durations. As shown in
Figure14, the truncated hits, which are located between 0 and 10 s@pproximately appear as straight lines; that
is to say multiple hits with equal counts are detected. Téésss to be unlikely due to the complexity of the involved
damage mechanisms, but may be engendered by a residualwaisdet artifacts, as well as a bad hits separation
caused by inappropriate timing parameters (HDT, PDT and)HLfie proportions of the truncated hits are estimated
at 40% for channel 1 and 49% for channel 2. The rest of the datddxhen contain the other two categories of hits
(Figures13(b)and13(c). The pattern recognition could be used here to regrouprtimeated hits within a specific
cluster. This issue is addressed in the next step of the peabapproach.

3.4.4. Data clustering

The AE data obtained after the above-mentioned denoisiogepiures using two processing parameterizations,
namely one-shot with 'DenParl’ and segment-based with H2&®', are analysed by the pattern recognition approach
proposed in39] and described in sectich3. The clustering algorithm is used to determine the sequeidasters in
both cases. A number of clustersKis found to be the optimal value (based on the NMI criteridiiurel5 presents
the obtained sequences of clusters, where the verticalcaxiesponds to the decimal logarithm of the cumulative
occurrence of AE hits in a given cluster (called CSCA). Thgishs allow locating the time of occurrence of each
cluster, and following the temporal evolution of its adijviln Figure15(a)obtained by using the one-shot denoising
strategy, the four first clusters appear at the very beggwinile the loading has not been applied yet (see the loading
profile in Figures8(a) and8(b)). Furthermore, several clusters are highly activated lafter the specimen failure.
The damage scenario suggested by this sequence is thuslynlikhe sequence obtained in Figurg(b) using the
segment-based strategy iffdrent. A first cluster starts at the same time as the AE adiquigivithout loading) which
is coherent with the activation of an AE source related to'strectureborne’andfluidborne’ noises. This cluster
represents 62% of the total number of hits and may regrougethesociated to external emission sources as well as
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Figure 14: Duration vs. counts of the detected hits of chisnhand 2 after the signal segmentation and denoising.

other meaningless hits. The first category of hits that wagtiored in the previous section, namely the truncated hits,
is found to be included in this cluster after verificationu§krs 2, 3 and 4 start at the same time as the loading and are
activated throughout the test. These clusters are thusiagsw to the activation of AE sources related for example
to the friction between the specimen and the clamping-jass friction is also observed after the specimen failure.
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The remaining clusters 5, 6 and 7 are probably associatdg:tmaterial damage mechanisms as they appear during
the specimen loading period. In CFRP composites, major gam@echanisms are matrix cracking, delamination,
debonding, fiber cracking and fiber pull-o8i.[

It can be concluded that the proposed algorithm leads totartidentification of the natural clusters in acoustic
emissions and improves the interpretation of damage mésrhan
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(a) Signals denoised entirely one-shot using the paranm@éParl’. The sequence of damages is unlikely since someidust
start too early or activate later with respect to the loagiihgse (4-7s).
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Figure 15: [Color representation] Clustering sequencéaiiodd using two processing parameterizations on the ARE@f all channels.

4. Conclusion

The problem of continuous AE in CFRP was addressed in thisp&wntinuous signals produced by in-service-
like environment are post-processed. The proposed apgpioaades successive steps allowing the denoising of raw
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signals, hits determination, and AE features extractionorber to assess itsfeiency, the approach was tested on
AE signals derived from experimental procedures. Theyicsinsist in a PLB applied on the surface of a composite
ring under low and high noise levels. A complex AE signal soatreated after a high loading-rate tensile test under
a high noise level until the total failure of the specimen.

The proposed approach was able to improve the signalsyjualiter diterent working conditions if the denoising
parameters were properly set. It was also found that thaetetl AE features that had been erroneous due to the noise,
became coherent and exploitable. Moreover, it was alsostioat the frequency features of a noisy signal are altered
by the noise, which engenders erroneous information ath@ufE information. Using the proposed approach, the
denoising process has eliminated considerably the noistiloation in the frequency content of the signal; whereas
the frequency content of the PLB-burst was kept. The progesignal segmentation was able to substantially improve
the hit determination and eliminate the hit saturation,eesgly when dealing with non-stationary noise in large
signals recorded during high loading-rate tests. Besittessignal segmentation was found to be of interest for
pattern recognition. An appropriate hit detection alduomtleads to a better identification of natural clusters in AEs
and improves the interpretation of damage mechanisms.dier ¢o assess its reliability, the proposed approach can
be applied on AE signals retrieved for example from fatigests with cycling loading performed on the studied
composite ring. Such test case will be addressed in futurkswvo
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