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Abstract

Noise reduction issues arise in many engineering problems. One typical vi-

broacoustic problem is the transmission loss (TL) optimisation and control.

The TL depends mainly on the mechanical parameters of the considered

media. At early stages of the design, such parameters are not well known.

Decision making tools are therefore needed to tackle this issue. In this pa-

per, we consider the use of the Fourier Amplitude Sensitivity Test (FAST) for

the analysis of the impact of mechanical parameters on features of interest.

FAST is implemented with several structural configurations. FAST method

is used to estimate the relative influence of the model parameters while as-

suming some uncertainty or variability on their values. The method offers a

way to synthesize the results of a multiparametric analysis with large vari-

ability. Results are presented for transmission loss of isotropic, orthotropic

and sandwich plates excited by a diffuse field on one side. Qualitative trends

found agree with the physical expectation. Design rules can then be set up
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for vibroacoustic indicators. The case of a sandwich plate is taken as an

example of the use of this method inside an optimisation process and for

uncertainty quantification.

Keywords: FAST, sound transmission loss, composite structures, diffuse

field

1. Introduction

Noise control can be a very important topic in engineering, and noise

reduction problems can take many forms. Among these, noise transmission

is about the transmission of energy from an incident sound field through

a structure into an enclosure. Typical situations include for example the

phonic isolation of a building in civil engineering, noise reduction inside a

plane’s cabin or a car. One of the most used indicators in vibroacoustics

is the transmission loss (TL), which is the ratio of incident to transmitted

energies, expressed in decibels. Transmission loss through composite struc-

tures depends on numerous structural parameters, such as Young’s modulus,

density, honeycomb geometry or damping ratio of each constituent. Noise

transmission through isotropic plates has become a classical vibroacoustic

problem, for which analytical solutions are derived in textbooks [1, 2]. The

case of orthotropic plates has been studied by Guyader and Lesueur [3]. Renji

et al. proposed models for the transmission loss of sandwich panels [4]. All

these models are based on analytical expressions of bending wavenumbers in

the considered plate. At early design stages, these parameters are unknown

with potentially wide variation ranges, due to either uncertainty or design

latitude. In order to efficiently set up an optimisation problem, it can be of
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first importance to find which parameters contribute most to TL variability.

Later on in the design cycle, lack of knowledge will be reduced, but uncer-

tainty may remain on some parameters, due for example to identification

issues or industrial tolerances [5]. It is therefore important to find out how

parameter variability will affect vibroacoustic indicators. Identifying which

parameters contribute most to output variability can help focus on them for

optimisation or uncertainty reduction.

A number of methods have been developed to address uncertainties in vi-

broacoustics. Reynders [6] uses the maximum entropy principle to compute

confidence intervals for the TL of walls between two uncertain rooms, where

the probability densities and cross-correlations of the considered parameters

are known. Batko and Pawlik [7] use a method derived from interval arith-

metics to estimate variability intervals for the same kind of constructions. Re-

garding industrial structures, a stochastic boundary element method (BEM)

has been proposed by D’Amico et al. [8, 9] to estimate the variability of

noise radiation by structures with geometric uncertainties. Cicirello and

Langley [10] combined parametric and non-parametric uncertainty analyses

on a hybrid FE-SEA method. In their recent book, Ohayon and Soize [11]

review methods of uncertainty assessment in vibroacoustics, including non-

parametric uncertainties. All these approaches give interval estimates of the

model output given input parameter uncertainty, but do not describe the

influence of each parameter on this variability.

Sensitivity analysis aims at identifying the relative influence of param-

eters. One of the most used methods is to study the partial derivatives of

the model output with respect to all variables, which gives local estimates
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around a reference point. Global sensitivity analysis (GSA) [12] on the other

hand aims at deriving indicators of influence for broad variation ranges. The

ANOVA class of methods uses the variance decomposition [13] as an estimate

for the sensitivity of each parameter. The computation of each term in the

variance decomposition requires time-consuming calculation. The Fourier

amplitude sensitivity test (FAST) was developed by Cukier et al. [14] to re-

duce the computation time, with application in the study of complex chemical

reactions. This method has later been reused by Iooss et al. [15] for radi-

ologic risk assessment models. Ouisse et al. [16] applied the FAST method

to porous material models, regarding acoustic impedance and absorption.

This work was later extended to different models of porous materials with

focus on microgeometry in [17]. We propose here an application of the FAST

method to the analytical models of the transmission loss of infinite flat plates

to illustrate the potential of global sensitivity analysis in this field.

It is important to remark that the ranking of parameters by order of in-

fluence on the transmission loss is not absolute, but depends on frequency.

As the frequency ranges considered for noise transmission may be quite wide,

the system will present very different behaviours in different regions of the

excitation spectrum. Transmission of noise through a plate is due to the

excitation of travelling waves in the plate by the incident sound, and the

radiation on the other side created by these travelling waves. Radiation

efficiency [18] varies depending on the relative wavenumbers of the waves

propagating in the structure and the velocity of sound in the fluid. The peak

of transmission is around the coincidence frequency, where these wavenum-

bers match. Below this frequency it is well known (see [1] for example) that
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the mass of the plate will be dominant, while for a plane wave, the bending

stiffness will be preponderant in the higher frequency range. For anisotropic

constructions, these results are still valid and well established [3], but the

coincidence frequency is no longer well defined.

The main claims of the paper are: a study of the sensitivity of trans-

mission loss of isotropic plates under plane wave and diffuse field excitations

to parametric uncertainties. The trends provided by the FAST method are

compared with common qualitative trends in the vibroacoustic community.

The case of an orthotropic thin plate is then studied in the same way. Finer

features corresponding to that case are highlighted that could not be ob-

tained as easily with asymptotic expansion. Finally a less common sandwich

panel is studied in the same framework, in order to investigate the effect of

shear stiffness introduced by this model.

The paper is structured as follows. Section 2 presents an overview of the

FAST global sensitivity analysis method used in this work. The mathemati-

cal framework and sensitivity indices are defined in this section. The general

model of acoustic transmission of plane wave and diffuse field through an

infinite plate is presented in section 3, then detailed in sections 4, 5 and 6 for

the isotropic, orthotropic and sandwich plates respectively. Results of the

FAST method are presented and analysed in these sections The case study

of a sandwich panel in section 6 enables us to give hints on how this method

could be applied to uncertain design in vibroacoustics.
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2. The FAST method

2.1. Analysis of variance

The influence of a single parameter on the model output can be quan-

tified by the impact it has on the variance in the given design range. In

the following development, a generic mathematical model is considered. A

model is defined as a real valued function f defined over K = [0, 1]n. With

appropriate variable changes, any function defined over continuous ranges of

parameters can be represented that way.

For a given model f mapping a vector of input parameters x = (x1, ...xn)

to a scalar output y = f(x), there exists a unique partition of f so that:

y =f(x1, x2, ...xn) =
∑

U⊂[1,n]

fU(x|U)dx|U

=f0 +
n∑
i=1

fi(xi) +
∑

16i<j6n

fij(xi, xj) + ...+ f1...n(x1, ..., xn), (1)

provided that each function fU involved in the decomposition has zero mean

over its range of variation K|U , which is the subspace of K spanned by the

dimensions contained in subset U . This writes:∫
K|U

fU(xU)dxU = 0. (2)

The decomposition given by Eq. (1) is called the Hoeffding decomposition

or high order model representation (HDMR) [13].

For a given set of indices U = {i1, . . . , ik}, the partial variance is therefore

the variance of fU :

VU =

∫
K|U

fU(xU)2dxU . (3)

6



The sensitivity index relative to the set U is expressed as the ratio of the

variance of the function fU to the total variance of the model:

SI(U) =
VU
V
. (4)

The computation of all the 2n sensitivity indices is needed to fully repre-

sent the model, however this quickly becomes a very costly task in terms of

computational time, as they have to be evaluated by numerical integration.

However, most information about a parameter’s influence can be found in

the first-order sensitivity index and the total sensitivity index, which can be

computed more efficiently with the FAST method.

For a given parameter i ∈ [1, n], the main effect (ME) is then the sensi-

tivity index relative to the 1-dimensional function fi:

ME(i) = SI({i}). (5)

Another interesting sensitivity measure for a given parameter i is the total

sensitivity index, defined as the sum of the indices of all sets of parameters

U to which i belongs:

TSI(i) =
∑

U⊂[1,n]
i∈U

SI(U). (6)

2.2. Main effect computation

The idea of the FAST method is to avoid the evaluation of the multi-

dimensional integrals needed for the computation of the fi functions, and

replace them by a single 1-dimensional integral along a space-filling curve in

the design space. This curve is defined so as to be periodic with different

periods relative to each parameter. Saltelli et al. [19] propose the sampling

function defined by:
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xi =
1

2
+

1

π
arcsin (sin (ωis+ ϕi)) . (7)

The frequencies ωi are integers chosen so as to minimize interferences

between parameters [14], and the ϕi are random real numbers in the interval

[0, 2π]. The set of integer frequencies {ωi} is said to be free of interferences

up to order M if all linear combinations

n∑
i=1

αiωi 6= 0, (8)

where αi ∈ Z and
∑n

i=1 |αi| < M .

As all the frequencies are integers, the resulting function is 2π-periodic

with respect to variable s. A sampling is then done using N > 2ωn + 1

samples in the [0, 2π] interval. Calling yk = f(xk) the model output on each

sample, the discrete Fourier transform ŷk can be easily computed numerically.

The values of the frequencies ωi for M = 4 and less than 19 parame-

ters have been found by Schaibly and Shuler [20] and are recalled up to 6

parameters in Table 1

[Table 1 about here.]

The total variance of the function in the design space is computed with

Parseval’s theorem as

V =

∫
K

(
f 2(x)− f 2

0

)
dx ≈

N∑
k=1

y2k =
N∑
k=1

ŷ2k. (9)

The contribution of parameter i is then approximated by the sum of the

coefficients indexed by the M lowest multiples of ωi:

Vi =
M∑
k=1

ŷ2kωi
, (10)
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and the main effect is calculated as

ME(i) =
Vi
V
. (11)

These analysis steps are repeated for several (typically 3) draws of the ϕi

and the results averaged over these draws. This ensures more robustness in

the evaluation of the sensitivity indices.

2.3. Total sensitivity index computation

A method proposed in [19] is to assign one high frequency ωi to parameter

i and a set of low frequencies {ω∼i} to all other parameters. The same sam-

pling curve as defined in Eq. (7) is used with these frequencies. Extracting

the low frequency content gives the share of variance due to all parameters

but i. The total sensitivity index of parameter i is then:

TSI(i) = 1− V∼i
D
, (12)

where V∼i is the partial variance relative to all parameters but i.

2.4. Interpretation

By definition, the sensitivity indices range between 0 and 1. The sum of

main effects (ME) is less than or equal to 1. The difference 1−
n∑
i=1

ME(i) is a

measure of how much interaction there is between parameters to produce the

variance, i.e. how much of the variance cannot be explained by variations of

each parameter individually. This difference is exactly zero only for functions

whose outputs are linear combination of the input parameters, also called

additive models. For such models, main effect and total sensitivity index are

equal.
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The value of the ME represents the share of the output variance that is

explained by the considered parameter alone. Most important parameters

therefore have high ME, but a low ME does not mean the parameter has no

influence, as it can be involved in interactions.

The total sensitivity index (TSI) is a measure of the share of the vari-

ance that is removed from the total variance when the considered parameter

is fixed to its reference value. Therefore parameters with low TSI can be

considered as non-influential.

3. Sound transmission through plane structures

The general set-up that will be studied in the following is made of an

infinite plate located in the plane z = 0, separating two half-spaces filled

with a light fluid with density ρ0 and characteristic sound speed c0. A plane

pressure wave of pulsation ω travels in the half space z < 0 with an angle θ

with respect to the x − y plane and a trace direction φ in the x − y plane.

The notation is presented in Fig. 1.

[Figure 1 about here.]

This situation leads to a incident acoustic pressure field in the half-space

z < 0 that can be written as:

pI = p0 exp (i(ωt− k · x)) , (13)

where k =
(
kx ky kz

)T
= ω

c0

(
sin θ cosφ sin θ sinφ cos θ

)T
is the wave

number vector, x =
(
x y z

)T
is the position vector of the current point in

space and i2 = −1. The sound speed in the fluid is denoted by c0. From now
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on, time harmonic dependence of all pressure and displacement quantities

will be assumed, and the factor exp(iωt) will be omitted from the equations

in the remaining of the article.

The interaction between the incident wave and the plate creates a forced

wave in the plate, with the same pulsation ω. The wave vector of this wave

is:

k =
ω

c0
sin θ

cosφ

sinφ

 . (14)

The plate in turn radiates acoustic plane waves on both sides, a transmitted

wave of magnitude pT and a reflected wave pR in the z > 0 and z < 0

half-spaces respectively.

The coupling is characterized by the continuity of normal speed at the

interface between the fluid and the plate, hence on either side of the structure

we have :
∂p

∂z
= ρ0ω

2w, (15)

where w is the displacement of a point in the plate in the z-direction. On

the incident side, we get:

− ikz(pI − pR) = ρ0ω
2w, (16)

and on the transmission side:

− ikzpT = ρ0ω
2w. (17)

We then have easily:

pR = pI − pT . (18)

Introducing the characteristic impedance of the fluid Z0 = ρ0c0, we obtain:

w = pT cos θ/(iωZ0). (19)
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The other equation needed to solve the problem is the forced vibration

equation in the plate, which depends on the nature of the plate and the

direction of the incident wave. It can be written under the general form:

L(kx, ky, ω)w = q, (20)

where L is a linear operator, and the load q is in this case:

q = pI + pR − pT = 2(pI − pT ). (21)

The structural impedance of the system is the ratio between load and normal

speed, which reads:

Z =
L

iω
. (22)

As we are concerned with the forced response of the plate to an oblique plane

wave, the projection of the wavenumber onto the plate’s plane is constant,

and equal to:

k =
ω

c0
sin θ. (23)

For the cases presented in this paper, the impedance Z can be expressed as

a complex number in the frequency domain.

Combining equations 19 through 22, we obtain a relationship between the

incident and transmitted pressures:

pT
pI

=

(
Z cos θ

2Z0

+ 1

)−1
. (24)

The intensity of sound on one side is I = ρc|p|2, and the acoustic trans-

parency of the plate is defined as the ratio of intensities on both sides, so:

τ =
IT
II

=

∣∣∣∣pTpI
∣∣∣∣2 . (25)
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It is usually more convenient to express the noise reduction capability of

a structure as a logarithmic quantity, called the transmission loss:

TL = −10 log10 τ. (26)

It is important to note that this expression for the transmission loss is

valid for a plane wave characterized by its direction angles θ and φ. Another

interesting case in the industry is that of the diffuse field, which is a super-

position of plane waves from random incidences. This assumption is valid

above a limit frequency [2].

The diffuse field transparency can be calculated from the plane wave one

as a weighted average over all possible incidence angles θ and directions φ:

τd =

∫ θsup
θinf

∫ 2π

0
τ(θ, φ) cos θ sin θdφdθ∫ θsup

θinf

∫ 2π

0
cos θ sin θdφdθ

. (27)

Several choices can be made concerning the limits of the integration range, we

will consider here a full range with θinf = 0 (normal incidence) and θsup = π/2

(grazing incidence). This choice may have a large influence on the value of

the TL, but not on the following sensitivity analysis.

4. Isotropic plates

4.1. Model

Infinite isotropic plates can be defined by a single geometrical parameter,

their thickness h, and four material parameters, namely Young’s modulus

E, Poisson’s ratio ν, density ρ and hysteretic damping η. The governing

equation for thin isotropic plates is:

D∇4w − ω2mw = q, (28)
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where D =
Eh3

12(1− ν2)
(1+iη) is the bending stiffness of the plate and m = ρh

is the surface density. As all directions in the plane are equivalent, there is no

dependency on the direction φ, so ∇ = ∂
∂x

= −ik = −i ω
c0

sin θ. The equation

then reduces to: (
D

(
ω

c0

)4

sin4 θ − ω2m

)
w = q, (29)

and the structural impedance is:

Z(ω, θ) = iωm

(
1− ω2 D

mc40
sin4 θ

)
. (30)

The acoustic transparency can then be computed as per Eq. (25) for the

oblique plane wave case and Eq. (27) for the diffuse field case. In the case

of an excitation by a oblique plane wave, the transmission loss exhibits a

minimum for the so-called coincidence frequency:

fcoin =
c2

2π sin2 θ

√
m

ReD
, (31)

where the bending wave group velocity in the plate meets the trace speed of

the incident sound wave. At this frequency, the plate’s impedance reaches a

minimum, which is zero if there is no damping. Bending waves below fcoin

are called subcoincident, and supersonic at frequency above coincidence.

4.2. Results

A FAST analysis was first conducted on the analytical model of an infinite

isotropic plate with 6 mm thickness, with parameters uniformly distributed in

the ranges defined in Table 2, corresponding to typical values for aluminium

with ±10% variation. This rather high thickness has been chosen so that the

coincidence frequency is low, around 4kHz for θ = 45o.
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4.2.1. Oblique plane wave

We first consider the case where the incident sound field is a plane wave

with 45o incidence. The results are presented in Fig. 2. The first-order

sensitivity indices (ME) for all four parameters are shown with respect to

frequency. It can be seen that they sum up to 1 in the whole range, except in

a narrow band around 4kHz, which corresponds to the coincidence frequency.

The density is shown to have a very high ME in low frequencies, while

for higher frequencies, Young’s modulus is predominant. This is consistent

with the classical result that high frequencies are governed by stiffness effects

and the low frequencies by mass effects. As the chosen design range is rather

narrow, all coincidence frequencies occur rather close to each other.

A high level of interactions between parameters can be observed in the

middle of the considered frequency range, where all parameters have rather

low ME, but E and ρ exhibit high TSI as can be seen on Fig. 3. This high level

of interaction can be explained by the fact that the coincidence frequency

is characterized by an important drop in the TL, and that the value of this

frequency (see Eq. (31)) is a function of both density and stiffness. It can

also be noticed that neither Poisson ratio nor damping have any significant

influence in this range. While this was expected for the Poisson ratio, it

is more surprising for the damping factor. It means that the location of

the coincidence frequency is more important than the actual drop of the TL

there, which is controlled by damping.

[Table 2 about here.]

[Figure 2 about here.]
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[Figure 3 about here.]

4.2.2. Influence of parameter variability range

The influence of parameter variability range has been studied by varying

the ranges of the three parameters E, ν and ρ without changing that of

damping η, which stays between 0.25% and 0.75%. These ranges are now set

at ±0.1% of their reference values, as in Table 3.

[Table 3 about here.]

Fig. 4 presents the results for this case. It can be seen that the discrep-

ancy between ME and TSI no longer exist at coincidence, and the transition

between mass-dominated and stiffness dominated is smoother, but the rel-

ative influence of parameters stays unchanged compared to the 10% case,

except around coincidence. As damping still varies within ±50% of its me-

dian value, it becomes much more important in the coincidence range. This

is what would be expected from a parametric analysis, as the effect of damp-

ing is on the TL drop at coincidence. Because of the very low variability of

E and m, the value of fcoin is practically fixed, and the value of the drop

becomes important.

[Figure 4 about here.]

4.2.3. Diffuse field

Diffuse field computations in the remaining of this paper are averaged

over third-octave bands using 7 points, which are logarithmically spaced in

each band. For the 10% parameter variation case, the diffuse field integration

introduces a different behaviour in the higher frequency range. The critical
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frequency is now the minimum of all coincidence frequencies fcrit = fcoin(θ =

π/2), and lies this time around 2kHz. Below the fcrit, mass is still the

most influential parameter. However above the critical frequency the most

influential parameter is damping, while stiffness (Young’s modulus) only has

some influence in the bands where the critical frequency occurs most often.

This can be explained by the fact that for all frequency f > fcrit, there exist

one value of angle θ such that f = fcoin(θ). In that case, the main effect

governing the TL value is effectively the dip at coincidence, and no longer

the coincidence frequency itself, so that damping becomes preponderant, even

if it still lies in the same range, as can be seen on Fig. 5.

It can also be noted that the density of the plate keeps a small influence

in high frequency, due to the fact that grazing incidence, where the mass law

is valid up to high frequencies, is always taken into account in the diffuse

field calculation.

[Figure 5 about here.]

5. Orthotropic plates

5.1. Model

An orthotropic plate is characterised by different properties in the x and

y directions. The forced wave equation then becomes:

Dx
∂4w

∂x4
+ 2Dxy

∂4w

∂x2∂y2
+Dy

∂4w

∂y4
−mω2w = q, (32)

17



where the bending stiffness in each axis is:

Dx =
Exh

3

12(1− Ey

Ex
ν2xy)

(1 + iη)

Dy =
Eyh

3

12(1− Ey

Ex
ν2xy)

(1 + iη)

Dxy =
h3

12(1− Ey

Ex
ν2xy)

(Eyνxy + 2Gxy) (1 + iη).

Writing ∂
∂x

= −ikx = −ik cosφ and ∂
∂y

= −iky = −ik sinφ, the system

reduces to the same form as in the isotropic case, with a heading-dependent

impedance. The heading dependent bending stiffness is:

D(φ) = Dx cos4 φ+ 2Dxy sin2 φ cos2 φ+Dy sin4 φ, (33)

and the structure’s impedance is then:

Z(ω, θ, φ) = iωm

(
1− ω2D(φ)

mc40
sin4 θ

)
. (34)

The transmission loss is then computed with Eq. (27), taking into account

the dependence on heading direction.

5.2. Unidirectional composite plate

A unidirectional composite plate is made of very stiff fibres oriented along

a given direction, say x, held together by a much softer material called the

matrix. This results in very different Young’s moduli in the longitudinal

(x) and transverse (y) directions. The difference can reach two orders of

magnitude for some carbon-reinforced composites such as the one presented

in first column of Table 4. The chosen variation ranges correspond roughly

to ±10% variation of the reference parameters.
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The main effects of all six parameters on the TL in diffuse field excitation

are presented in Fig. 6. The diffuse field transmission loss exhibits the same

behaviour that was observed in section 4 with the isotropic plate in the low

and high frequency ranges: Mass density is dominant in low frequencies, and

damping in high frequencies, for the same reasons. However the orthotropic

plate exhibits a range of critical frequencies, between the two corresponding

to the x and y directions:

fcrit,x =
c20
2π

√
m

ReDx

and fcrit,y =
c20
2π

√
m

ReDy

. (35)

For any direction other than the axes, the critical frequency lies between these

two, hence the transmission loss is characterized by a minimum zone between

these frequencies. The Young’s moduli Ex and Ey are only influential around

fcrit,x and fcrit,y respectively. Between these, both damping and mass density

are dominant, as the TL is the result of the sum of both subcoincident (mass-

law) and supersonic (damping-controlled) waves. Density again has one peak

of influence around the highest coincidence frequency. It can be noted that in

the considered ranges, neither the Poisson’s ratio νxy nor the in-plane shear

modulus Gxy have any practical influence on the transmission loss.

The main effect of all parameters sum up close to 1, which means that

there are practically no interactions between parameters. It is therefore not

necessary to compute the TSIs as they would be nearly equal to the main

effects.

[Table 4 about here.]

[Figure 6 about here.]
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5.3. Quasi isotropic plate

A quasi isotropic plate is obtained by stacking fibre-matrix composite

plates with different fibre orientations. They can be modelled as orthotropic

plates with equal Young’s moduli in x and y directions, but with an indepen-

dent in-plane shear modulus Gxy, not equal in general to that of an isotropic

plate. In that case, only five parameters will be taken into account, with

Ex = Ey = E and so Dx = Dy = D. The in-plane shear term Dxy can be

replaced by αD, introducing a dimensionless coefficient α as in [21]. It is

exactly 1 for isotropic structures, and less than 1 for most types of laminated

composites, but can for some constructions be greater than 1. We chose here

arbitrarily to make this parameter vary between 0.4 and 1.2.

[Table 5 about here.]

Results of the FAST analysis are presented on Fig. 7 in the same fashion

than for the unidirectional plate in previous section. The results are close

to those of the isotropic plate of section 4 for parameters relevant to both

models (damping, density, Poisson’s ratio and Young’s modulus), and it can

be seen that the in-plane shear parameter alpha does not account for much

of the TL variance, except in the third octave just above coincidence. This

can be explained that, as parameter α is mostly less than 1 on its range

of variation, it tends to increase the wavenumber at 45o of the axes, which

leads to a slightly higher coincidence frequency for waves propagating in this

direction.

[Figure 7 about here.]
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6. Uncertain design of a sandwich panel

6.1. Model

A sandwich construction is made of two thin plates, called the skins,

glued to a thick core. The core is usually made of very stiff and light mate-

rial, which ensures a high stiffness-to-mass ratio of the structure, interesting

for aerospace applications. However the shear stiffness must be taken into

account to accurately model this kind of materials. Out of plane waves prop-

agating in a sandwich plate are no longer purely bending wave, but incor-

porate some shear deformation form the core. However, other deformations

are not considered, which allows to represent the skins with their Young’s

modulus E and the core by its sole shear modulus G. The equation of mo-

tion for an isotropic sandwich plate submitted to an external force is given

by Renji [22]. Substituting the viscous damping term in the reference by an

hysteretic damping, defined as an imaginary part of the bending stiffness D,

this equation becomes

Dk4 − ρω2

(
1 +

D

N
k2
)
w = q, (36)

which leads to the following form for the structural impedance:

Z(ω, θ) = imω

[
1 +

(
D

Nc20
sin2 θ − D

mc40
(1 + iη) sin4 θ

)
ω2

]
. (37)

For sandwiches made of isotropic materials, the bending stiffness is D =

Eh2chs(1+ hs
hc

)2 and the shear stiffness is N = Ghc

(
1 + hs

hc

)2
. This expression

is equivalent to that of a thin plate if the shear stiffness is infinite.
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6.2. Results

We consider a sandwich panel with four uncertain parameters, whose

variations range are summarised in Table 6, namely the sandwich’s surface

density m, the core’s shear stiffness G, the skin’s Young’s modulus E and the

structural damping η. The thicknesses of the skins and core were assumed

constant, respectively at hs = 1mm and hc = 2cm. These values are in the

order of magnitudes attained by sandwich panels made of aluminium skins

and honeycomb core. The choice of surface density over material density

comes from the fact that the former depends on the properties of the hon-

eycomb core, rather than a homogeneous material, and that this quantity

directly arises in the sandwich’s constitutive equation (Eq. 37).

[Table 6 about here.]

[Figure 8 about here.]

In high frequencies, the sandwich construction under diffuse field excita-

tion has a very different behaviour from that observed previously with thin

plates.

Fig. 8 presents the main effects of each parameter. The main effects

plotted do not always sum up to 1, which indicates interactions between

parameters, especially around coincidence, as was observed for the isotropic

case studied in section 4.

The most interesting result is here that the dominant parameter in high

frequencies is no longer damping, but the shear modulus G, whereas the

Young’s modulus E is not important in the whole frequency range, except

around coincidence, through interactions with the mass and shear modulus.
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This suggests that the variation range set for the shear modulus is very large,

and may correspond to a design latitude. If a reduction of the TL in high

frequencies is wanted, it is therefore necessary to work out a better range of

variation for G, while the other parameters’ ranges can be kept.

We shall consider the same average value of G (400 MPa here), but with a

narrower range of ±50MPa on the actual value. This remaining uncertainty

may be due to the homogenisation of the honeycomb construction of the

core. The main effects for this case are presented in Fig. 9. It can be seen

that with these values, the most influential parameter in high frequency is

now damping, as was observed for the cases studied in the above sections.

Shear is only moderately influential throughout the whole frequency range.

The standard deviation in the highest frequency range is reduced by 1.5 dB,

which is lower than the uncertainty due to the model itself.

[Figure 9 about here.]

Fig. 10 presents the average transmission loss and the standard deviation

per octave bands in both cases. The standard deviation is most important

around coincidence and in high frequencies. The final case exhibits a reduced

standard deviation compared to the initial case, except in the low frequency

range where the modified parameter G was not influential. It can be noted

that the average TL is slightly lower in the final case.

In this case the FAST method can be used as a tool for both uncertainty

quantification and preparation of an optimisation procedure.

[Figure 10 about here.]
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7. Conclusion

The FAST method has been applied on several models for sound trans-

mission through infinite plates. It efficiently allows identification of the most

influential parameter per frequency range. It is firstly validated with classi-

cal results on transmission loss of a plane wave through an isotropic plate:

mass is dominant in the lower frequency range as predicted by mass law,

while bending stiffness, represented by the Young’s modulus, is dominant for

high frequencies. Damping only has some influence around coincidence. The

case of diffuse field transmission is then studied for isotropic and orthotropic

plates. Damping is now found to be dominant in the higher frequency ranges,

whereas stiffness is important only around coincidence. Orthotropic plates

are characterised by a coincidence zone bounded by two critical frequencies

corresponding to the minimum and maximum values of the bending stiffness

in the plate’s plane.

Finally, the application of the method to an orthotropic sandwich panel

illustrates a potential application in vibroacoustic design of structures: used

with a rather wide range for the shear modulus of the core, FAST demon-

strated a high influence of this parameter in the highest frequency range and

around coincidence, where the standard deviation is also maximum, around 3

dB. If a smaller range can be worked out for the variability of this parameter,

this influence reduces greatly, and damping becomes preponderant, while the

overall standard deviation of the output is significantly reduced.

The FAST sensitivity analysis can therefore be used to identify the most

influential parameters, and quantify their effect on the overall variance. In

any case, good estimates of parameter variability ranges need to be known
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a priori, as they may greatly influence the results. That being known, the

method can be used for both optimisation and parametric uncertainty quan-

tification. The fact that it is a non-intrusive method makes it readily usable

with existing models.

8. Acknowledgements

The authors would like to gratefully acknowledge Airbus Defence and

Space for their financial support. This project is part of the international

cooperation project CRIAQ ACOU504 INTL. This work has been performed

in cooperation with the COVIA project (French National Research Agency

grant number ANR-12-JS09-008-COVIA).

References

[1] F. J. Fahy, P. Gardonio, Sound and structural vibration, Academic

Press, 2007.

[2] C. Lesueur, M. Heckl, J. Delcambre, Rayonnement acoustique des struc-

tures, Eyrolles, 1988.

[3] J.-L. Guyader, C. Lesueur, Transmission of reverberant sound through

orthotropic viscoelastic multilayered plates, Journal of Sound and Vi-

bration 70 (3) (1980) 319–332.

[4] K. Renji, P. S. Nair, S. Narayanan, Modal density of composite honey-

comb sandwich panels, Journal of Sound and Vibration 195 (5) (1996)

687–699.

25



[5] R. D’Ippolito, B. Newill, B. Van der Heggen, Uncertainty Modeling for

Aircraft Interior Noise - Composites Transmission Loss Optimization,

SAE Technical Paper 2013-01-2216.

[6] E. Reynders, Parametric uncertainty quantification of sound insulation

values, Journal of the Acoustical Society of America 135 (2014) 1907–

1918.

[7] W. Batko, P. Pawlik, New method of uncertainty evaluation of the sound

insuation of partitions, Acta Physica Polonica A 123 (6) (2013) 1012–

1015.

[8] R. D’Amico, A. Pratellesi, M. Pierini, N. Baldanzini, Stochastic BEM for

the Vibroacoustic Analysis of Three-Dimensional Structures, Advances

in Acoustics and Vibration 2011 (2011) article ID 952407, 12 pages.

[9] R. D’Amico, A. Pratellesi, N. Baldanzini, M. Pierini, Reformulation of

the Stochastic {BEM} to improve the computational efficiency in the

prediction of the vibro-acoustic behaviour of structures with uncertain-

ties, Journal of Sound and Vibration 332 (9) (2013) 2132 – 2148.

[10] A. Cicirello, R. S. Langley, The vibro-acoustic analysis of built-up sys-

tems using a hybrid method with parametric and non-parametric uncer-

tainties, Journal of Sound and Vibration 332 (9) (2013) 2165 – 2178.

[11] R. Ohayon, C. Soize, Advanced computational vibroacoustics, Cam-

bridge University Press, 2014.

[12] A. Saltelli, M. Ratto, T. Andres, F. Campolongo, J. Cariboni, D. Gatelli,

26



M. Saisana, S. Tarantola, Global Sensitivity Analysis: The Primer, John

Wiley & Sons, 2008.

[13] I. M. Sobol, Sensitivity analysis for nonlinear mathematical models,

Mathematical modeling and computational experiment 1 (1993) 407–

414.

[14] R. I. Cukier, C. M. Fortuin, K. E. Shuler, A. G. Petschek, J. H. Schaibly,

Study of the sensitivity of coupled reaction systems to uncertainties on

rate coefficients. I. Theory, Journal of Chemical Physics 59 (8) (1973)

3873–3878.

[15] B. Iooss, F. Van Dorpe, N. Devictor, Response surfaces and sensitiv-

ity analyses for an environmental model of dose calculations, Reliabil-

ity Engineering and System Safety 91 (10–11) (2006) 1241–1251, the

Fourth International Conference on Sensitivity Analysis of Model Out-

put (SAMO 2004).

[16] M. Ouisse, M. Ichchou, S. Chedly, M. Collet, On the sensitivity analysis

of porous material models, Journal of Sound and Vibration 331 (2012)

5292–5308.

[17] O. Doutres, M. Ouisse, N. Atalla, M. N. Ichchou, Impact of the irreg-

ular microgeometry of polyurethane foam on the macroscopic acoustic

behavior predicted by a unit-cell model, The Journal of the Acoustical

Society of America 136 (4) (2014) 1666 – 1681.

[18] F. G. Leppington, K. H. Heron, E. G. Broadbent, Resonant and non-

27



resonant transmission of random noise through complex plates, Proceed-

ings of the Royal Society of London A 458 (2002) 683–704.

[19] A. Saltelli, S. Tarantola, K. P. S. Chan, A quantitative model-

independent method for global sensitivity analysis of model output,

Technometrics 41 (1) (1999) 39–56.

[20] J. H. Schaibly, K. E. Shuler, Study of the sensitivity of coupled reaction

systems to uncertainties on rate coefficients. II. Applications, Journal of

Chemical Physics 59 (8) (1973) 3879–3888.

[21] K. Renji, P. S. Nair, S. Narayanan, Critical and coincidence frequencies

of flat panels, Journal of Sound and Vibration 205 (1) (1997) 19–32.

[22] K. Renji, Sound transmission loss of unbounded panels in bending vi-

bration considering transverse shear deformation, Journal of Sound and

Vibration 283 (2005) 478–486.

28



List of Figures

1 Notations used for geometric parameters. . . . . . . . . . . . . 30
2 Main effects for the four parameters for an infinite isotropic

plate impinged by a 45o incident plane wave with 10% vari-
ability on parameters.The effect of η is too small to be visible
on the figure. . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 Total sensitivity indices of the 4 parameters of an infinite
isotropic plate under 45o incident plane wave with 10% pa-
rameter variability. . . . . . . . . . . . . . . . . . . . . . . . . 32

4 Main effects of the 4 parameters of an infinite isotropic plate
under 45o incident plane wave with 0.1% parameter variability. 33

5 Main effects for the four parameters of an infinite isotropic
plate under diffuse field excitation with 10% parameter vari-
ability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6 Main effects for the six parameters of the unidirectional or-
thotropic plate. . . . . . . . . . . . . . . . . . . . . . . . . . . 35

7 Main effects for the five parameters of the quasi isotropic plate 36
8 Main effects of the three parameters of the sandwich plate

model with high variability of shear modulus . . . . . . . . . . 37
9 Main effects of the four parameters of the sandwich plate

model with low variability of shear modulus . . . . . . . . . . 38
10 Average value and standard deviations for the two cases of

sandwich plates. . . . . . . . . . . . . . . . . . . . . . . . . . . 39

29



x

y

z
k

φ

θ

Figure 1: Notations used for geometric parameters.
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Figure 2: Main effects for the four parameters for an infinite isotropic plate impinged by
a 45o incident plane wave with 10% variability on parameters.The effect of η is too small
to be visible on the figure.
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Figure 3: Total sensitivity indices of the 4 parameters of an infinite isotropic plate under
45o incident plane wave with 10% parameter variability.
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Figure 4: Main effects of the 4 parameters of an infinite isotropic plate under 45o incident
plane wave with 0.1% parameter variability.
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Figure 5: Main effects for the four parameters of an infinite isotropic plate under diffuse
field excitation with 10% parameter variability.
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Figure 6: Main effects for the six parameters of the unidirectional orthotropic plate.
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Figure 7: Main effects for the five parameters of the quasi isotropic plate
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Figure 8: Main effects of the three parameters of the sandwich plate model with high
variability of shear modulus
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Figure 9: Main effects of the four parameters of the sandwich plate model with low
variability of shear modulus
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Figure 10: Average value and standard deviations for the two cases of sandwich plates.
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Number of parameters Set of frequencies
5 {11, 21, 27, 35, 39 }
6 {1, 21, 31, 37, 45, 49 }

Table 1: Sets of integer frequencies ωi for 5 and 6 parameters and M = 4. For n < 5, the
n smallest values of the set for 5 parameters are used.
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Variable Min. value Max. value
Ex (GPa) 63 77

ν 0.27 0.33
ρ (kg.m−3) 2430 2970
η (·10−3) 2.5 7.5

Table 2: Variation ranges of the 4 parameters of the isotropic plate model with 10%
variability.
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Variable Min value Max. value
Ex (GPa) 69.93 70.07

ν 0.2997 0.3003
ρ (kg.m−3) 2697 2703
η (·10−3) 2.5 7.5

Table 3: Variation ranges of the 4 parameters of the isotropic plate model with 0.1%
variability
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Variable Min. value Max. value
Ex (GPa) 201.6 246.4
Ey (GPa) 6.21 7.59

νxy 0.225 0.275
Gxy (GPa) 51.3 62.7
ρ (kg.m−3) 1420 1736
η (10−3) 2.5 7.5

Table 4: Values for the FAST analysis of a unidirectional orthotropic plate
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Variable Min. value Max. value
Ex (GPa) 40 54

ν 0 0.2
α (-) 0.4 1.2

ρ (kg.m−3) 1350 1650
η (10−3) 2.5 7.5

Table 5: Values for the FAST analysis of a quasi-isotropic plate
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Variable Min. value Max. value
E (GPa) 60.0 80.0
G (GPa) 0.1 0.7
m (kg.m−2) 10 14
η (10−3) 2.5 7.5

Table 6: Values for the initial FAST analysis of an isotropic sandwich plate
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