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firstname.lastname@femto-st.fr

Abstract

Particle filters are of great concern in a large variety of engineering fields such as robotics, statistics or automatics. Re-
cently, it has developed among Prognostics and Health Management (PHM) applications for diagnostics and prognostics.
According to some authors, it has ever become a state-of-the-art technique for prognostics. Nowadays, around 50 papers
dealing with prognostics based on particle filters can be found in the literature. However, no comprehensive review has
been proposed on the subject until now. This papers aims at analyzing the way particle filters are used in that context.
The development of the tool in the prognostics’ field is discussed before entering the details of its practical use and
implementation. Current issues are identified, analyzed and some solutions or work trails are proposed. All this aims at
highlighting future perspectives as well as helping new users to start with particle filters in the goal of prognostics.
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1. Introduction

Prognostics and Health Management (PHM) is an en-
abling discipline that aims at utilizing real monitoring data
to facilitate relevant indicators and trends that depict the
health of a system. Seven modules ranging from data ac-
quisition to decision making are combined to help preserv-
ing the integrity of a system [31]. A key activity in PHM
is prognostics. Indeed, it enables predicting the remaining
useful life (RUL) of the system and helps anticipating and
avoiding failure. A great variety of techniques is available
to perform prognostics [70] depending on the knowledge
and data available.
Among these techniques, particle filters are more and more
employed. It has been developing this last decade in the
prognostics’ field even becoming considered as a state of
the art technique. However, no comprehensive review is
available to discuss the issues coming with this tool, or to
compare the different existing points of view on the sub-
ject. It can be interesting to notice, and also to show, that
most of works dealing with particle filters in the prognos-
tics field are just using existing approaches and applying
it to prognostics. Most of them lack of real adaptation
to prognostics requirements. Moreover, with no synthesis
of the existing literature, it is quite difficult to start with
particle filters to perform prognostics with only basic no-
tions.
To provide answers to these comments, or at least to start
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addressing them, the main contributions of this paper are
the following: (1) the background and a short review about
particle filters in a general context, (2) an analysis of par-
ticle filters in prognostics applications addressing all the
issues from the filter selection to the uncertainty manage-
ment, and (3) the highlighting of remaining issues and
challenges as well as the proposal of solutions or work
trails. For this purpose, this paper is organized in two
main parts.
In a first part, the theory of particle filter and its basic
functioning are presented. A short state of the art is also
drawn to show the existing types of implementation and
some of the general challenges. Then, in the second part,
the use of particle filter in the prognostics’ field is studied.
A comprehensive analysis of the different techniques avail-
able for each step of the implementation is proposed. To do
so, first the perception of the tool in the PHM community,
the requirements for prognostics as well as its advantages
and drawbacks are discussed. Then, the model adapta-
tion needed to have the state and measurement models
are discussed and the different types of filters most com-
monly encountered for prognostics are discussed. Section
II. 5 deals with the implementation of particle filters while
Section II. 6 discuss how to use it to perform prognostics.
Finally, the existing metrics to evaluate the results based
on particle filters are summarized before discussing how to
deal with uncertainty with such a tool.
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Part I

Particle filters - Theory
and generalities
Particle filers are used in many fields: robotics, statis-
tics, automatics, etc. and more recently in diagnostics and
prognostics. However, the bases always remain the same.

1. Nonlinear Bayesian tracking

1.1. Problem statement

A Bayesian tracking problem is defined by two elements
[3]:

1. a state vector that contains all the relevant informa-
tion required to describe the system under investiga-
tion;

2. a measurement vector representing the noisy observa-
tions that are related to the state vector. It is gener-
ally of dimension equal or lower than the state vector.

The signal is modeled as Markovian, nonlinear, non-
stationary and may be non-Gaussian [19]. We remind that
a Markov process is a stochastic process with the Markov
property, i.e. the conditional probability distribution of
future states only depends from the current state and not
the past states. Nonlinear refers both to the classical def-
inition of a nonlinear system, i.e. a system for which the
output is not directly proportional to the input, and its
mathematical representation, i.e. a nonlinear state equa-
tion.
The knowledge of this information is translated into at
least two models in order to analyze and make inference
about the dynamic system [3, 19]:

1. the state model (or system model): describes the evo-
lution of the state with time {xt, t ∈ N}, xt ∈ X is
modeled as a Markov process of initial distribution
p(x0) and a transition equation p(xt|xt−1). Note that
this state can be unobserved (hidden states).

2. the measurement model (or observation model): re-
lates the noisy measurements to the state. The ob-
servations are written {yt, t ∈ N∗}, yt ∈ Y are as-
sumed to be conditionally independent given the pro-
cess {xt, t ∈ N} and of marginal distribution p(yt|xt).

According to [3], an important assumption is that these
models are available in a probabilistic form. However, to
be used in a filtering framework, the models are more com-
monly found in the following forms [38]:

xt = f(xt−1, ut, ωt)↔ p(xt|xt−1) (1)

yt = h(xt, vt)↔ p(yt|xt) (2)

where ut is the command input of the system and ωt and
vt are white noises, non-necessarily Gaussian. Some ex-
amples of non-Gaussian white noises can be found in [24].

The probabilistic state-space formulation and the updat-
ing of information based on new measurements are ideal
for the Bayesian approaches [3].

1.2. Bayesian approach

The Bayesian approach consists in constructing the pos-
terior probability density function (pdf) of the state based
on all available information, such as the knowledge of the
system or sets of measurements. In principle, an optimal
(with respect to any criterion) estimate of the state may
be obtained [3].
The state is estimated recursively via a filtering approach.
According to [3], it means that received data can be pro-
cessed sequentially rather than as a batch so that it is not
necessary to store the complete data set nor to reprocess
existing data if a new measurement becomes available. In
practice, we will see later in the prognostics part that stor-
ing the data can be necessary to make improved filtering.

Filtering uses 2 stages:

1. prediction: it uses the state model to estimate the
current state;

2. update: it uses the latest measurement to modify the
prediction pdf with the Bayes’ rule.

For the record, the Bayes’ rule can be formulated as follows
for a continuous variable [65]:

p(x|y) =
p(y|x)p(x)

p(y)
=

p(y|x)p(x)∫
p(y|x′)p(x′)dx′

(3)

with the requirement that p(y) > 0.
In the context of filtering, x is a quantity that we would
like to infer from y. The probability p(x) is referred to
as prior probability distribution, and y is called the data
or the observations. The distribution p(x) summarizes the
knowledge regarding the variable x prior to incorporat-
ing y. p(x|y) is called the posterior probability distribution
[65].
Based on that, the Bayesian tracking problem consists in
recursively calculate some degree of belief in the state xk
at time k, given the data y1:k up to time k, and so per-
form the construction of the pdf p(xk|y1:k). The initial
pdf p(x0|y0) ≡ p(x0) of the state vector is assumed avail-
able. The pdf p(xk|y1:k) is obtained recursively from the
2 stages previously mentioned: prediction and update

1. prediction: use of the system model to obtain the
prior pdf of the state at time k via Chapman-
Kolmogorov equation:

p(xk|y1:k−1) =

∫
p(xk|xk−1)p(xk−1|yk−1)dxk−1 (4)

2. update: at time k, a measurement yk becomes avail-
able and this may be used to update the prior via
Bayes’ rule:

p(xk|y1:k) =
p(yk|xk)p(xk|y1:k−1)

p(yk|y1:k−1)
(5)
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where the normalizing constant

p(yk|y1:k−1) =

∫
p(yk|xk)p(xk|y1:k−1)dxk (6)

depends on the likelihood function p(yk|xk) defined by
the measurement model (details about the likelihood’s
definition are given further).

This forms the optimal Bayesian solution. However, it is
only a conceptual solution: in general it cannot be deter-
mined analytically. For that purpose, a whole family of
filtering tools exists ranging from the Kalman filter (KF)
and its variations (extended KF or unscented KF), his-
tograms and particle filters. The choice between these fil-
ters depends on the dynamics of the system and the shape
of the noise distributions. A non-exhaustive classification
that helps guiding this choice is proposed in [59] and is
reproduced in Figure 1.
The focus is now on particle filters.

Bayesian methods

Non‐linear
process

Linear
process
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additive noise
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PF

Gaussian PF
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Deterministic
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KF: Kalman filter
MC: Monte Carlo
PF: particle filter

Figure 1: A proposal of Bayesian methods’ classification from [59]

2. Particle filtering

Working with particle filters has a lot of advantages but
also some drawbacks. A list can be found in [34], however
it is not detailed here as we will come back to that subject
in Part II.

2.1. Principle and hypotheses

As for perfect Monte Carlo (MC) sampling, particle fil-
tering assumes that we are able to simulate N indepen-
dent and identically distributed random samples that are
called particles according to p(x0:t|y1:t) [19]. Based on the
MC simulation principle, the particle filter’s approxima-
tion represents a continuous distribution by discrete ran-
dom measures composed of particles xit which are possible
values of the unknown state xt at time t.
[38] defines the objective of a particle filter as a sequential
estimation of the distribution of the state, including:

• the filtering distribution p(xt|y1:t) (the posterior prob-
ability distribution);

• the prediction distribution p(xt|y1:t−1);

• the smoothing distribution p(xt|y1:T ) t < T ;

However, according to the application, not all these distri-
butions are used and it is more relevant for future discus-
sions to focus on:

• the prior probability distribution p(xt|xt−1);

• the posterior probability distribution p(xt|y1:t);

• and the importance density (or proposal distribution)
q(xt|x0:t−1, y1:t);

The success of the particle filter algorithm depends on the
validity of the following assumption [68]:

• Monte Carlo assumption: the Dirac point mass ap-
proximation provides an adequate representation of
the posterior distribution;

• Importance sampling assumption: it is possible to
obtain samples from the posterior by sampling from
a suitable proposal distribution and applying impor-
tance sampling corrections

These assumptions become clearer with some explanations
of the process.

2.2. A large family of filters

2.2.1. Sequential Importance Sampling: the classic form

Sequential Importance Sampling (SIS) is a MC method
that forms the basis for most sequential filters. It is known
under different names: bootstrap filtering, condensation
algorithm, particle filtering, interacting particle approxi-
mation, survival of the fittest [3].
The main idea is to use a set of random samples with asso-
ciated weights to represent the required posterior density
function. The state estimates are then computed based on
these samples and weights. Consequently, the discretiza-
tion of the state space is given by a discrete weighted ap-
proximation:

p(x0:k|y1:k) ≈
N∑
i=1

ωikδ(x0:k − xi0:k) (7)

with the weights normalized such that
∑
ωik = 1. This is

the MC assumption.
The weights are chosen according to the principle of im-
portance sampling [3]. We suppose that p(x) which is pro-
portional to π(x) is a probability density from which it is
difficult to draw samples but for which π(x) can be eval-
uated. Moreover, let xi ≈ q(x), i = 1...N be samples that
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are easily generated from a proposal q(.) called the im-
portance density. We have the weighted approximation
density:

p(x) ≈
N∑
i=1

ωiδ(x− xi) (8)

where wiαπ(x
i)

q(xi) .

At each iteration, one could have samples constituting an
approximation to p(x0:k−1|y1:k−1) and want to approxi-
mate p(x0:k|y1:k) with a new set of samples. From the
relation

q(x0:k|y1:k) = q(xk|x0:k−1, y1:k)q(x0:k−1|y1:k−1) (9)

one can derive the weight update equation

wikαw
i
k−1.

p(yk|xik)p(xik|xik−1)

q(xik|xik−1, yk)
(10)

and the posterior filtered density:

p(xk|y1:k) ≈
Ns∑
i=1

ωikδ(xk − xik) (11)

Also according to [3], there are three main issues when
using the SIS:

1. a degeneracy problem: after a few iterations all but
one particle have a negligible weight.
A measure of the degeneracy of the algorithm is the
effective sample size (ESS), written Neff ,

Neff =
N

1 + var(ω∗ik )
(12)

where ω∗ik is the “true” weight. It cannot be evaluated
exactly so it is approximate as:

ˆNeff =
1∑

(ωik)2
(13)

Two possibilities are well-known to reduce this effect:
a good choice of importance density and the use of
resampling. This leads to points 2 and 3.

2. the choice of a good importance density : a method im-
plies choosing the importance density q(xk|xik−1, yk)
to minimize var(ω∗ik ) which is equivalent to maximize
Neff . However, it has two major drawbacks as it re-
quires the ability to sample from p(xk|xik−1, yk) and
also to evaluate an integral over the new state. There
exist two cases in which the use of the optimal impor-
tance density is possible:

• xk is a member of a finite set;

• or with a class of models for which p(xk|xik−1, yk)
is Gaussian (dynamics nonlinear with linear
measurements).

3. resampling : the principle is to eliminate particles that
have small weights and to focus on particles with
larger weights. This step involves generating a new

set of particles
{
xi∗k
}N
i=1

by resampling N times from
p(xk|y1:k). The result is an independent identically
distributed (iid) sample from the discrete density and
the weights are reset to 1/N.
It introduces practical problems, the most important
one is the loss of diversity: particles that have high
weights are selected many times eliminating entire
parts of the state space.

The SIS algorithm is the basis of all particle filter algo-
rithms. A great number of derivative filters were proposed
all along the last fifteen years however they all follow a
classical scheme.

2.2.2. General particle filter scheme

Based on the SIS, all the particle filters follow the same
scheme:

1. Initialization: N particles are created based on the
initial state of the system. According to [65], if one
knows the values of x0, the initial distribution should
be initialized with a distribution that centers all prob-
ability mass on the correct value of x0 and assigns 0
probability anywhere else. If we are entirely ignorant
of x0, a uniform distribution over the domain of x0 can
be used (or a related distribution from the Dirichlet
family).

2. Prediction: the prior probability distribution at time
t p(xt|xt−1) is evaluated thanks to the state model,
the evaluated state xt−1 at time t− 1 and the inputs
of the system ut.

3. Update: A new measurement is available, the weights
are calculated thanks to equation (10). Particles prop-
agation together with weight computation is called
importance sampling [38].

4. Resampling : the particles with low weights are elim-
inated and the other ones duplicated. Resampling is
equivalent to modifying the random measure by im-
proving the exploration of the state space at t + 1
[38].

Update and resampling are the most delicate tasks of the
procedure.
First, based on equation (10), weight computation requires
the knowledge of

• the likelihood distribution p(yk|xik) that measure the
matching between each particle and the latest mea-
surement which expression comes from the measure-
ment model;

• the prior distribution p(xk|xk−1);

• and the importance density q(xk|xk−1, yk)
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The choice of the importance density is far from being
a trivial task as the form of q(.) is almost always un-
known. There exist different approaches for the density
extraction [65]: Gaussian approximation, k-means cluster-
ing, histogram, density tree, kernel density estimation.
It is also possible to look for the proposal distribution
q(xt|x0:t−1, y1:t) = p(xt|x0:t−1, y1:t) that minimizes the
variance of the importance weights conditional on x0:t−1
and y1:t as stated earlier. However, the most popular
choice is to use q(xt|x0:t−1, y1:t) = p(xt|xt−1) [68]. The
crucial point is that if one fails to use the latest available
information, only a few particles will have significant im-
portance weights when their likelihood is evaluated.
Then the second hot point is resampling. To avoid de-
generacy two kind of solutions exists: the brute force
strategy consisting in increasing the number of particles
and a more refined strategy that consists in implement-
ing evolved resampling strategies. According to [37], to
avoid sample impoverishment, resampling should be exe-
cuted only at deterministic steps, for instance only when
the variance of the non-normalized weights is superior to a
threshold which consists in the use of the effective sample
size (ESS) previously mentioned. This allows controlling
the frequency of resampling. Indeed, resampling too often
increases the risk of losing diversity. But when resampling
too infrequently, many samples might be wasted in low
probability regions. Resampling is adopted to force parti-
cles to areas of high likelihood from low likelihood areas.
There exist a lot of resampling strategies. [37] define them
as “blind” when the moving of the particle is done with-
out a specific direction, or “sighted” meaning that new
observations are used to direct the moving operation.

2.2.3. Evolved particle filters

A great diversity of particle filters has appeared. Their
differences rely mainly on the choice of the importance
sampling density and/or changes in the resampling pro-
cedure. Not all of them have particular names so when
reviewing them, to have a complete overview of the liter-
ature, both the different types of filters and the different
types of resampling should be studied. Extensive reviews
on the subjects are already existing [13, 38], explaining
how the procedures work. So here only the names of the
filters/resampling are presented. For instance in [38], the
authors propose a classification of resampling schemes dis-
tinguishing the sequential and parallel implementations as
well as four criteria: the selected distribution, the resam-
pling of all the particles in same way or not, the grouping
of particles and the use of the latest information available
or not.
The different types of filter and resampling are summa-
rized in Tables 1 and 2. It is important to mention that
the modified particle filters used in the context of prognos-
tics are not integrated to these tables. A focus on these
ones will be proposed in the next part.

As it can be seen, choosing a particle filter can be a
hard with such diversity. There are still some challenges

Table 1: Types of filters

Type of filter References

Sequential Importance Sampling (SIS) [3, 13, 19, 68]
Sampling Importance Resampling filter
(SIR)

[3, 13, 34]

Auxiliary Sampling Importance [3, 34]
Resampling filter (ASIR)
Auxiliary particle filter [13, 68]
Regularized particle filter [3, 34]
MCMC PF [13, 52]
Unscented particle filter [26, 68]
Artificial fish swarm based particle fil-
ter

[36]

SMC PHD filter [40]
Saturated particle filter [61]
Mixed Kalman particle filter [13, 30]
Mixture Particle Filters [13]
Risk sensitive particle filter [64]
Self-adaptive particle filter [60]
Direct sampling particle filter [67]
Rao-Blackwellized filter [13]
Rejection Particle Filter [13]
Other Monte Carlo Filters [13]

linked to that tool mainly regarding resampling [38]: (1)
simplifying the resampling algorithms, (2) developing bet-
ter schemes with a goal of improving performance (speed,
convergence, etc.), (3) parallelization or (4) real-time im-
plementation.
These challenges might also be encountered when dealing
with prognostics based on particle filters. Now the pur-
pose of what follows is to conduct a survey on how the
particle filter is used in prognostics? What are the main
improvements already made on that tool in the context of
prognostics? And what future works should tend toward
on that subject?

Part II

Particle filters in
prognostics
1. Related works

Particle filters are more and more used to perform prog-
nostics. However, no review has been made regarding the
available literature. For that purpose, 46 published works
are considered and analyzed, see Table 3. The idea is to
try to tackle the numerous practical issues of this tool.

To follow the process from the selecting the particle filter
as a tool to include in a prognostics’ framework, to the
implementation and the results interpretation, the rest of
the paper is organized as depicted in Figure 2. Also note
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Table 2: Types of resampling strategies

Multinomial resampling [38, 68]
Residual sampling [38, 68]
Minimum variance sampling [68]
Smoothing Metropolis-Hastings [68]
Annealed importance sampling [42]
Bayesian importance sampling [42]
Adaptive importance sampling [42]
Numerically accelerated sampling [42]
Non-parametric importance sampling [42]
Stratified sampling [38]
Systematic sampling [38]
Classification [38]
Dynamic threshold [38]
Fixed threshold [38]
Modified resampling [38]
Variable size resampling [38]
Roughening [38]
KLD-resampling [22, 41]
IBIS [21]
Optimal nudging [43]

that the main conclusions of each section are summarized
in the tables of Section 8.

Choosing a particle 
filter or not ?

Section 2

Definition of the state
and observation models Section 3

Choice of the filter’s 
type  Section 4

Filter implementation Section 5

Performing prognostics 
based on the filter 
output

Section 6

Uncertainty’s 
interpretation Section 7

Evaluating the results Section 7

General synthesis Section 8
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Figure 2: Synopsis of the discussions

Table 3: Prognostics works based on particle filters considered for
the review

Reference Application case

[4, 50, 51, 62, 73, 75] crack growth

[1, 2, 14, 16, 18, 23,
25, 27, 28, 37, 44, 45,
46, 49, 53, 54, 55, 56,
57, 63, 66, 71]

Li-ion batteries

[32, 33, 35] PEM fuel cells

[5, 6] turbine blade (creep growth)

[12] water tank system
[15] pneumatic valve
[72] tool wear
[10] landing gear retraction
[9] semi-conductor manufacturing
[29] simulated data
[7] aircraft actuator system
[8] wind turbine
[20] LED light sources
[11] carrier plate
[47] vibration feature
[69] jet engine
[74] bearing

2. Why using particle filter for prognostics?

2.1. Perception by the PHM community

The particle filter is considered by many as the state-
of-the-art tool for model-based or hybrid prognostics. In-
deed, it allows using a Bayesian formulation of a problem.
Both physical models and data can be incorporated to the
framework and the formulation thanks to a state vector
enables linking the state of the system to numerous in-
puts. The classification of the approach into model-based
or hybrid prognostics is still debated. Indeed, a model is
needed to perform state of health estimation but data are
also continuously used to update the parameters of the
model and the state estimation.
A lot of arguments are used to justify the use of a parti-
cle filtering-based prognostics as it will be shown in sec-
tion 2.4. However, before listing them, it is necessary to
think a little further about what is expected from such a
tool in the prognostics field.

2.2. Requirements for prognostics

On the one hand, we have the particle filter which pri-
mary objective is to estimate the state of the system based
on a state model and measurements. If some unknown
parameters remain in the model, this objective can be ex-
tended to combined parameter and state estimations. On
the other hand, there is prognostics which basically uses a
set of available measurements to learn the state or the be-
havior of the system (i.e. the learning) and then predicts
its future state-of-health (SoH) and remaining useful life
(RUL) (i.e. the prediction). The learning can be model-
based, purely data-driven or a combination of both. Based
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on these simple remarks, what can be expected from par-
ticle filters in prognostics?
According to [28], the requirements for prognostics based
on particle filters are quite common:

1. a behavioral model that includes the degradation;
2. degradation measurements;
3. a measurement equation;
4. a failure threshold.

Among these four components, the first three are classical
of the Bayesian framework used with particle filters. In
[49], it is reminded that these three components together
should also satisfy the following statement: a proper rep-
resentation for the probability of rare events and highly
non-monotonic phenomena is required. Events non-related
to the standard state evolution should also be considered,
among them we can propose:

• changes in the mission profiles;

• maintenance interventions;

• uncontrolled rejuvenation phenomena;

• unpredictable / sudden failures;

Globally, this all enters in two categories when designing
the prognostics framework:

1. the modeling of the system;
2. the distributions’ management by the filter, i.e. filter

design.

However, these requirements are not really prognostics-
specific and could be encountered in any applications of
SoH estimation of an industrial system based on particle
filters.
To perform prognostics whatever the method employed,
it is expected to predict the SoH and RUL without new
measurements. This is clearly out of the competence
range of a particle filter which cannot work without
measurement. This leads to an obvious conclusion but
never explicitly mentioned in the literature:

Conclusion 1 A particle filter is not used for prognos-
tics but for state estimation.

As stated in [75], it is necessary to devise procedures
with capabilities of projecting at future times the cur-
rent particle population, in absence of new observations,
adjusting the weights if necessary. Consequently, a cor-
rect implementation of a particle filtering-based prognos-
tics should follow the scheme depicted in Figure 3. Spe-
cial procedures for prognostics based on the particle filter’s
output are still very scarce and will be discussed in Sec-
tion 5.
If we go further, why preferring a particle filter instead
of another method for SoH estimation? Before discussing
the advantages and drawbacks of the methods, we must
try to position this tool with respect to other method for
model-based applications.

2.3. Positioning of particle filters

Using particle filters without a deep prior reasoning can
lead to bad performance. Indeed, in [39] the authors show
that using a filter does not necessary lead to good results
if the context is not appropriate.
The first step of the reasoning is to decompose the differ-
ent stages involved in model-based prognostics, Figure 4.
There are mainly three stages:

1. model identification;

2. state reconstruction;

3. prognostics.

Some methods are proposed for each stage. During model
identification, unknown parameters of the model are esti-
mated based on the data available. One method should
be selected according to the hypotheses linked to the ap-
plication such as parameter evolution with time, nonlinear
model according to the inputs, recursive incorporation of
the latest measurements, etc.
Then comes the state reconstruction stage, or SoH estima-
tion. The parameters previously estimated are used with
a Markovian form of the model, the data and the com-
mand to estimate the current state of the system. During
this procedure the parameters of the model can be fur-
ther adjusted. Particle filters can be used at that stage
if the proper hypotheses are formulated: nonlinear non-
stationary model, parameters evolving with time, non-
Gaussian noise distributions, etc.
Finally prognostics is performed with a procedure adapted
to the case. Let’s pursue now with the advantages to in-
clude particle filters in a prognostics’ scheme.

2.4. Advantages

Before going deeper in the applications, it is interesting
to see how the authors justify, when they do, the use of
particle filters in their work. It should allow distinguishing
what are the real advantages of applying this tool in the
context of prognostics.
All the following items are direct quotes from the litera-
ture. Particle filter is an efficient prognostics tool as:

• recursive Bayesian algorithms are well suited to solve
the problem of real-time estimation since they incor-
porate process data. It allows information from multi-
ple measurement sources to be fused to a logical man-
ner [75];

• it is a MC method for nonlinear Gaussian state space
models [75];

• it is capable of accounting for the stochasticity of the
process and the noise affecting the measurements [75];

• it can be used to estimate and adjust the model pa-
rameters and to track (the battery aging) processes
with nonlinear and non-Gaussian characteristics [71];

7



Predicted
distributions  
of SOH + RUL

PROGNOSTICS SCHEME

Last SOH 
distribution of 

particles

LEARNING

PREDICTION
Particle
filter

Models
Data

Special
procedure

Figure 3: Particle filtering-based prognostics

State 
reconstructionIdentification PrognosticsModel 

y = f(t, θ, u)

Data y1:k

θk
X1:k

Command u1:k

Model xk+1 = g(xk, θk, uk+1)

θ’k

Expected
command uk:k+H

Xk:k+H
RUL

‐ Recursif least squares method and its
variations,

‐ Maximum likelihood
‐ Gradient descent
‐ Autoregressive filters (AR, MA, ARMAX…)
‐ Neural networks
‐ Genetic algorithms, simplexe
‐ Instrumental variable
‐ Output error‐based methods

PRINCIPLE

POSSIBLE
SOLUTIONS

‐ Neuro‐fuzzy systems
‐ Particule filter
‐ Kalman filter and its

extensions

‐ Use of the model to 
propagate the distribution 

‐ Data generation based on 
data‐driven method
associated to the state 
reconstruction tool

‐ Design of special procedures

NB: g is f recursive form

Figure 4: Different stages of model-based prognostics and some possible methods for each one

• the parameters of the model can be included as a part
of the state vector performing model identification in
conjunction with state estimation [56, 71];

• it is applicable to nonlinear and/or non-Gaussian pro-
cess [12];

• it generates a probabilistic output which is convenient
to represent and manage uncertainty [12];

• it supports information fusion from multiple observa-
tion sources in a principled manner [12];

• the implementation of SIS helps reducing the num-
ber of samples required to approximate the future
state probability distribution compared to classical
MC methods, increasing the computational speed and
efficiency [1, 75].

• its attractiveness relies in the framework provided for
handling the significant levels of uncertainty inherent
in the generation of long term prediction [10];

• this technique has the ability to tune non-stationary
model parameters simultaneously with state estima-
tion, which combination with the representation of
the state space as multiple weighted particles, makes
it ideal for state tracking and prediction [56];

• it is able to dynamically adjust model parameters of
non-stationary conditions and predict the unknown
parameters by tracking historical data [66];

It is interesting to notice that only the three last arguments
mention a prediction but they are not directly related to
prognostics. It confirms the conclusion of the previous
subsection.
The argument of applicability with combined parameters
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and state identification seems to be the most important if
we refer to the number of times it is mentioned.

2.5. Drawbacks and limitations

Fewer references show the drawbacks of particle filters:

• it requires that the state evolution models are accu-
rately updated at initial prediction step and their pa-
rameters are approximately static in the future. The
prediction results greatly depends on the state par-
ticles estimated at initial prediction step, which in-
creases the uncertainty [12];

• there is no update of the model parameters during the
prediction [44];

• the contribution of the model uncertainty to the RUL
prediction uncertainty is not directly considered, since
it is assumed that the degradation dynamics model
and observation equation are exactly known [6].

• a potential issue with any non-deterministic predic-
tion technique is that any errors or approximation in
the initial pdf can accumulate and grow over a certain
time horizon and can severely distort the predicted
pdf over a long time frame [62].

Another point raised in [59] is the cases where the particle
filter should or should not be used. Particle filters should
be used with multivariate or non-standard posterior
distribution, nonlinear process, non-Gaussian noise and
when a relatively accurate and precise RUL estimate is
required. However, it should not be used with a typical
deterministic posterior distribution, a linear Gaussian
noise, a multiplicative noise, a single variable posterior
distribution or if covariate data is not available for the
failures of interest. These constrains do not forbid the use
of particle filters however they are more suited for Kalman
filters or its derivative. Nevertheless, a lot of applications
with state equations linear according to the state and
with Gaussian noise can be found in the literature as
shown later.

These considerations do not integrate implementation
issues. Yet, the main problems come with that practical
part. First, the assumption of 1st-order hidden Markov
model (HMM) is not generally true and a high order model
may not be appropriate as it depends on multiple p-step
before states [11]. A solution can be to use a high-order
particle filter as it will be described later. Another possi-
bility is to introduce the hypothesis that the impact of the
m previous states on the degradation is all contained in
the last state. It allows approximating the m-order HMM
by a first order one.
In [66], the authors recognize in their approach (in this case
AFSA-PF), the updating of the parameters is extremely
time-consuming which impedes the popularization of the
proposed method in engineering applications. It echoes

the challenges of parallelization and real-time implemen-
tation mentioned in Section 2.2.3.
The common choice of importance density q(.) =
p(xt|xt−1) is appropriate to estimate the most likely proba-
bility distribution according to a particular set of measure-
ment data. However, according to [63], it does not offer
a good estimate of the probability of events associated to
high risk conditions with low likelihood. A possible solu-
tion is to use a risk-sensitive particle filter (RSPF) that
ensures the existence of particles in the tails of the state
pdf. This filter will be described in Section 4.1.
Finally, although particle filter-based algorithms have been
established as the de facto state of the art in failure prog-
nostics, there is still no clear indication about how to per-
form verification and validation of these approaches [63].

2.6. Open issues

In [62] a certain number of open questions are high-
lighted:

1. how do we verify the particle filter modules imple-
mented for a particular application?

2. how many particles are needed to accurately represent
the uncertainty propagation in the long term predic-
tions?

3. how do we accommodate model parameter uncer-
tainty within the particle filter framework?

These questions are all related to burning issues in prog-
nostics:

1. verification and validation of the approaches;

2. uncertainty representation, quantification and man-
agement.

This last point is discussed in Section 7.2.

2.7. Partial synthesis

The main point of this section to keep in mind is that
the particle filter is not suitable to perform prognostics
but only SoH estimation. Starting from this conclusion,
it becomes easier to define why it should be included in a
prognostics and what its role is.
As a component of a prognostics scheme, it is expected
from the particle filter to give precise SoH estimates based
on the current data. This implies taking into account the
aging of the system, its behaviors as well as rare and sud-
den events such as changes in the mission profiles, mainte-
nance interventions, uncontrolled rejuvenation phenomena
or unpredictable / sudden failures.
For this purpose, we take advantage of (1) its possibility
to fuse multiple measurement sources in a logical manner,
(2) its ability to deal with nonlinear non-stationary and/or
non-Gaussian processes, (3) its ability to take into account
the stochasticity of the process, (4) the possibility to per-
form parameter and state estimations simultaneously, (5)
the probabilistic form of the output and finally (6) its com-
putational efficiency with respect to other MC methods.
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However, by integrating this tool in the prognostics
scheme, we have to face with its drawbacks. The use of
particle filters requires a precise initialization and assumes
that the degradation dynamics and the observation equa-
tion are exactly known. Also, it might be use without the
respect of the first-order HMM hypothesis. It should not
be forgotten that the classical choice of the importance
density as p(xt|xt−1) may not always be appropriate, that
the choices of parametrization can be complicated. Adding
to that, the algorithm can be time-consuming so it is nec-
essary to know exactly what the maximum delay expected
to obtain results is. Finally, the aspects of uncertainty rep-
resentation, quantification and management can be tricky.
We will see later that we have to precisely define what kind
of uncertainty can be handled by particle filters.

3. Modelling

For the record, the particle filter needs a Bayesian for-
mulation of the problem:

xt = f(xt−1, ut, ωt)↔ p(xt|xt−1) (14)

yt = h(xt, vt)↔ p(yt|xt) (15)

To respect this standard and for an optimal use, the mod-
eling of the system may need some adaptations.

3.1. State model

Using directly degradation models with the particle fil-
ter might not be practical in most of the cases. A model
adaptation is needed.
First, to respect the Bayesian formulation, the model has
to be transformed to express xt as the function of the pre-
vious state xt−1. It is interesting to mention that one
aspect to justify the use of particle filter is its ability to
deal with non-linearity. However, in a lot of works the
proposed state model is clearly linear with respect to the
state such as in [12, 16, 57] and in most of these cases have
a Gaussian noise.
Then the parameters of the state and observation models
to identify should be included to the state vector. Their
update equations have also to be defined. Two cases ap-
pear here:

1. the parameters are constant through the prognostics
process;

2. the parameters are time-dependent and vary all along
the prognostics process.

Different solutions emerge according to the dimension of
the state vector and the knowledge about the parameters
to identify, written αt.
In [57], a solution is proposed based on the assumption
that the system health state is 1-dimensional given by
xt. The authors assume that the parameter values of h in
equation (15) are known. However, they precise that this
assumption can be relaxed in a more generic approach.

Consequently, their main issue is to formulate the state
equation for their state parameters αt. An easy solution
proposed is the Gaussian random walk:

αj,t = αj,t−1 + wj,t−1 (16)

with wj,t−1 ∈ N (0, σ2
j ). The particle filter will converge

to the actual value according to the law of large numbers.
The variance σ2

j may be chosen to be high in order to
cover more state-space but it can delay the convergence.
A solution is to define the noise variance σ2

j as a state
variable that increases if the associated weight is lower
than a preset threshold:

σj,t = cj,t.σj,t−1


cj,t < 1 if wt−1 > wth

cj,t = 1 if wt−1 = wth

cj,t > 1 if wt−1 < wth

(17)

This approach can be computationally expensive so not
feasible for all the parameters of a high order model. In
this case, the authors in [57] recommend performing a sen-
sitivity analysis and selecting only the most sensitive pa-
rameters for a noise variance update.
The Gaussian random walk previously mentioned remains
the most used method as in [5, 15, 27, 45].
A totally different approach consists in not using a state
model in its classical formulation. In [29], a relevance vec-
tor machine (RVM) regression is used to replace of the
classical transition function and generate the particles.

3.2. Measurement model

In some cases the measurement model may not be avail-
able. This problem is tackled by the authors in [4]. First,
an important hypothesis of the method is that the mea-
surement model can be written:

y(t) = f(t) + ν(t) (18)

where f is a biunivocal function and ν a Gaussian noise.
Then, the method is based on the use of bagged ensemble
of artificial neuron networks (ANNs) which are employed
to build an interpolator of the available training patterns
and the distribution of the measurement noise. This gives
the pdf p(yt|xt) to the particle filter.

3.3. Uncertainty management in the model formulation

For uncertainty management, the authors in [62] con-
sider two main types of adjustments:

1. adjustments in the unknown parameters in the state
equation;

2. adjustments in the hyper-parameters that define the
noise pdf.

The second option can be considered thanks to an outer
correction loop that modifies the variance of the measure-
ment noise:

var {w2(t+ 1)} =

{
p ∗ var {w2(t)} if ||pred−error(t)||||feature(t)|| < Th

q ∗ var {w2(t)} if ||pred−error(t)||||feature(t)|| > Th

(19)
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pred−error(t) is the short term prediction error computed
at time t (a 5-step prediction error in the illustrative ex-
ample provided in [62]), || || is a norm, the L2 norm is
proposed by the authors, p, q and Th are constants such
that 0 < p < 1, q > 1 and 0 < Th < 1.
This type of approach raises a question: is that correct
to control the noise variance so precisely? Indeed, it may
change the interpretation of the resulting uncertainty (see
section 7.2).

3.4. Specific architectures for modeling

In some applications both models and measurements are
adapted by an integrated architecture. In [72], the state
transition equation is based on a NARX (nonlinear autore-
gressive exogenous model) model while the measurement
equation is SVM-based ARMAX (Auto Regressive Moving
Average with eXternal inputs) modeling.

3.5. Partial synthesis

Some questions remain, most of them regarding the
state model.
First, whatever the approach chosen to update the param-
eters of the model, a choice has to be made regarding the
variance of the noise in equation (16). The question is:
how to define a proper range for the variance faster than
with a trial and error approach? Indeed, the trial-error
technique is currently the simplest manner to define the
variance when no precise knowledge is available. Never-
theless, it can very fast become time-consuming.
Then the problem of a high dimension state vector has not
been addressed yet. Indeed, the state model main contain
a great number of parameters to identify. The idea of per-
forming a sensitivity analysis to determine on which pa-
rameters focusing is a good starting point. However, what
can be done with these parameters? Moreover, according
the stage of aging of the system, the most sensitive param-
eters may differ with the time period. It might imply that
their update equation evolves in time. A possible solution
is to include an inner sensitivity analysis in the prognos-
tics scheme just before the particle filter as proposed in
Figure 5.

Particle filter

State 
model

Sensitivity
analysis

Parameters update 
equations at time t

Sensitive 
parameters

Selection of an 
update equation

Measurements

xt

yt

αt

Figure 5: Adaptive selection of the parameters’ update equation

Then regarding the measurement model, a solution is
proposed for the cases where this model is not available.
However, this solution involves a Gaussian assumption.
Other options to tackle the problem should be proposed
without implying this hypothesis. This will be discussed
again in Sections 5.4 and 5.5.
Finally, it is hard to comment the suggestions proposed
for uncertainty management. Indeed before discussing this
point, it is important to define the type(s) of uncertainty
handled by the filter. Section 7.2 will be dedicated to that
topic.

4. Type of filter and resampling procedures

Once the models are set, the question “what filter should
we use?” comes. There are currently no guidelines to help
practitioners choosing. Traditional and existing types of
particle filters can be used for prognostics, as well as exist-
ing resampling procedures (see Tables 4 and 5). However,
some papers propose new ideas.

4.1. Types of filters

A great majority of the prognostics’ works do not indi-
cate what filter they used. When they do, it can be noticed
that the SIR seems to be the most employed. Other types
can be encountered. It is interesting to see that all of them
were already existing in the general literature (see Part I,
Section 2.2.3).

Table 4: Type of particle filter used in the prognostics’ literature

Type References

SIR [2, 5, 6, 15, 20, 23, 32, 37, 51,
56, 63, 66, 72, 73]

UPF [14, 45]
RSPF [48, 63]
RPF [69]
Adaptive PF [35]
AFSA-PF [66]

Let’s focus on the six types of filter encountered in par-
ticle filtering-based prognostics and try to understand why
they were selected among the huge existing literature.

The sampling importance resampling filter - SIR. The SIR
is the most classical form of particle filter and is easy to im-
plement. It is clearly described in [3, 13]. The key points
are explained here.
The attractiveness of the SIR relies in the fact that the as-
sumptions required to use the filter are very weak. The
state dynamics and measurement functions need to be
known, and it is required to be able to sample realizations
from the process noise distribution and from the prior [3].
Also, the availability of the likelihood function is needed
for pointwise evaluation. This algorithm can be easily de-
rived from the SIS described in Part I by the appropriate
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choices of (1) the importance density (chosen to be the
prior density) and (2) the resampling step (applied at ev-
ery time step). For more details on the algorithm, please
refer to [13].

One advantage of the algorithm is that any resampling
procedure can be integrated. Moreover the choice of the
prior density as importance density is very convenient.
However, the importance sampling density for the SIR is
independent of measurement, so it means that the state
space is explored without any knowledge of the observa-
tions. Consequently, this filter is sensitive to outliers and
can be inefficient. Adding to that, as resampling is per-
formed at every iteration, this may result in a rapid loss
of diversity in particles.

The unscented particle filter - UPF. The UPF algorithm
was first introduced in [68]. It uses the unscented Kalman
filter (UKF) to generate a proposal distribution for get-
ting the posterior probability taking account of the latest
observation. UPF is divided into two steps:

1. applying the UKF algorithm to get the proposal dis-
tribution;

2. using the standard particle filter algorithm to get the
results.

The key point in the UPF is its ability to use the latest
observation, contrary to the SIR.

Risk sensitive PF-based prognostics. This type of filter in-
corporates a cost model in the importance distribution to
generate more particles in high-risk regions of the state
space. It was first introduced in [64] and then encountered
in [48] for prognostics purpose. According to the authors
of the last paper, it is critical to note that this particle
filter approach makes use of exogenous models to evaluate
and estimate the risk associated with every fault mode. In
practice, RSPF implies a more conservative estimate of the
RUL of a piece of equipment. It is expected that RSPF-
based routines will anticipate possible sudden changes in
the system’s operating conditions.
In simple words, RSPF incorporates a model of costs when
generating particles. By incorporating a cost model, states
that are more critical to the system performance are more
likely to be tracked. In [48], the approach proposes to
use a variant of RSPF algorithm, where the cost function
allows sampling particles from regions of the state space
representing high-risk conditions for the system and where
the fault dimension has low likelihood. It is implemented
by modifying the kernel of the process noise w(t):

w(t) ≈ δw′(t) + (1− δ)w∗(t) (20)

where w′(t) ∼ N(0, σ′2), w∗(t) ∼ N(d, σ∗2), d = Ew∗(t) 6=
0, σ′ and σ∗ are the variances of Gaussian kernels and
0 ≤ δ ≤ 1. The parameters process noise is corrected
thanks to the inner correction loop proposed in [50] that
will be explained later.

The regularized particle filter - RPF. When using the
RPF, the idea is to change the discrete approximation of
the posterior pdf to a continuous one in the resampling
stage with a rescaled kernel procedure [69]:

p(xt|yt) =

N∑
i=1

witKh(xt − xit) (21)

with

Kh(x) =
1

hnx
K(

x

h
) (22)

where K(.) is the recalled kernel density and h is the kernel
bandwidth.

The adaptive particle filter. The self-adaptive particle fil-
ter was proposed by [60]. It gives to the particle filter
the ability to adjust the number of particles as well as the
propagation function at each iteration.
The fact behind the idea of adjusting the number of par-
ticles is that the use of a fixed number of particles is often
inefficient [60]. The dynamics of the system’s processes
introduce a great variability in the complexity of the pos-
terior distribution. So the initial number of particles can
be much larger than the real number of particles needed
to perform a good estimation of the posterior distribution.
On the opposite, it can be too small causing the divergence
of the filter. The method developed to adjust the number
of particle starts from the KLD-sampling algorithm that
can be found in Part I - Table 2. This kind of procedure
is expected to give better state estimates and reduce the
computational load when the number of particles is over-
estimated.

Artificial fish swarm-based particle filter - AFSA-PF. Ar-
tificial fish swarm algorithm (AFSA) was initially proposed
as a new random searching optimization algorithm based
on the simulation of fish swarm in the wild. This algo-
rithm imitates four behaviors of fish swarm: (1) preying
behavior to find the optimal solution, (2) swarming be-
havior to gather the fish swarm in the optimal region, (3)
following behavior to free the fish swarm from local opti-
mal solutions and (4) random behavior to find the optimal
solution in a larger scope. It has the advantages of rapid
and global optimization, insensitivity to initial values, ro-
bustness and easy operation [66]. This algorithm is used
to drive the particles to the region of high likelihood. We
will come back to its use in prognostics application in Sec-
tion 5.6.

4.2. Resampling procedures

We previously saw that a great number of resampling
procedures exist. However, it seems that the authors of
prognostics applications stuck to the simplest ones. Very
few share the procedure employed but we can find some
novelties comparing to general literature.
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Table 5: Type of resampling procedure used in the prognostics’ lit-
erature

Type References

Inverse CDF method [2, 20, 72, 75]
Bootstrap resampling algorithm [5]
SVR [18]
Monotonic resampling [72]

We can find minor changes as for example in [5] where
the importance weights are defined slightly differently than
usual:

wit =
L.wit−1∑
L.wt−1

(23)

with L being the likelihood. But new types of resampling
can be found in [18] and [72].
The resampling procedure proposed in [18] is based on
support vector regression (SVR). The idea of rebuilding
the posterior distribution by SVR is an optimization prob-
lem using a regularized function with constraints. When
the effective sample size (ESS) falls below the threshold,
a resampling of the posterior distribution using the SVR
algorithm occurs. The training pairs are the particle xit
and its corresponding weight wit = F (xit). These pairs are
used to rebuild the resampling posterior distribution.
In [72], the authors introduce a monotonic resampling
scheme. Indeed, they highlight that even with a mono-
tonic degradation trend, with SMC methods monotonic
results are not guaranteed. So to keep only the monotonic
behavior estimates, they modify the particles weights ac-
cording to:

wik+p =

{
wik+p if xi1(k + p) > bk+p

0 otherwise
(24)

When resampling is also an interesting question. While
some are using the ESS as above in [18], other set directly
the frequency of resampling as in [6] where resampling oc-
curs every 5 measurements.
The impact of the resampling on the uncertainty is also
questioned. Is there still any uncertainty present at the
initialization of the filter in the resampled distribution?
And for the resampling based on a variance’s threshold (as
ESS), is that correct to control so precisely the variance
of the distribution? Is that relevant to help interpreting
the results? Answering these questions is far from being
trivial.

4.3. Comparison of resampling approaches

One paper attempting to compare prognostics results
obtained with several resampling approaches is available
[25]. The resampling algorithms considered are: multino-
mial, residual, stratified and systematic resampling. Ac-
cording to the results presented, systematic and stratified
resampling show the best results with a slight advantage

to systematic resampling which is proved theoretically su-
perior.
The idea of comparing different algorithms to provide
guidelines for prognostics is interesting. However, this pa-
per suffers from several limitations. First, the experiments
are made on a very simple battery modeling. How would
the results evolve if the experiments are made on a com-
pletely different system with a more complex state model?
How would they change with a different initialization of
the particle filter? Can we draw the same conclusion if
we change the number of particles (initially 500)? Indeed
drawing any conclusion when comparing these algorithms
in a prognostics perspective can be difficult and need fur-
ther investigation as well as precise evaluation methods.

4.4. Partial synthesis

How do we choose a particle filter adapted to a specific
application? That is the question of this section. Choosing
based on the results provided in the PHM literature can
lead to a biased opinion. Indeed, when improved parti-
cle filters are used, they are always compared to the most
basic form (i.e. the SIR) or to a version of the Kalman
filter. These types of comparison prove nothing as evolved
particle filters were designed to outperform these classical
approaches and this was already demonstrated in the ded-
icated literature. Also, practitioners have to wonder if it
is really necessary to implement evolved particle filters in-
stead of sticking to the simplest ones. Indeed, implement-
ing a more sophisticated filter may not necessary improve
the results significantly and can be computationally costly.
The gain is not always obvious.
It seems that starting with the most basic version, the
SIR, is the preferred option in the PHM community. This
appears to be a good starting point. However, it should
be modified to incorporate more knowledge of the system
and also to give fast and reliable prediction. Incorporat-
ing the knowledge available on the system has not be seen
yet. It may seem strange in the context of model-based
PHM. Indeed, to build a model a deep understanding of
the system is required and some information that is not
integrated in the modeling can be injected elsewhere in
the filter. For instance, in application using a health in-
dicator which is supposed to be monotonic, for example
increasing, eliminating a particle that shows a decreasing
trajectory looks logical. This would lead to a biased par-
ticle filter but clearly adapted to the state estimation of a
particular system.
An interesting idea would be designing a filter that takes
all the advantages of the proposed filters and incorporate
new ideas. Such a filter would be able to:

• create different groups of particle: one for the state
and others for parameters estimates;

• adapt its number of particle by itself (adaptive parti-
cle filter);
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• take into account sudden events that affect the system
state if necessary (risk sensitive particle filter);

• perform a resampling to obtain a monotonic health
indicator estimation (monotonic resampling);

• constrain the particle values only in the part of the
state space coherent with the age of the system (con-
strained state space [67]).

Such a filter may offer good performances but the algo-
rithm might be time-consuming. The user should select
the appropriate improvement according to his system and
application.

5. Implementation and practical issues

Once the type of filter chosen, the implementation of the
filter can start. According to [20], a particle filtering-based
approach for prognostics has 6 steps:

1. model definition;

2. parameter initialization;

3. parameter sampling and prediction;

4. dynamic update;

5. particle weighting and resampling;

6. RUL prediction

The distinction between points 3 and 4 is not obvious,
they could be gathered in a same step. With respects to
previous discussions and to figure 3, the implementation
of the SoH estimation, i.e. items 1 to 5, is proposed in this
section. While the prognostics procedure will be described
in Section 6.
This section will discuss the following issues:

1. the formulation of problems breaking the assumption
of 1st-order Markov process;

2. the choice of the number of particles;

3. the definition of the process and measurement noises;

4. the formulation of the likelihood function;

5. the importance sampling;

6. the introduction of inner correction loops to improve
the performance.

Let’s start with the issue of breaking the assumption of
1st-order Markov process.

5.1. Bayesian estimation using m-order HMM

The authors in [11] raise the issue of high-order HMM.
The problem formulation is the following:{

xt = ft(xt−1, ..., xt−m, wt−1)
yt = h(xt, νt)

(25)

They demonstrate that the formulation of the weights re-
mains the same:

wit = wit−1.p(yt|xit) (26)

For simplicity the demonstration is not reproduced here
and the reader may refer to [11].
However building a state model that uses the p-step before
states can be complicated. So an approach using ANFIS
is proposed for state modeling [11]. It uses the four last
states xt−1 to xt−4 as inputs and gives an estimate of the
updated state x̂t and the process noise wt−1. This process
noise follows a Gaussian distribution which initial mean
and variance are generated via ANFIS’s modeling error.
The different stages of the procedure are:

1. the ANFIS is trained with available condition data to
model the fault propagation process;

2. the fault growth model represented by the ANFIS and
the process noise is employed with a 4th-order particle
filter to draw a set of particles. One-step ahead and
multi-step ahead predictions are made;

3. the process noise is updated with:

µw =

∑n−1
i=0 yx−i
n

(27)

σw =

√∑
(yx−i − µw)2

n
(28)

with yx−i a residual;

4. repeat 2 and 3

5.2. Defining the number of particles

Choosing the right number of particles is far from being
simple as no clear methodology is proposed. The authors
in [57] demonstrate that the convergence of the filter is
dependent of the number of particles N but not of the
dimension of the state nx. They support their discussion
with figures reproduced from [17] and presented here in
Figure 6.

If we look at the different works, we notice that the
number of particles ranges from 30 to 10 000 (Table 6).
These values seem consistent with Figure 6. However, such
diversity does not help choosing a standard number at all.
A possible way to overcome the problem is to start with
the number of particles prescribed by Figure 6 and then
use an adaptive particle filter to adapt this number.

Table 6: Number of particles chosen for experiments

References Number of particles N

[74] 30
[11] 100
[66] 200
[15, 25, 37, 72] 500
[5, 6, 16, 44, 75] 1000
[35] 2000
[12] 1500
[2] between 1000 and 5000
[28] 1000, 5000 and 10000
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Figure 6: Left: Dimension free error vs. number of particles for PF with good proposal density, Right: Dimension free error vs. number of
particles for PF with poor proposal density [17]

5.3. State and parameter initializations

Choosing a correct initialization of the filter is crucial
to ensure the particles convergence toward the true state.
Initializing the particle filter consists in two main steps:

1. defining the initial distribution of the system state;

2. defining the initial distributions of the parameters of
the models;

However, these steps are often unmentioned in the litera-
ture.

5.3.1. Initial distribution of the system state

As stated in section 2.2.2, the initial distribution should
be built according to the known state of the system. In the
PHM context, the system is continuously monitored until
its early life or until a fault alarm. So normally, the initial
state of the system is known with a quantified uncertainty.
However, there is always a possibility that the system is
more degraded as expected and this may not appear on
the measurements.
Consequently, a possibility for the initial distribution is
combination of a Gaussian distribution with a uniform
one as proposed in Figure 7. The Gaussian would be cen-
tered on the assumed present state of the system, with a
standard deviation σ linked to the uncertainty on the mea-
surements. The uniform would be defined according to the
knowledge of the degradation, particularly its kinetics. If
these kinetics are very slow and the risk that the system is
more degraded than expected closed to zero, the uniform
distribution could be ignored and the initial distribution
of the state would be only a Gaussian.

5.3.2. Initial distributions of the parameters of the models

One of the major advantages of the particle filter is its
ability to update the parameters of a model while estimat-
ing the state. A practical manner to do that is to incorpo-
rate the model parameters to the state vector and update

Assumed  present 
state of the system

Degradation propagation

Past state of 
the systemPossibility of unexpected degradation

Uncertainty of 
the present

state

σ

Figure 7: Proposal of initial state distribution

them via their own updating equation. Consequently, a
proper initialization is required. A bad initialization of the
state model surely leads to a poor state estimate. There is
no standardized method to initialize the parameters dis-
tribution. The general literature dealing with particle fil-
ters remains very vague on that subject. However some
interesting proposal have started to appear in the PHM
community.
When expert knowledge is available, defining precise ini-
tial distribution is possible. It is illustrated in [6] by the
use of different types of distributions: Gamma, determin-
istic and Normal. However, it does not seem that this case
is the most common one.
In [2], as no prior information on the initial distributions
of parameter is available, the choice to use uniform distri-
butions is made. However, there is no explanation about
how the ranges of these distributions are defined. Uniform
distributions are also adopted for the initial state, param-
eter values and standard deviation error of the measure-
ments in [10] centered on estimation obtained by fitting
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for the first two and a bootstrap procedure for the last.
Other examples using uniform distributions can be found
in [28, 32, 69, 74].
Fitting the data available for learning seems to be the
most classical approach. Such idea can be found in
[10, 14, 20, 23, 27, 33, 37, 44, 45, 71, 74]. Some examples
can be provided. In [20], initial distributions are uniform
and come from a nonlinear least square regression. In [14],
a curve fitting is performed thanks to the dedicated Mat-
lab toolbox and the initial value of the parameters is the
mean of the fitting estimates of three datasets. The Matlab
fitting toolbox is also used in [45]. In [74], a least square al-
gorithm with a forgetting factor is employed to determine
the model parameters. To initialize the parameters of the
model, the authors in [71] use the average value through
curve fitting based on training samples: both linear and
nonlinear least square fitting are used according to the
different parameters. They also state that initializing the
parameters’ variance is time consuming and decide to fix
[min(γi),max(γi)] = 6σ with an equal variance σ = 10−5

for all their parameters.
However, these simple approaches are not always efficient
and should be combined for improvements. In [27], the
authors show that using the least square approach alone
has as major limitation: when historical data coming from
different systems are used, different values of the param-
eters appear according the context of use and aging and
it might lead to a bad initialization of the particle filter.
Consequently, their approach has two steps. First a Gauss-
Newton algorithm is used to fit the model to different sub-
sets of the data. Then a mixing combination rule of the
Dempster-Shafer theory (DST) is used to obtain an initial
value of each parameter based on the weighted sum of the
parameters obtained from the DST. These values are then
used to initialize the particle filter with Gaussian distribu-
tions.
Then, in [23, 54, 53], the particle filter is combined with
relevant vector machines (RVM). The RVM is used to find
representative aging curves and fit them to the data to
perform parameter identification. It helps them defining
the mean and the standard deviation of their initial Gaus-
sian distributions.
Finally, in [9], the data is modeled as Gaussian mixture
models. The problem is to estimate the statistical pa-
rameters for each Gaussian. This time another approach
is proposed: the Figueiredo-Jain algorithm, as it is more
adapted to such a type of model.

5.3.3. Impact of initialization on the results

An interesting comparison is performed in [6] to show
the importance of the initial distribution on the spread on
the final distribution. In a first test, it is assumed to known
the exact value of the parameters while in a second one
only a distribution is known. The second test corresponds
to the introduction of uncertainty on the model. The re-
sults of the comparison are proposed in Figure 8. Unsur-
prisingly, the results are better for the first test, showing

a) b)

Figure 8: Comparison of predictions proposed in [6] using exact
model parameters (a) or an approximated distribution as initializa-
tion (reproduced from [6])

more accurate prediction with narrower final distributions.

5.4. Noise definition

For both process and measurement, noises intervene in
the model. An interesting fact regarding noise definition
is that almost all papers justify the use of particle filter
because of its ability to deal with non-Gaussian noises.
However, Table 7 shows that a great majority are using
this kind of noise distribution.

Table 7: Noise distributions chosen for experiments

Reference Process noise Measurement noise

[9, 12, 16, 23,
25, 27, 56, 57,
66, 72, 73]

zero-mean Gaussian zero-mean Gaussian

[6, 10, 35] not precised Gaussian

[11] Gaussian not precised
[5] not Gaussian not precised

In [2], the authors introduce an interesting hypothesis:
the process noise can be ignored because it can be handled
through the uncertainty in the model parameters. We can
go further with this hypothesis. Indeed for prognostics
what is often needed is a global trend of the aging indica-
tor not the precise. The noise is here to represent the error
that exists between the model and reality. And it is of a
very small order of magnitude. Consequently, as general
trends and not precise models are expected, we consider
that this noise can be ignored in a great majority of prog-
nostics applications.
Regarding the measurement noise, the Gaussian hypoth-
esis is almost always used as a default option. It is very
convenient as it allows deriving a simple expression of the
likelihood. But it is never mentioned that a precise study
of the data was performed to support that hypothesis and
to define the characteristics (more precisely its standard
deviation) of a Gaussian distribution. If the Gaussian hy-
pothesis is made but without the knowledge of the stan-
dard deviation, it is possible to include it to the state vec-
tor and let the filter estimating it as proposed in [2].
To conclude, defining the measurement noise requires a
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great work on the data. It could be interesting to be able
to bypass this stage and find another approach to define
the consequent likelihood.

5.5. Likelihood definition

The expression of the likelihood directly comes from
the measurement equation. As stated in [2], for a mea-
surement function: yt = xt + νt with a Gaussian noise:
ν ∼ N (0, σ2), the likelihood function is written:

L(yt|xit, θit, σit) =
1√

2πσit
exp

[
−1

2

(
yt − xitθit

σit

)2
]

(29)

However, such common formulation only takes into ac-
count the latest prediction. The authors in [29] propose a
likelihood of the whole trajectory for each particle, keeping
the Gaussian assumption form:

L(yt|xit) =

T∑
t=1

1√
2πνt

exp

[
− (yt − xit)2

2ν2t

]
(30)

These are examples with Gaussian measurement noises,
however no other expression is proposed it the PHM liter-
ature.

5.6. Importance sampling

Driving the particles to high likelihood regions is a clas-
sical mean to improve the quality of the results. Several
solutions are proposed in the literature.

5.6.1. AFSA-PF

Artificial fish swarm algorithm based particle filter
(AFSA-PF) has already been proposed as an alternative to
the classical particle filter (see Section 4.1). The authors in
[66] propose to apply AFSA-PF in the context of prognos-
tics. The combination of AFSA and PF is applied in the
selection of the objective function and the adjustment of
the importance weights. AFSA drives the particles move
to the high likelihood areas based on an objective function
Y (i.e. the measurement) defined by:

p(yik|xik) =
1

(2πλ2)
1
2

exp

[
− 1

2λ2
(yk − yik|k−1)2

]
(31)

5.6.2. PF-KS

In [28], a procedure to move the particle using kernel
smoothing (KS) is explained. KS is based on the applica-
tion of two stages: shrinkage and perturbation.

1. shrinkage moves the particle parameter values toward
their estimated value:

p̃it = pit
√

1− h2 + p̂t(1−
√

1− h2) (32)

where p̃it is the new particle value, pit the current par-
ticle value, p̂t the expected value and h is the kernel
parameter between 0 and 1 (the authors in [28] sug-
gest 0.1).

2. while perturbation adds controlled noise to maintain
the desired variance in the population:

pit+1 = p̃it +N (0, h2ν(pit)) (33)

PF-KS has the advantage to keep unmodified the variance
of the parameter values in the particle population.

5.7. Inner correction loops

In order to improve the accuracy of the results, the cre-
ation of inner correction loops in the particle filter has been
proposed with more or less complexity. The main idea is
to correct past predictions based on more recent ones.

5.7.1. Fixed-lag particle filter

The principle of fixed-lag particle filter is very simple
[15]: the current state estimate xt is used to correct the
previous t− L estimate xt−L. Consequently, the fixed-lag
smoothing distribution can be written:

p(xt−L|y0:t) =
∑

witδ(xt−L − xit−L) (34)

Computing this distribution implies only minor changes in
the particle filter as shown in Figure 9. The authors tested
different values of L ranging from 0 to 4 and stated that
L=2 is optimal for almost the metrics they tested with
their data.

Figure 9: Fixed-lag particle filter algorithm [15]

5.7.2. Outer feedback correction loop

The correction loops typically measure the prediction
capability of the fault progression model, via short-term
prediction error, and improve the algorithm performance
either modifying the structure of the model or updating
hyper-parameters that define process/measurement noise
of model update equation [50].
To introduce the correction loop, the problem statement
is modified:  xt+1 = xt + αF (xt, αt) + wt

αt+1 = L(αt, e
s
t ) + w′t

yt = xt + νt

(35)
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where αt is a time-variant parameter related to the growth
rate of the state xt and est = yt − ŷst is the s-step ahead
prediction error with ŷst = x̂st .
The first approach is to manipulate the variance of the
noise kernel w′t:

L(αt, e
s
t ) = αt

var(w′t) =

{
p.var(w′t) if |est | ≤ eth

q.var(w′t) if |est | > eth
(36)

It allows the algorithm to increase the probability of draw-
ing samples from a broader subset of the domain for the
second component of the state vector [xt, αt].
The second approach manipulated both the transition
function of αt and the noise variance of w′t.

L(αt, e
s
t ) =

{
αt if |est | ≤ eth

αt + η.est if |est | ≤ eth

var(w′t) =

{
p.var(w′t) if |est | ≤ eth

σ2
0 if |est | > eth

(37)

where η is the feedback gain and σ2
0 a constant.

5.8. Partial synthesis

Practical issues are numerous with particle filters. First
regarding the initialization, a new approach is proposed
to initialize the state pdf. For the parameters, different
methods have already been tested. It is not possible to
prefer one among the others as the approach used may de-
pend of the quantity of data available. For instance, one
can apply the DST with n datasets however it is useless if
only one dataset is available for initialization.
Then ignoring the process noise is proposed in the state
equation when only a trend is needed for prognostics.
However, the noise remains a problem in the measurement
equation if no precise study of the data is previously per-
formed. An interesting solution would be to forget this
equation and to set independently the expression of the
likelihood function. Indeed, the likelihood serves to mea-
sure the degree of matching between the estimated state
and the data. To avoid sensitivity to outliers and give
better performance, it should take into account the whole
state trajectory. Consequently the following expression is
proposed:

LiT =
1

1
T

∑T
t=1 .abs(x

i
t − yt)

(38)

where T is the current time index. The idea behind this
proposal is to give the higher likelihood to the particles
that show the trajectory the closest to the data. So the
likelihood is chosen inversely related to the absolute error
of the trajectory of the particle.
To continue, some methods were proposed to drive artifi-
cially the particles to regions of high likelihood. Two limits
can be found to such practices:

1. it may hide bad procedures for weighting and resam-
pling: improving them can make the moving of the
particles useless;

2. by driving the particles to high likelihood regions, a
risk of forgetting the states locating in the tails of the
likelihood can be created. Moreover, this seems to
increase the loss of particle diversity.

Finally, regarding the integration of feedback loops, they
appear to bring improved results and not to involve heavy
procedure. It seems interesting to consider including one
in the particle filter.

6. Prognostics based on the particle filter output

We saw earlier that the particle filter is not able to per-
form prognostics. But the introduction of an adequate
procedure at the end of the filtering process allows mak-
ing predictions based on the filter’s outputs.

6.1. Generation of long term predictions

A critical point for prognostics is: how to use the particle
filter to generate long term predictions? Indeed, at the
end of the learning no more data is available, preventing
the filter to work in its traditional way. Two families of
solutions can be found in the literature. Let’s call them:

1. particles projection;

2. and creation of artificial measurements.

On one hand, particles projection family uses the last par-
ticle distribution of the learning as a starting point to
project the particle through different possible pathways
in the future. This can be done by simply using the state
equation or with more complex procedures as described
in Section 6.1.1. On the other hand, the second family
uses complementary prognostics tools to generate mea-
surements after the end of the learning and consequently
continuously feed the particle filter with new measure-
ments. These approaches are described in Section 6.1.2

6.1.1. Particles projection

Method 1 [75]. The only thing known is the state dy-
namic model which allows to say that at the future times
j = k+1...k+ l, the state xj−1 will pass onto state xj with
the transition pdf p(xj |xj−1). It is necessary to project the
initial condition p(xk|y0:k) among all possible future paths

weighted by their probability
∏k+l
j=k+1 p(xj |xj−1)dxj−1.

By combining the model equation and the current state
pdf estimate, the l-step ahead posterior distribution is ob-
tained:

p(xk+l|y0:k) =

∫
...

∫ k+l∏
j=k+1

p(xj |xj−1)p(xk|y0:k)

k+l−1∏
j=k

dxj

(39)
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Thanks to the MC pdf approximation this equation can
be re-written:

p(xk+l|y0:k) =

N∑
i=1

wik+l−1.p(xk+l|xik+l−1) (40)

The whole demonstration to transform the left term in
Equation (40) into the right is not reproduced here. Please
refer to [75] for complete explanations.
In practice, to obtain (40), an inverse transform resam-
pling procedure of the particle population is performed:

1. draw N values of a uniform random variable in the
interval [0,1): ui ∼ U [0, 1), i = 1...N

2. the generic ith realization xik+l of p(xk+l|y0:k) is ob-
tained by interpolation of the cumulative state distri-
bution:

F (Xk+l ≤ xk+l) =

∫ xk+l

−∞
p̂(xk+l|x1:k+l−1)dxk+l

(41)
such that xik+l = F−1(ui) which is equivalent to xik+l
such that F (xik+l) = ui

3. the weights of the resampled particles are kept un-
changed wik+l = wik+l−1

4. repeat until T , the horizon of interest

For an illustration of this procedure, the reader can refer
to [2].

Method 2 [51]. Long term predictions can be written:

p̂(xt+k|x̂1:t+k−1) ≈
N∑
i=1

w
(i)
t+k−1.p̂(x

(i)
t+k|x̂

(i)
t+k−1) (42)

The weight of every particle should be modified (at each
prediction step) to take into account the fact that the noise
and process non-linearity could change the shape of the
state pdf as time passes. For this reason, the authors dis-
tinguish two approaches:

1. the first one is the most classical one and consists
in successively taking the expectation of the update
equation for every future instant. However, this
approach states that the error that can be gener-
ated by considering the particle weights invariant
for future time instants is negligible with respect to
other sources of error (model inaccuracies, assump-
tion on noise parameters). It is the most commonly
used. Indeed, long-term prediction based on the
projected paths for each particles can be found in
[5, 8, 9, 14, 15, 28];

2. the second and novel approach proposes that uncer-
tainty for future transitions may be incorporated by
simply resampling the predicted state pdf. The state
is then given by the position of the particles, not the
weight value.

This second approach is described in detail now. It is based
on the assumption of uncorrelated noise and the use of ker-
nel transitions to describe the state pdf before resampling.
Let’s consider a discrete approximation of (42):

p̂(xt+k|x̂1:t+k−1) ≈
N∑
i=1

w
(i)
t+k−1Kh(xt+k−E

[
x
(i)
t+k|x̂

(i)
t+k−1

]
)

(43)
where K(•) is a kernel density function which may cor-
respond to the process noise pdf, a Gaussian kernel or a
rescaled version of the Epanechnikov kernel. This last so-
lution is retained by the authors.

Kh = 1
hnxK(xh )

hopt = A.N−
1

nx+4

A = (8C−1nx
(nx + 4)(2

√
π)nx)

1
nx+4

K(x) =

{
nx+2
2Cnx

(1− ||x||2) if ||x|| < 1

0 otherwise

(44)

with Cnx the volume of the unit sphere in Rnx .
The procedure for the creation of a new population of
equally weighted particles for t + k is given by the fol-
lowing pseudo code.

1. Apply a modified inverse transform resampling

procedure: for i = 1, ..., N , w
(i)
t+k = N−1

2. Calculate Ŝt+k, the empirical covariance matrix of{
E
[
x
(i)
t+k|x̂

(i)
t+k−1

]
, w

(i)
t+k

}N
i=1

3. Compute D̂t+k such that D̂t+kD̂
T
t+k = Ŝt+k

4. For i = 1, ..., N draw εi ∼ K, the Epanechnikov

kernel and assign x̂
(i)∗
t+k = x̂

(i)
t+k +hoptt+kD̂t+kε

i where

hoptt+k is computed as written above.

This approach is also applied in [49, 63].

6.1.2. Creation of artificial measurements

Method 1: PF-LSSVR framework [12]. Classical ap-
proaches assume that the time varying parameters θi,k re-
main equal to their estimation at the initial prediction step
k and invariant in the whole prediction phase. This fixed
value is not consistent with the principle of time variation.
Consequently, a new approach is proposed.
The particle filter used in this framework is dual particle
filter (DPF). DPF uses a separate state-space representa-
tion for the state and the parameters offering better state
and parameter estimations. The prognostics framework is
divided into four phases: (1) data collection, (2) observa-
tion series prediction, (3) successive dual estimation and
(4) RUL calculation.

In phase (2), after obtaining the latest observation yk,
LSSVR learning samples are chosen according to a slid-
ing time window, they are trained to obtain a prediction
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model as well as a recursively calculation of the future ob-
servation data (each observation variable parameter data
treated as an independent series). Then during phase (3),
a DPF is used based on the predicted observations. The
authors mention that although a DPF is used, there is
no constraint on the choice of particle filter type in this
framework.
This framework also considers the uncertainty propaga-
tion. To obtain an unbiased result, a time-varying obser-
vation noise νk is embedded in the prediction phase. A
growth model of the variance is used:

var(νk+is) = (1 +
q

p
is)var(νk) (45)

where is is the index of the prediction step, q an adjust-
ment coefficient which indicates the multiple difference of
the noise variance at k and k + p. The value of q depends
on p and the quality of the predicted observation.

Method 2: PF-neural networks [44]. To solve the problem
of lack of measurement, a data-driven method based on
neural networks (NN) is used to update the model during
the prediction. Three data-driven methods are proposed:
(1) feedforward NN, (2) neuro-fuzzy and (3) recurrent neu-
ral fuzzy with 5 inputs for each one. The global scheme is
describe in Figure 10.

Figure 10: PF-NN framework [44]

6.2. Final distribution

The final pdf is composed only with the particles under
the failure threshold. The weight can be re-normalized to
take this into account [5].

6.3. RUL estimate

A classical approach to build the RUL is to take the
point where each particle crosses the threshold. It is for-
mulated in [75], the RUL is the time remaining before the
crossing of a threshold λ and its pdf is defined as

p̂(RUL ≤ l|y0:k) = p̂(xk+l ≥ λ|y0:k) (46)

The authors assert that the use of alternative biased esti-
mators for prognostics is more efficient when a large grain
of uncertainty is involved which possibly introduces out-
liers. The proposed biased estimator is:

p̃(RUL ≤ l|y0:k+l) =

∑k+l−1
r=k ν̂r(yr+1:k+l)p̂(RUL ≤ l|y0:r)∑k+l−1

r=k ν̂r(yr+1:k+l)
(47)

where ν̂r(yr+1:k+l) is called the credibility weights, prop-
erly defined to measure the credibility of p̂(RUL ≤ l|y0:r).
Three proposal are given for these weights (but not de-
tailed here): interval weights, likelihood weights, RMSE
weights.
A simpler solution is to use the particle distribution to
calculate the RUL pdf by fitting a mixture of Gaussian in
a least square sense [53].

6.4. Partial synthesis

Two families of procedures are proposed to perform
prognostics. It is hard to prefer one rather than another
as they have never been compared. However, an orienta-
tion toward the projection methods seems more appropri-
ate. Indeed creating new measurements is dangerous: one
makes predictions based on a prediction of data. More-
over, it raises a question. What is the interest to use par-
ticle filter-based prognostics if a prediction is already made
with another tool? First, if the predicted measurements
are false, the whole procedure is invalid. Then, it is hard to
give significance to the final uncertainty as different quan-
tities of noise terms are involved.
Based on these remarks, our preference for prognostics
goes to the following classical procedure:

1. estimate the SoH thanks to the particle filter;

2. take the final distribution and reset the weight of each
particle to 1/N if necessary;

3. propagate the particles with the state model until the
failure threshold is reached;

4. interpret the final result thanks to the spatial location
of the particles.

7. Validation

7.1. Evaluation metrics

To evaluate their results, prognostics practitioners are
using different kinds of metrics. Some of them can be
used in every prognostics applications while other tend to
be more specific to particle filter utilization. They are
summarized in Table 8. For their description, please refer
to the references provided.
According to that table, 22 metrics are used in the different
references. We can wonder if such a number is necessary, it
appears to only make the comparison of the results harder.
But such interrogation is beyond the scope of this study.
What is important to notice is that only the ESS is specific
to particle filters.
The question about how to evaluate the performance of
the particle-filter based algorithm still an open issue at
that stage.

7.2. Dealing with uncertainty in particle filters

7.2.1. Current ideas

In its recent paper dealing with uncertainty in prognos-
tics [58], Sankararaman discuss about uncertainty treat-
ment in Bayesian approaches. Its opinion on the subject
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Table 8: Metrics used to evaluate the prognostics results

Type References

α− λ metric [15, 44, 63]
Accuracy [46, 47, 48, 49]
Accuracy index [28, 63]
Accuracy penalized [46]
Average lower and upper bound error [72]
Critical-α index [46]
Dynamic standard deviation (DSTD) [46]
ESS and Estimation error [25]
Precision [47, 48, 49]
Precision index [28]
Prediction accuracy [72]
Prognostics horizon [12]
Relative accuracy [12, 15]
Risk index [28]
RMSE [11, 14, 69]
RUL accuracy-precision index [48, 49]
RUL error [25]
RUL-OPI and RUL-OSI [48, 49, 63]
Steadiness index [28]

is summarized here. Some sentences are direct quotes from
the reference.
According to Sankararaman, papers that claim to account
for uncertainty in prognostics using Bayesian techniques
are not technically accurate. He states that filtering can
be used only to estimate the health state of the system
based on data and cannot be used for future prediction.
The use of a limited number of samples causes uncertainty
regarding the estimated pdf.
Also in [58], it can be learned the Bayesian methodologies
are based on subjective probabilities. These probabilities
are considered as degrees of belief and quantify the exist-
ing knowledge. It is asserted that, with time, subjective
and Bayesian have become synonymous. In subjective ap-
proaches, the subjective degree of the analyst’s belief re-
garding a quantity may be represented by a pdf, even for
a deterministic one. Consequently, pdf are assigned to
parameters needing estimation. Such interpretation facil-
itates the propagation of the uncertainty. Note that, in
some cases, subjective probabilities are applied in situa-
tions already involving physical ones.
Some keys to the theory of subjective probability rely in
the concept of likelihood and its use in Bayes’ theorem.
A variety of problems are solved using Bayesian methods.
Filtering approaches, as Kalman filters or particle filters,
are known as Bayesian tracking methods. First as they
use the Bayes’ theorem, but also since the provided un-
certainty has to be interpreted subjectively. It means that
there is no uncertainty regarding the true states at each
time steps but these states are not precisely known. The
estimated pdf reflect the subjective knowledge regarding
the state and the variables.

7.2.2. Partial synthesis

The claim that filtering cannot be used for future pre-
diction meets our previous conclusion. What has to be
further discussed is what is the uncertainty involved in a
particle-filtering approach. Let’s try to reason step by step
based on the above citations and the knowledge of the fil-
ter functioning. For the record, the three stages of the
particle filter functioning are: prediction, update and re-
sampling. The case where the measurements are predicted
to complete the available data is not considered.
Initially, we have data. These data contain uncertainty
linked to the sensors. For the filter functioning, we need a
model with parameters to identify to reflect the state ac-
cording to the data. As the state is not known precisely, it
is represented by a pdf p(xt|xt−1) at the end of the predic-
tion. State estimates and data intervene both at the same
time when estimating p(yt|xt) during the update stage just
before resampling. At that time, the pdf reflects both the
measurement uncertainty and the ignorance of the state.
Then comes the resampling which contains stochastic pro-
cesses. So the pdf obtained after the resampling contains:

1. the measurement uncertainty;

2. the ignorance on the precise system state;

3. an uncertainty inherent to the stochastic processes.

As the filtering evolves with the coming of new data, the
ignorance on the system state should decrease. While
the uncertainty due to stochastic processes should increase
with the number of resampling times. However, verifica-
tion is not possible. What is important to note is that the
particle filter output is drawn by 3 factors, two of them
being uncertainties.
Then the prognostics start based on this output. The par-
ticles are now projected in the future. Based on Section 6,
two cases should be considered. In the first case, a new
tool is introduced to project the particles. We can assume
that the tools used to extrapolate the future trajectories
introduce a new kind of uncertainty: the uncertainty due
to the prognostics tool. In the second case, the particles
are just propagated thanks to the state model. Is there
a new uncertainty introduced this time? In principle, no.
There might only be an increase of the existing one.

8. Synthesis and conclusion

This part II of the study was dedicated to the review
of 46 references to better understand the use of particle
filters in the context of prognostics. It allowed showing
the advantages and weaknesses of the tool and also
distinguishing different issues linked to its use. Some
points such as the need of pre-processing the data or
in which proportion the initialization impact the results
have not been discussed due to the lack of information.
Tables 9 to 11 summarizes the hypotheses of use and
the issues coming from the particle filter as well as the
proposals to tackle these problem from the analysis in the
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Table 9: Summary of the analysis - Part 1

Hypotheses Issues Proposals Section

B
E

F
O

R
E

U
S
E H1: 1-order Markov process I1: the system does not respect H1

• P1: Adapting the tool such
as in [11] to take into account
m orders

• P2: try to modify the equa-
tion to have a 1-order system
at each time

5.1

H2: The following elements
are available

• degradation model(s)
I2: Accurate degradation model-
ing is not available

P3: Consider changing the SoH
estimation approach

3

• degradation measure-
ments I3: Do the data require pre-

processing?

• measurement equation

• failure threshold(s) I4: The measurement model is un-
known • P4: Implementing the pro-

posal from [4] with the Gaus-
sian assumption

• P5: Defining the likelihood
independently from the mea-
surement model

context of prognostics.

Particle filters are more and more used in the context
of prognostics as they have a lot of advantages when deal-
ing with non-linear non-stationary models and with noises
non-necessary Gaussian. However, it is important to no-
tice that particle filters have no predictive capabilities and
can be used only for learning the current state of health
of the system. In this case, a lot of issues regarding the
choice of the filter type and its adaptation to the needs
of a specific industrial system appear. Prognostics is then
performed based on the filter’s output by propagating it
until a desired horizon.
It is important to mention that until now, particle filter-
based prognostics’ works mainly used existing filters. It
already gives good results. Nevertheless, improvements
could be made based on the knowledge of the system,
its environment and maintenance constrains. Indeed, a
deeper contextualization may lead to transformations in
the algorithm and benefits to the state of health estima-
tion.
The critical point in the literature about particle filter
based-prognostics is the current lack of validation. Com-
parative studies between the filters used in the context
of prognostics are very scarce and lack of exhaustiveness.
This is also true for the prediction procedures. Different
procedures to propagate the particles from the final filter

distribution exist but have not been compared yet. Next
steps of this work would be to launch different comparative
studies to build a grid useful for industrial applications.
First, by testing different filters on a same industrial sys-
tem to see if one outperforms the others in the state of
health estimation. Then by applying them on different
systems to confirm the results. And finally, by trying the
different propagation procedures to see their impact on the
RUL estimates.
Validation is a crucial step to further use particle filter
based-approaches in actual industrial system. The ques-
tion of how to integrate such prognostics tools in an em-
bedded industrial system starts from the validation and a
comprehensive lecture on how well implementing this tool.
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