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Abstract

Simulating the dynamic behaviour and determining equivalent material properties for anisotropic models, superele-
ments or structures subjected to preloads or friction remains a challenging issue. Amongst other practical applications,
modelling interactions between the steel sheets in industrial magnetic cores of electric motor stators is a complex task
as it requires anticipating behavioural heterogeneities in the structure and possibly represents significantly costly op-
erations for performing modal or dynamic response simulations. In this article, a method for identifying equivalent
material properties to anisotropic structures is developed, able to take into account the influence of preloads and fric-
tion on the material properties, later used in structural dynamics simulations. The proposed approach can be used with
superelements, converting stiffness matrices into elasticity matrices. The method is first applied to a triclinic model,
and recreates its elasticity matrix with little derivation. Then, an equivalent linear material is computed for a continu-
ous structure under preloading. Compared at low frequencies, the vibration behaviour of the preloaded structure and
its equivalent effective media are in good agreement. The operation is repeated with a laminated stack under preload-
ing. Again, the modal behaviour of the equivalent structureshows good accuracy compared to the initial preloaded
stack. Finally, the magnetic core of an electric machine stator is modelled with equivalent anisotropic material prop-
erties, accounting for friction and preload in the yoke’s and the teeth’s steel sheets. The simulation of the structure’s
low-frequency radial vibration modes is satisfying, and shows improvement compared to orthotropic properties.

Keywords: representative medium, homogenisation, electric machinestator, laminated structures, superelement,
preloading, friction

1. Introduction

For finite-element simulations, modelling heterogeneous structures strictly as they are in reality is sometimes both
delicate and unrealistic if the heterogeneities are small or numerous: representing such models by equivalent homo-
geneous material properties may be a necessity in order to reduce the number of degrees of freedom in the models.
In addition to this, constraints of cost-effectiveness andflexibility justify a great interest of the industry for effective
methods able to recreate the dynamic behaviours of heterogeneous structures with equivalent material properties [12].
Some of the existing techniques able to determine homogeneous properties in order to model heterogeneous structures
are called “homogenisation” methods.

A large number of homogenisation methods already exist in the cases of 2D, laminated, honeycomb or many other
types of composite structures. A thorough review has been made by Kalamkarov et al. [14]. As for simulations on
structures where simplifications are not possible, a 3-D approach needs to be preferred. This article focuses on this
case.

There exist some cases in which equivalent isotropic or orthotropic materials are not accurate enough to recreate
the behaviour of a given structure, with yet the same necessity of using representative elasticity matrices. In such a
case, identifying elastic constants such as Young’s moduli, shear moduli or Poisson’s ratios is not possible in the case
of anisotropic, or so-called “triclinic” structures, defined by 21 independent constants [3]. In this general case, the
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material’s 21 independent coefficients form the elasticitymatrix [C] in Hooke’s law{σ}= [C]{ε}, where{σ} is the
stress tensor and{ε} the strain tensor [5]. The entire linear system is:
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where the indices 1, 2 and 3 correspond to the respective directionsx, y andz in a rectangular coordinate system, orr,
θ andz in a cylindrical coordinate system.

Begis et al. [2] have developed a homogenisation method that can be appliedto triclinic periodic structures, the
principles of which were taken as a reference for other techniques. Although it yields equivalent elasticity matrices,the
approach requires solving analytical equations that mightmake them delicate to implement for finite-element analyses
(difficulty reported by Chung et al. [6]). A different analytical formulation of elastic coefficients has been proposed by
Luciano and Barbero [16]. In spite of the ability to model equivalent anisotropic material properties, the expressions
of only 6 coefficientsC̃i j amongst the elasticity matrix’s 21 independent constants are detailed. Mathan and Siva
Prasad [17] have developed a method of evaluation of equivalent material properties for a spiral-wound gasket and
analysed its elasto-plastic behaviour. The principle is toaverage the stress-strain behaviour of a representative volume
element over its volume by the means of independent load cases, in order to determine the equivalent compliance
matrix’s constants. However, the method is applied to the studied gasket only, and the structure itself is changed
(angle of sealing ring) to ensure the independence of the load cases before averaging the results.

In some situations, the material properties of given structures can be affected by perturbations such as preload or
friction. Therefore, modelling such a structure with equivalent properties requires taking the effects of the perturb-
ations into account in the homogenisation or the identification process. Peillex et al. [20] successfully homogenised
a model made of 10% of isotropic heterogeneities into an isotropic matrix, taking into account dynamic frictional
contact conditions. By coupling their method to homogenised local friction coefficients, they were able to fairly ap-
proximate the stresses present in a heterogeneous model andtheir evolution through time. Smit et al. [22] as well as
Yvonnet et al. [28] have tackled similar issues and taken into account possible non-linearities in their models. Yet
both approaches analyse the behaviour of a non-linear, heterogeneous structure without determining any equivalent
elasticity matrix, and no finite-element analyses have beenperformed to recreate the samples’ mechanical behaviours.

In the field of laminates, Pirnat et al. [21] have developed a numerical model of a laminated stack with both
tangential and normal contact conditions between the layers. The 14%-error in the prediction of the natural frequencies
of a laminated stack was considered good by the authors, in addition to the fact that they also updated the inter-
layer contact parameters with experimental modal data. Focusing on electric machines, Kim and Kim [15] have
shown experimentally that the first natural frequencies of alaminated rotor increased with the stack’s pressure (i.e.
preloading). Similarly, the works of Watanabe et al. [25] have outlined the fact that the natural frequencies of non-
purely-radial modes on a segmented-core stator tend to increase as the clamping force increases. Dias’ experimental
analyses [9] have confirmed this conclusion, with the observation that purely-radial (or “ovalisation”) modes were not
affected by any variations of the clamping force held by the weld beads (called tie rods). However, in spite of the
new opportunities they represent to the knowledge in laminated structures’ vibratory behaviours, these approaches are
highly dependent on experimental data or model updating procedures and do not lead to any elasticity matrices that
could represent the material properties of equivalent homogeneous structures.

The influence of preloads has also been analysed in the frame of railway dynamics. The simulations performed
by Wu and Thomson [27] highlighted a strong influence of preloading on the studiedrailway’s vibrations. The
measurements of Kaewunruen and Remennikov [13] on railpads led to similar observations concerning the dynamic
stiffness of all types of pads.

As for industrial projects in structural dynamics, a great interest is shown for accurate and cost-efficient model-
ling techniques applicable to common finite-element simulations such as modal bases. In particular, the automotive
industry currently focuses on new technologies such as hybrid or 100%-electric powertrains, the stators of which are
built on multi-layered magnetic cores with lateral weld beads [10, 24, 26]. Performing dynamic simulations on such
heterogeneous structures is however highly dependent on costly and time-consuming experimental analyses. This is
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why understanding and being able to predict the vibratory behaviour of a stator’s laminated magnetic core without
experimental data is key to performing efficient noise and vibration simulations on entire electric motors. In addition
to this, Van der Giet et al. [23] reported non-linearities in the mechanical behaviour of laminated stacks, as a result of
their experimental analysis on a real electric machine.

Concerning finite-element simulations, Verma et al. [24] and Williams et al. [26] suggested to model the entire
magnetic core with a single homogeneous isotropic material, what was applied by Dias [9]. An orthotropic material
property identification method and modelling guidelines have been presented by Millithaler et al. [18] and allowed
to simulate the modal behaviour of an electric motor stator with good accuracy, with an efficient zoning of the finite-
element model accounting for the influence of weld beads. Thework presented by Millithaler et al. [18] also showed
that the correlation accuracy between simulated and measured ovalisation modes on a real stator would have been
decreased by a relative factor of 68.5% if the finite-elementmodel had not been zoned. This article follows the work
presented by Millithaler et al. [18], in which a method of 3D material property identification for multi-layered ortho-
tropic laminates has been developed and where its applicability was compared to other existing 3D homogenisation
techniques. In this paper, friction and preload will be taken into account phenomena in the computation of represent-
ative anisotropic materials for improving the accuracy of dynamic simulations on the magnetic core’s finite-element
model.

In order to compute representative elasticity matrices formodelling heterogeneous structures, several interesting
methods have been reviewed. While some of them are able to model triclinic properties in finite-element models,
others deal with perturbations and their non-linear influences on the behaviours of the studied structures. To the
authors’ knowledge, there currently exist no approaches able to take such external perturbations into account in the
definition of equivalent, linear, representative elasticity matrices. Modelling such perturbations on a given structure
generally requires performing non-linear simulations, which are in principle longer, more complicated and more
restrictive (e.g. requiring special licences) than linearsolutions. Approximating non-linear effects by representative
linear material properties that could be used in any finite-element solution therefore offers interesting opportunities,
that include analysing the influence of such effects on the material coefficients themselves, and integrating these
material definitions into linear solutions such as model updating procedures.

This is why a new method is proposed, based on finite elements,for modelling equivalent triclinic material prop-
erties for periodic structures and which is able to take intoaccount the influence of perturbations on the representative
elasticity matrix. Amongst the possible applications for this method, triclinic bodies as well as preloaded heterogen-
eous structures will be modelled with homogeneous models with equivalent material properties identified with the
presented approach. Apart from the development itself, themain interest of this paper is to model multi-layered mag-
netic core bodies with representative homogeneous material properties that take into account the influence of preload
and friction in the structure. As stated earlier, the idea isto approximate non-linear effects by representative linear
material properties and allow performing simulations withlinear models. Aiming at predicting the radial modes with
best possible accuracy, the modal basis of the magnetic core’s equivalent model will be compared to experimental
data acquired on a real electric machine. This is why modal basis correlation criteria are preferred for all the proposed
validation cases in this paper.

2. Development of the “Triclinic” method

As it has been explained by Millithaler et al. [18], orthotropic material properties imply that tension-compression
and shear phenomena are not coupled. For a structure subjected to perturbations, these no-coupling assumptions
may not be valid in the general case, and any linear elasticity matrix approximating its behaviour shall be therefore
expressed as anisotropic, or “triclinic”. The corresponding Hooke’s law in the general case has been shown on Equa-
tion (1); in this case, the material can no longer be expressed with Young’s moduli, shear moduli or Poisson’s ratios
[5]. Therefore, the method presented by Millithaler et al. [18], which aimed at identifying these elastic coefficients
directly, is extended for application to triclinic materials and with effects of perturbations such as preload and friction.

First of all, the prerequisite steps for this method are:

1. The zones to be modelled with equivalent, homogeneous material properties are distinguished and analysed
separately;

2. For a given zone, a sample exactly recreating the periodicity of the structure as well as the perturbations (if any)
is created;

3. A stiffness matrix taking into account the influence of theperturbations is computed.
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2.1. Computation of the stiffness matrix

In order to detail steps2 and3 of the sequence introduced above, a sample with two 8-node solid elements is used
as an example as shown in Figure1: the elements <1, 2, 3, 4, 101, 102, 103, 104> and <105, 106, 107, 108, 5, 6,
7, 8> are superimposed along thez-axis, and preloads are applied to the structure (red arrows). The two elements
have to be separated if contact properties are to be taken into account (in such case, the interface nodes are doubled,
although each node pair is perfectly coincident). If no contact or friction properties are modelled, the interface nodes
are merged. The global cuboid’s dimensions areLx, Ly andLz, and its faces’ respective areasAx (facesx = 0 and
x = 1), Ay (facesy = 0 andy = 1) andAz (facesz= 0 andz= 1). Also, the nodes located within an ellipse on
the figure have the same coordinates. The description of external faces is simplified with ’= 0’ or ’= 1’ notations
(referring to the limits of the structure’s volume), in spite of the dimensionsLx, Ly andLz.
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Figure 1: Example of a sample under preloading

For any types of finite-element simulations on a global structure (e.g. modal basis computation on a laminated
core), a global stiffness matrix is computed by the solver for describing a given state (or increment) with the effects
of perturbations such as preload or friction. Considering only a representative sample as illustrated in Figure1,
the corresponding stiffness matrix takes into account the same properties at the same state. The idea is therefore
to approximate these properties with a linear homogeneous elasticity matrix describing the same state at which the
stiffness matrix was output by the solver.

Now, for the solution to be computed, the system has to be stabilised: the outer nodes 1, 2, 3, 4, 5, 6, 7 and 8
are respectively doubled with the nodes 11, 12, 13, 14, 15, 16, 17 and 18, at the exact same coordinates. The nodes
11 through 18 are then clamped, and each pair is linked with 3Dstiffness elements (this is equivalent to linking a
node-to-ground stiffness element to each of the structure’s outer nodes 1 to 8). The numerical values of these stiffness
elements have to be small enough to not perturb the entire structure’s stiffness matrix values.

As an example, the stiffness matrix’s diagonal components of a 1-mm-long cube made of isotropic steel with
E = 210GPa andν = 0.25 have a value of 4.67· 107 N ·m−1. In this case, using stiffness elements with a value
of 1,000N·m−1 in every direction is considered negligible compared to thestiffness matrix’s values, and does not
perturb the structure’s overall behaviour.

For the rest of this section,Ux0, Ux1, Uy0, Uy1, Uz0 andUz1 are defined as the node sets corresponding to the
respective facesx= 0, x= 1, y= 0, y= 1, z= 0 andz= 1. The case of a two-layer, 8-outer-node structure is detailed
in Table1.

The prestress effectsσ0 andσ1 are then applied to the system along thez-axis, so that

σ0 =
1
Az

∑
i∈Uz0

Fi (2)
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node set face nodes

Ux0 x= 0 1, 2, 5, 6, 101, 102

Ux1 x= 1 3, 4, 7, 8, 103, 104

Uy0 y= 0 1, 4, 5, 8, 101, 104

Uy1 y= 1 2, 3, 6, 7, 102, 103

Uz0 z= 0 1, 2, 3, 4

Uz1 z= 1 5, 6, 7, 8

Table 1: Details on node set names in the case of a 8-outer-node structure with two layers

and

σ1 =−
1
Az

∑
i∈Uz1

Fi , (3)

where the valuesFi stand for the loadings at the nodes 1 through 8. If modelled, the contact properties are then defined
according to the physics of the interface (deformable bodies, friction, etc.).

Creating the superelement with the twelve nodes 1, 2, 3, 4, 101, 102, 103, 104, 5, 6, 7 and 8 (DOFsTx, Ty

andTz) is an efficient way to output a stiffness matrix1. It seems important to emphasise that the solver used has
to take into account the influence of the perturbations over the values – if modelled – and export the corresponding
stiffness matrix. In the case illustrated in Figure1, the superelement created stands for a structure with two layers
and four common interface nodes instead of two separate elements. The elasticity matrix computed with this new
method is linear and approximates the non-linear perturbations to which the structure is subjected. In other terms, the
stress-strain law it describes corresponds to the same situation in which the stiffness matrix was computed2.

2.2. Determination of the elastic properties

Unlike finite elements for which materials would be clearly defined, the stiffness matrix of a superelement does
not give any direct information about the materials it stands for. The matrix may however be imported by a solver to
recreate the elastic properties of an entire structure, in our case composed of two 8-node solid elements and twelve
nodes (the node pairs at the interface were merged during thesuperelement’s creation process). It is therefore possible
to compute the displacements∆lx,i , ∆ly,i and∆lz,i as well as the reaction forcesFx,i , Fy,i andFz,i at each nodei.

As it has been shown, the 21 independent coefficients of an equivalent triclinic elasticity matrix
[
C̃
]

have to be

identified. To do this, the proposed approach consists in computing the compliance matrix
[
S̃
]

such that
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]
=
[
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]−1

.
The general relation of Hooke’s law, detailed in Equation (1), can be reversed to express the matrix
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. (4)

To calculate all the constants of
[
S̃
]
, the method needs six series of simulations, ie. one per component of{ε}.

The first series, calledxx, refers to the deformed stateεxx. For better visibility, this development is made on the second
series, calledyy, referring to the deformed stateεyy, and repeated similarly for the deformed statesεxx andεzz.

The second row of Equation (4) is then:

εyy = S̃12 ·σxx+ S̃22 ·σyy+ S̃23 ·σzz+ S̃24 ·σyz+ S̃25 ·σzx+ S̃26 ·σxy . (5)

1For instance, the ASCII-format DMIG (“Direct Matrix Input at a Grid”) is a convenient way to export and reuse stiffness matrices.
2depending on the solver and the solution, the stiffness matrix can be output at a given increment in function of time, proportion of total

preload applied, etc.
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Thus, this series needs six independent simulations in order to identify Equation (5)’s six constants̃S12= S̃21, S̃22,
S̃23, S̃24, S̃25 andS̃26. This seriesyycorresponds to a pure tension scheme, as shown in Figure2: a static displacement
δy is enforced along+y to the nodes of the facey= 1, whereas plane contact constraints are applied to the facey= 0.
In other terms, the nodes of the facey= 0 are blocked in the directiony and left free in the directionsx andz. To
equilibrate the system, DOFsTx andTz are blocked at node 1, and DOFTz at node 2 (more details are given in the
appendices, in TableA.10).
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Figure 2: Pure tension alongy on the superelement

Then, the values of nodal reaction forces lead to the stresses σ (2a)

i, j , where the superscript(2a) refers to the first
simulation of the seriesyy:

σ
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σ
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i∈Uy1

F
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x,i . (11)

For other uses such as local stress field computation, it can be noted that these expressions may be adapted to specific
node sets (e.g. for determining stress fields at interfaces).

The next five simulations of the seriesyy (corresponding to superscripts(2b) through(2 f )) obviously recreate the
same pure tension scheme along they-axis. The difference made between each simulation for the same seriesyy is
in the boundary conditions of the scheme (unlike in the work of Mathan and Siva Prasad [17]), i.e. which DOFs are
blocked or set free, while enforcing the same displacementsto all simulations(2a) through(2 f ). The independence
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between each simulation’s boundary conditions must then ensure that the 6-equation system (one equation similar
to (5) for each simulation of the series) is of rank 6. Finally, theequation system obtained is
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where the 6×6 matrix is referred to as
[
H (2)

]
, and where:

εyy =
δy

Ly
. (13)

Now, solving the system yields the six coefficientsS̃21 = S̃12 throughS̃26. These steps are repeated with two new
simulation series (xx andzz), in order to complete the first three rows of the compliance matrix

[
S̃
]
, as

[
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− −
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, (14)

where the sub-matrices
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are both of size 3×3. The next step consists in using the symmetry of
[
S̃
]

to
transpose the submatrix
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so that computing the last three rows of
[
S̃
]

only requires three simulations each instead of six. The seriesyzrefers to
the deformed stateγyz= 2· εyz. The corresponding row in Equation (4) is then:

γyz= S̃14 ·σxx+ S̃24 ·σyy+ S̃34 ·σzz+ S̃44 ·σyz+ S̃45 ·σzx+ S̃46 ·σxy . (16)

In a similar way as shown by Millithaler et al. [18], the analysis separates sliding shear from transverse shear, in
the respective “Tricl1 ” and “Tricl2 ” scenarios, for which the identification of the compliance matrix’s first three rows
yet remains identical. Taking as example “Tricl2 ” scenario (i.e. transverse shear), the identification of the remaining
rows is detailed in the appendices. Eventually, the compliance matrix

[
S̃
]

is fully constituted from all six simulation
series, and thus stands for homogeneous material properties representative of the initial heterogeneous structure.

3. Validation

For the above-presented method to be applied, three validation cases are detailed throughout the following para-
graphs, each presenting a specific use of the identification method:

• a simple homogeneous structure composed of a triclinic material;

• a preloaded homogeneous structure and a comparison with the method developed by Millithaler et al. [18];

• a preloaded laminated structure for which the method developed by Millithaler et al. [18] could not be applied.

In addition to these validation cases, the next section willdetail the creation of a representative finite-element model
for an industrial stator core made of laminated steel and where preloading and friction effects are accounted for.

7



3.1. Homogeneous triclinic sample

The method “Tricl1 ” has been first validated on a simple, homogeneous case. For this example, a cuboid 8-node
element whose dimensions areLx = 20mm,Ly = 40mm andLz = 60mm was used, to which a triclinic material
defined by the elasticity matrix

[Cexp] =











3.51 0.47 1.27 −0.67 −0.02 −0.56
13.2 1.03 −0.04 −0.07 0.24

2.97 −0.23 −0.59 0.14
0.37 0.17 −0.07

sym. 1.09 0.06
0.81











·109 (17)

and the associated compliance matrix

[Sexp] =











0.926 −0.016 −0.397 1.848 −0.538 0.913
0.079 −0.022 −0.041 0.001 −0.034

0.570 −0.649 0.426 −0.454
6.719 −1.483 2.093

sym. 1.407 −0.678
2.186











·10−9 (18)

was applied, but without any external perturbations.
Given these input material properties, this application will attempt to show to what extent the elasticity matrix

identified by the method corresponds to the input[Cexp]. In this case, each simulation has been made with enforced
displacements of magnitudeδ = 1mm.

A linear static solution is initiated (each solution is completed within a few seconds), including output requests at
all nodes in terms of displacements and reaction forces. Theresults of thexx-series lead to the system (12) (adapted
to row 1 i.e. directionxx), whose numerical values are given in the following system:







5·10−2

5·10−2

5·10−2

5·10−2

5·10−2

5·10−2







=


















5.40·107 0.00 0.00 2.52·10-7 0.00 0.00

9.18·107 1.89·106 0.00 0.00 0.00 -3.83·10-7

8.39·107 0.00 4.46·107 0.00 1.85·107 0.00

1.21·108 1.00·106 0.00 -1.59·107 1.45·106 -3.48·107

5.54·107 0.00 0.00 0.00 2.40·106 -8.33

7.59·107 0.00 0.00 0.00 0.00 -2.21·107
























S̃11

S̃12

S̃13

S̃14

S̃15

S̃16







, (19)

and whereεxx = 0.05.
The 6×6 matrix

[
H (1)

]
has a rank of 6. As it can be seen in Equation (19), the independence of the boundary

condition sets led to a number of null or negligible values inmatrix
[
H (1)

]
. This is done so that each simulation in

the series involves a minimum of terms in the compliance matrix. In particular, the diagonal term̃S11 is identified
alone in the first row of

[
H (1)

]
. Solving Equation (19) yields the first row of the equivalent compliance matrix, as

shown in Equation (20):






S̃11

S̃12

S̃13

S̃14

S̃15

S̃16







=







9.262·10−10

−1.582·10−11

−3.973·10−10

1.848·10−9

−5.376·10−10

9.133·10−10







. (20)
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The values found here are very close to the initial compliance matrix, including the terms of coupling between
tension-compression and shear, namelyS̃14, S̃15 andS̃16. The maximum relative discrepancyU rel

max is such that

U rel
max= max

i, j

∣
∣
∣
∣
∣

S̃i j − S̃exp
i j

S̃exp
i j

∣
∣
∣
∣
∣
= 0.8%, (21)

which is very low and therefore shows that the computed results are close to the initial values. The other rows are
computed in the same way. The symmetry of

[
S̃
]

is confirmed, and the values match; the validation is successful for
this triclinic homogeneous element. Identical results arefound with method “Tricl2 ”.

3.2. Preloaded homogeneous structure

3.2.1. Global structure:
The second application of the “Triclinic” method is an analysis of a preloaded structure. The objective is to

analyse the effects of the preload on the initial material’selasticity matrix, and to what extent a linear, homogeneous
material could recreate the vibratory behaviour of the initial, preloaded structure. The FE model is a homogeneous
cuboid of isotropic steel (Young’s modulusE = 207GPa, Poisson’s ratioν = 0.292 and densityρ = 7875kg·m−3)
of respective dimensions alongx, y andz of 100 mm, 70 mm and 80 mm, and has 1,008 elements and 8,034 DOFs.
Tension preloads are applied along directiony to the structure. The facesy= 0mm andy= 70mm are subjected to
static forces of respective total magnitudes 9.81·106 N and−9.81·106 N, equally distributed on the faces’ nodes, so
that±81.1 · 103 N is applied to each of these nodes alongy. This value has been chosen to be voluntarily high to
ensure observing notable effects on the responses, yet noneof the yield or fracture limits are taken into account in the
simulation: the material is assumed to never reach any of these limits while calculating the solutions. Therefore, the
total pre-stress fieldσ p

yy applied to the structure is:

σ p
yy = 1.23·1010Pa. (22)

Also, a node-to-ground stiffness element is linked to each of the global cuboid’s 8 outer nodes, with stiffness values
of Kntg = 1N ·m−1 on each directionx, y andz. The initial structure is illustrated in Figure3.

node-to-ground

stiffness elements

Figure 3: Initial isotropic steel structure under preloading (red arrows)

3.2.2. Equivalent material properties:
To apply the identification method and determine equivalentmaterial properties, a sample is created from a few

elements of the structure: 3 elements alongy (48 DOFs), as shown in Figure4. To recreate the stress field existing in
the global structure, the sample is subjected to the same pre-stress fieldσ p

yy. To stabilise the system, a node-to-ground
stiffness element is linked to each of the sample’s 8 outer nodes, with stiffness values ofKntg = 1N ·m−1 on each
directionx, y andz.

It seems important to note that in spite of the initial structure’s boundary conditions, applying the presented
methods to identify equivalent materials must be made in “free” conditions, or in other words without any DOF
constraints. Yet, a structure subjected to preloads needs to be stabilised, which explains the addition of node-to-ground
elements to the sample (for this example, although other solutions may exist), and which is completely independent

9



node-to-ground

stiffness elements

Figure 4: Isotropic steel sample under preloading (red arrows)

from the global structure’s boundary conditions. For this material identification, the stiffness values of the node-to-
ground elements have to be sufficiently high to enable computing the stiffness matrix, and as low as possible to be
negligible compared to the matrix’s values. In this case, itmust be verified that their values after preloading are still
negligible compared to the new stiffness matrix’s values.

A 48× 48 real and symmetric stiffness matrix is computed, accounting for the influence of the preload. By
creating a new model with the sample’s 16 nodes (and no elements), and importing the stiffness matrix as an external
superelement, a linear static solution is initiated to apply the method according to the scenarios “Tricl1 ” and “Tricl2 ”
presented in Section2. Post-processing the results yields the elasticity matrices

[
C̃ISO1

]
and

[
C̃ISO2

]
(respectively

corresponding to “Tricl1 ” and “Tricl2 ” methods), detailed in the Appendices, in the respective Equations (A.17) and
(A.18). As a reference for comparisons, the elasticity matrix

[
Cstl

]
, corresponding to steel (without preloading), is

shown in Equation (A.19).
In order to compare it with these results, the method “Ortho1 ” developed by Millithaler et al. [18] (intended

to be applied to orthotropic laminated structures) has beenapplied to the same superelement (computed from the
isotropic steel sample under preloading), and yielded the following elastic coefficients:̃Ex = 201GPa,Ẽy = 242GPa,
Ẽz = 201GPa,G̃zy= 116GPa,G̃zx= 49.5GPa,G̃xy = 89.1GPa,ν̃yz = 0.313, ν̃xz = 0.298 andν̃xy = 0.259. Judging
from the values of the matrices, the following observationscan be made:

• While
[
Cstl

]
has a shape inherent to isotropic properties, this is not thecase of

[
C̃ISO1

]
and

[
C̃ISO2

]
: the pre-

loading effects have altered the initial material’s isotropy;

• Relatively low terms of coupling between tension-compression and shear have been determined by the two
scenarios “Tricl1 ” and “Tricl2 ”;

• In both matrices
[
C̃ISO1

]
and

[
C̃ISO2

]
, the tension preloading alongy resulted in an increase of the coefficient

C̃22 from its value in
[
Cstl

]
, which is the diagonal term of Hooke’s law in directionyy. This is consistent with

the expected stiffening effect from tension preloading [4].

Two equivalent homogeneous structures are then computed, with the same dimensions and the same density as the
initial model.

3.2.3. Modal correlation analysis:
To evaluate the capacity of the equivalent material properties to recreate the behaviour of the preloaded structure,

a state of modal correlation is calculated. To perform this,modal bases of the first 200 vibration modes are computed
for the structures detailed in Table2. The first 6 modes, describing the “suspension” related to the node-to-ground
elements (all below 14 Hz), have been discarded. Compared tothis, the lowest 7th mode frequency amongst all the
structures (and thus first to be correlated) is at 14,5 Hz.

The criteria defining the correlation consist in comparing each vibration mode of the first model to each of the
second. When comparing the modes of two structures, severalcriteria can be referred to [19]. The approach we
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Structure Basis name

Steel (initial) Init

Steel (under preloads) Prld

Homogeneous (scenario “Tricl1 ”) Tricl1

Homogeneous (scenario “Tricl2 ”) Tricl2

Homogeneous (method “Ortho1 ”) Ortho1

Table 2: Definition of the modal bases

Init Tricl1 (sliding shear) Tricl2 (transverse shear) Ortho1

Nb paired modes 194 194 194 194

|∆ f | [%] 3.85 7.64 1.40 6.25

MAC [%] 72.0 42.6 90.3 48.5

Table 3: Correlation of the first 194 modes above 3,000 Hz

propose in this article is to compare both natural frequencies and deformed shapes, to assert the extent to which one
structure reproduces the modal behaviour of the second. These criteria are the same as in the work of Millithaler et
al. [18].

Therefore, the relative frequency difference∆ f (me,i ,ma, j) between the natural frequency of the first structure’s
i-th modem1,i and the second structure’sj-th modem2, j is computed with the following relation:

∆ f (m1,i,m2, j) =
f1,i − f2, j

f1,i
, (23)

where f1,i et f2, j are the natural frequencies corresponding to the modesm1,i andm2, j , respectively. In addition to
this, the similarities between the deformed shapes of the modesm1,i andm2, j (respectively calledφ1,i andφ2, j ) are
determined according to the so-called MAC criterion (Modal Assurance Criterion), by the expression [1]:

MAC(m1,i ,m2, j) =

∣
∣{φ1,i}

⊺
{

φ2, j
}∣
∣2

{φ1,i}
⊺ {φ1,i}

{
φ2, j

}
⊺
{

φ2, j
} . (24)

Then, the pairs of modes for which MAC values are highest are assembled, and are taken into account if the
MAC values are above a fixed threshold. All the other mode pairs are discarded from the correlation process. For the
correlation, the reference modal basis is “Prld ”, to which the other bases are compared. The MAC-threshold is fixed
at 0% for pairing the modes (so that all the modes are paired and taken into account). The results of the correlation
are gathered in Table3. For Npm mode pairs in a given correlation, the entities|∆ f | andMAC are defined by the
expressions:

|∆ f |=
1

Npm
·

Npm

∑
q=1

∣
∣∆ f

(
mq

1,m
q
2

)∣
∣ (25)

and

MAC=
1

Npm
·

Npm

∑
q=1

MAC
(
mq

1,m
q
2

)
, (26)

wheremq
1 andmq

2 are the modes composing theq-th pair.
The results given in Table3 can be summarised as below:

• Both natural frequencies and deformed shapes are affectedby the application of preloads, as the figures of
column “Init ” show;

• Scenario “Tricl2 ” is capable of recreating the behaviour of the structure under preloads with good accuracy,
while method “Tricl1 ” is much less efficient in this setting.
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• In spite of the similarities of the shapes of
[
C̃ISO1

]
and

[
C̃ISO2

]
with that of an orthotropic material’s elasticity

matrix (for which no tension-compression/shear and shear/shear coupling terms exist), it can be clearly seen
that using the “Ortho1 ” method is not adapted to such a setting.

3.3. Preloaded laminated structure

3.3.1. Global structure:

For the last validation case, the same structure as in the work of Millithaler et al. [18] has been analysed: a
laminated cuboid of 5,024 elements, 30,144 DOFs and respective dimensions alongx, y andz of 210 mm, 110 mm
and 60 mm. The stack’s base cell is composed of 3 isotropic layers, the properties of which are detailed in Table4, and
is oriented alongz. For each layer,E is the Young’s modulus,ν the Poisson’s ratio,ρ the density andl the thickness.
Also, the volume fractionχn of layern is defined by the layer’s volumeVn and the base cell’s total volumeVcell, so
that

Vcell =
3

∑
n=1

Vn (27)

and

χn =
Vn

Vcell . (28)
S

te
el

P
ol

yp
ro

py
le

ne

T
ita

ni
um

E [GPa] 207 2.0 121

ν [−] 0.25 0.40 0.34

ρ
[
kg·m−3

]
7,875 1,200 4,430

l [cm] 0.40 0.20 0.40

χ [−] 0.40 0.20 0.40

Table 4: Characteristics of the layers

In this case, the structure is subjected to tension preloadsalong the stacking direction (z). The total loads on the
top and bottom faces are respectively 13.2 ·107 N and−13.2 ·107 N, equally distributed on the faces’ nodes, so that
±500·103 N is applied alongz to each of these nodes. As before, this value has been chosen to be voluntarily high to
ensure observing notable effects on the responses, yet noneof the yield or fracture limits are taken into account in the
simulation: the material is assumed to never reach any of these limits while calculating the solutions. Also, no contact
conditions are taken into account between the different layers: the structure is assumed to experience no delamination.
Similarly to the corresponding structure in the work of Millithaler et al. [18], a node-to-ground stiffness element is
linked to each of the global cuboid’s 8 outer nodes, with stiffness values ofKntg = 107 N ·m−1 on each directionx, y
andz. The global structure taken as reference is illustrated in Figure5.

3.3.2. Equivalent material properties:

To apply the material homogenisation approach and determine an equivalent material, a sample is created from a
few elements of the structure. In this application, the sample consists of the 3-layered base cell (48 DOFs) of which
the entire model is composed, and is illustrated in Figure6. To recreate the stress field existing in the global structure,
the sample’s 8 outer nodes are subjected to the same nodal loads (±500·103 N per node), as the thicknesses of the base
cell layers are identical in the sample and in the global structure. To stabilise the system, a node-to-ground stiffness
element is linked to each of the sample’s 8 outer nodes, with stiffness values ofKntg = 1N ·m−1 on every directionx,
y andz.
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node-to-ground

stiffness elements

Figure 5: Global laminated structure under preloading (redarrows)

node-to-ground
stiffness elements

Figure 6: Base cell under preloading (red arrows)

As before, the addition of node-to-ground elements to the sample is necessary to stabilise the system, and yet
independent from the initial, global structure. Again, thestiffness values of the node-to-ground elements are negligible
in comparison to the sample’s stiffness matrix’s.

A 48× 48 stiffness matrix is computed (which is real and symmetric) and takes into account the influence of
the preload. By creating a new model with the sample’s 16 nodes (and no elements), and importing the stiffness
matrix as an external superelement, a linear static solution is initiated to apply the methods “Tricl1 ” and “Tricl2 ”
presented in Section2. Post-processing the results yields the elasticity matrices

[
CLMT1

]
and

[
CLMT2

]
(respectively

corresponding to “Tricl1 ” and “Tricl2 ” methods), detailed in the Appendices, in the respective Equations (A.20) and
(A.21). Associated to them, the matrix

[
C̃O1

]
composed of the elastic moduli determined in [18] (in the case of an

orthotropic material without perturbations) is recalled in Equation (A.22).
Judging from the values of the matrices, several observations can be made:

• Non-negligible terms of coupling between tension-compression and shear have been determined by the two
methods “Tricl1 ” and “Tricl2 ”;

• The matrices
[
CLMT1

]
and

[
CLMT2

]
are both positive definite (their eigenvalues are all strictly positive), which

is a necessary condition for a system to be stable [5];

• In both matrices
[
CLMT1

]
and

[
CLMT2

]
, the tension preloading alongz resulted in an increase of the coefficients

C̃33, C̃44 andC̃55 from their values in
[
C̃O1

]
, which are the diagonal terms of Hooke’s law in each direction

involving z (respectivelyzz, yz and xz). This is consistent with the expected stiffening effect from tension
preloading [4];
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Structure Basis name

Laminated (initial) Init

Laminated (under preloads) Prld

Homogeneous (scenario “Tricl1 ” - sliding shear ) Tricl1

Homogeneous (scenario “Tricl2 ” - transverse shear ) Tricl2

Table 5: Definition of the modal bases

• In both matrices
[
CLMT1

]
and

[
CLMT2

]
, the directionsx andy have similar coefficients, which shows that the

laminated structure has in this case an equivalent behaviour in planes normal to the stacking direction;

• In
[
CLMT2

]
, the absolute values involving shear in directionsyzandxzare significantly greater than in

[
CLMT1

]
,

which is similar to the comparison between the “Ortho2 ” and “Ortho1 ” cases in the work of Millithaler et al.
[18].

The homogeneous structure to which the equivalent materialof each method is applied has the same dimensions
and the same total mass as the reference cuboid, and is made of1-centimetre-long cubic, 8-node, solid elements.
Therefore, the equivalent densityρ̃ is calculated by the relation of weighted average:

ρ̃ =
N

∑
n=1

ρn ·χn , (29)

whereρn is the density of each layern.
A density value and an elasticity matrix fully define a material for the computation of a real modal basis: an

equivalent homogeneous structure is created with each of the material properties respectively computed with methods
“Tricl1 ” and “Tricl2 ”. For each of them, the dimensions are identical to the reference matrix’s, but one-centimetre-long
cubic elements replace the three-layered base-cells that were homogenised.

3.3.3. Modal correlation analysis:
To evaluate the capacity of the equivalent material to recreate the behaviour of the preloaded structure, the modal

correlations between the models are analysed. To perform this, modal bases of the first 50 modes are computed for the
structures detailed in Table5. The first 6 modes, describing the “suspension” related to the node-to-ground elements
(all below 2,500 Hz), have been discarded.

For the correlation, the reference modal basis is “Prld ”, to which the other bases are compared. The paired modes
for which MAC values are below 70% are discarded. Also, comparing the dynamic behaviours of the homogeneous
global structures no longer requires involving suspensionstiffness elements, even though their values in the base cell
were small enough to have negligible impacts on the identified elastic properties. For including them in the laminated
global model under preloads, equivalent values can be computed with the approach described in the Appendices. The
results of the correlation are gathered in Table6, where|∆ f | corresponds to the average of the frequency differences’
absolute values, andMAC the mean MAC value of the paired modes.

Init Tricl1 Tricl2

Nb paired modes 23 36 17

|∆ f | [%] 38.0 12.1 14.7

MAC [%] 90.3 87.5 88.1

Table 6: Correlation of the first 44 modes above 2,500 Hz

The results given in Table6 can be summarised as below:

• Both natural frequencies and deformed shapes have been affected by the application of preloads, as the figures
of column “Init ” show;
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• In spite of the important behaviour difference induced by the application of the preloads, method “Tricl1 ” is
capable of identifying 36 of the 44 modes;

• However, the material from method “Tricl2 ” is not efficient to simulate the behaviour of the initial structure
under preloading, as only 17 of the 44 modes are identified.

As shown by Millithaler et al. [18], it can be said that recreating the lower-frequency modes of laminated structures
with homogeneous equivalent material properties requiresidentifying them with sliding shear simulations instead of
transverse shear. On the contrary, the results of the analysis in Paragraph3.2show that identifying equivalent material
properties for a continuous structure is much more accuratewith transverse shear simulations.

4. Electric machine stators: finite-element modelling accounting for frictional effects

4.1. Finite-element model

The ability of an electric machine stator’s finite-element model with orthotropic material properties to simulate the
modal behaviour of the corresponding real structure has been shown by Millithaler et al. [18], along with modelling
guidelines that led to zoning the model. The same stator is considered in this section, and consists in a stack of
several hundreds of steel sheets separated from each other by varnish. During its manufacturing process, weld beads
are applied on the lateral side of the stack, while the magnetic core is placed under a press. When the pressure is
released, the stack is held in one piece by the weld beads, while in the rest of the structure, the only bond between
the sheets is the varnish. This is a source of heterogeneities in the behaviour of the entire structure. Therefore, the
finite-element model of the magnetic core has been divided into several zones according to the distance to the weld
beads (see Figure7), with specific material properties associated to each of the zones. The same model as in the
work of Millithaler et al. [18] is used in this section. It is made of 19,158 elements and 24,768 nodes (expressed in a
cylindrical coordinate system of directionsr, θ andz) for 12 teeth, its dimensions are 154 mm (length) and 245 mm
(outer diameter). The sheets are stacked along thez-axis.

weld 

beads

yoke

teeth

“prox”

z

r

θ

Figure 7: Magnetic core’s finite-element model (axis alongz)

4.2. Equivalent material properties

The present analysis focuses on the interaction between thesteel sheets and the possibility to take such effects
into account in the equivalent material properties. Because of their proximity to the weld beads, the zone “prox” is
assumed to experience no friction effects between the layers. Therefore, this zone is associated to the same orthotropic
material as in the work of Millithaler et al. [18].

On the contrary, friction effects between the steel sheets are modelled in the epoxy layers for the zones “yoke”
and “teeth”. Compressive preload is taken into account in order to model the residual pressure remaining after the
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material E [GPa] ν [−] l [µm ] nodes transition

steel 207 0.25 180
1, 2, 3, 4,

11, 12, 13, 14 common

epoxy 3.0 0.37 1.5
11, 12, 13, 14, nodes
201, 202, 203, 204 interface

epoxy 3.0 0.37 1.5
205, 206, 207, 208, interface

15, 16, 17, 18 common

steel 207 0.25 180
15, 16, 17, 18, nodes

5, 6, 7, 8

Table 7: Stacking sequence - base cell

manufacturing process, and is assumed to be homogeneous in each zone. The unit (or base) cell periodically repeated
in this zone is thus a set of four 8-node solid elements superimposed along thez-axis. The base cell is illustrated
in Figure8, and the stacking sequence is detailed in Table7. The same densitỹρ (acquired from measurements) is
applied to the entire structure:ρ̃ = 7,750kg·m−3.

Figure 8: Base cell - zones “prox” and “teeth”

The entire base cell is composed of 24 nodes and thus 72 DOFs. The idea is to identify equivalent material
properties from a superelement in which the master-nodes describe the glued elements (nodes 1 to 18 - written in bold
in Table7) and the slave-nodes the interface (nodes 201 to 208 - in italic). In this article, a superelement’s “master” or
“external” DOFs correspond to the DOFs kept after condensing (that still exist in the superelement’s reduced stiffness
and mass matrices). On the contrary, “slave” or “internal” DOFs are not present after the reduction, as explained for
instance in the so-called “Craig-Bampton” method [8], widely used in FE simulations. The pairs of interface nodes
have the same coordinates. To stabilise the system, a node-to-ground stiffness element is linked to each of the outer
nodes 1, 2, 3, 4, 5, 6, 7 and 8, with stiffness values ofKntg = 1N ·m−1 on every directionr, θ andz.

To the authors’ knowledge, there are currently no data available concerning either prestress values on a magnetic
core’s tooth or friction between two steel sheets. In this application, the initial load applied to the stator during its
production is equivalent to a mass of 2,500 kg (i.e.≈ 25 kN), and therefore corresponds to a compressive prestress of
1.52·106 N ·m−2 along thez-axis.

In order to evaluate the distribution of residual stresses in the different zones of the stator, the static stiffness values
computed in the work of Millithaler et al. [18] are taken as references. The mean values were 3.0·108 N ·m−1 in zone
“prox”, 2.5 ·108 N ·m−1 in zone “yoke” (i.e. 83% of zone “prox”) and 1.3 ·108 N ·m−1 in zone “teeth” (i.e. 43% of
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zone “prox”). Using the same factors to represent the distribution of prestresses, a compression of 1.27·106 N ·m−2

is applied on zone “yoke” and 6.58· 106 N ·m−2 on zone “teeth”. Apart from this prestress, the identification of
equivalent properties is made in the same way and with the same base cell for both zones. The contact properties are
described by a Coulomb dry friction with a coefficientµ = 0.9, and occur at the interface described previously.

A 72× 72 real symmetric stiffness matrix is computed and takes into account the influence of the preload and
friction. Reducing it with the “Craig-Bampton” [8] method (widely used in FE simulations) with master-nodes 1to
18 yields a new stiffness matrix (real, symmetric and of size48×48). By creating a new model with the 16 master-
nodes (and no elements) and importing the reduced stiffnessmatrix as an external superelement, a linear static solution
is initiated to apply the method “Tricl1 ” presented in Section2 (sliding shear scenario). Post-processing the results
yields the elasticity matrices

[
C̃yoke

]
and

[
C̃teeth

]
, detailed in the Appendices, in the respective Equations (A.23) and

(A.24).
Judging from the values of matrices

[
C̃yoke

]
and

[
C̃teeth

]
, several observations can be made:

• non-negligible inter-shear coupling terms have been determined for both zones, as well as non-negligible
tension-shear coupling terms for zone “yoke”;

• in rows 4 and 5 of both matrices, the diagonal terms correspond to the equivalent sliding shear stiffness values
in directionsθ −zandr −z;

• in both matrices, the rows relative to seriesrr andθθ (as well asθz andrz) have similar values. Globally, this
expresses the fact that directionsr andθ are equivalent, which is consistent with the apparent symmetry of the
base cell;

• compared to the material properties of homogeneous isotropic steel (see Equation (A.19)), the diagonal values
of both matrices

[
C̃yoke

]
and

[
C̃teeth

]
are lower than in matrix

[
Cstl

]
, especially for rows 4 and 5. This seems

consistent with the fact the base cells are subjected to friction instead of being glued elements (with common
nodes);

• compared to each other, the diagonal values of rows 4, 5 and 6are higher in zone “yoke” than in zone “teeth”.
This indicates that the tightening effect due to prestress is more notable in the yoke’s shear properties than in
the teeth’s.

As for zone “prox”, the material properties are kept identical as in the work of Millithaler et al. [18]: Ẽr = Ẽθ =
205GPa,Ẽz = 157GPa,G̃zθ = G̃zr = 51.2GPa,G̃rθ = 82.1GPa, and̃νθz = ν̃rz = ν̃rθ = 0.25. The weld beads are
modelled with isotropic steel, such asE = 207GPa andν = 0.29.

4.3. Comparison with experimental data

A modal basis is simulated in real domain between 0 and 10,000Hz from the entire magnetic core’s finite-element
model. This simulated modal basis is compared with a set of 5 radial modes (same experimental modal basis as in
the work of Millithaler et al. [18]), extracted from frequency response functions measured with an impact hammer
on the magnetic core of a real stator (purely radial impact).The frequency response function measured on the radial
direction at the impact point is shown in Fig.A.14 (placed in the appendices). These modes are sometimes referred
to as “cylinder” or “ovalisation” modes, and can be clearly spotted by the peak magnitude values on the response
function shown in Fig.A.14. Although their shapes are purely radial in theory, the ovalisation is not pure in practice
due to boundary effects. This motivates accounting for friction and preload in the modelling process of the structure.

The resonance probability of ovalisation modes is yet strong due to the nature of the electromagnetic excitations
occurring at the air gap (i.e. the inner tooth surface) whilethe machine is operating [10]. Therefore, they are critical
for the acoustic behaviour of the entire stator: being able to predict them accurately is then of particular interest3.

The experimental settings of the measurements are presented on Fig.9 and Fig.10. The experimental mesh is
composed of 108 degrees of freedom (36 points of 3 DOFs).

3In addition to the ovalisation modes, out-of-plane modes could also be measured with these experimental settings, due to non-negligible
Poisson’s effects (as shown in the work of18). However, the probability of resonance in operation for out-of-plane modes is significantly
smaller than for ovalisation modes in the case of a non-skewed magnetic core [10]. Simulating such modes with finite-element models is out
of the scope of this study.
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Figure 9: Experimental setting

The comparison of the simulated and experimental modal bases is presented in Fig.11 and Table8, where the
columns “FEA” and “EMA” respectively refer to the mode frequencies in the FE model and in the experimental modal
basis. The|∆ f | and MAC averages have been computed with Eq. (25) and (26) and shown in the bottom line of
Table8. In addition to this, the similarities between simulated and measured mode shapes are illustrated with the
MAC-matrix shown in the appendices, in Fig.A.15.

In order to estimate the accuracy improvement of taking intoaccount friction and preload effects on the structure,
the results of Table8 (called “Ortho1 + Tricl1 ”) are compared with “Ortho1 ” averages (neglecting friction and preload
effects). Furthermore, an additional model is built with equivalent properties computed with the so-called “rule
of mixtures”, based on weighted averages. This last model will be referred to as “WA”, does not involve friction
or preload effects, and consists in a single equivalent material property set for the entire structure, whose values
are: Ẽr = Ẽθ = 205GPa,Ẽz = 132GPa,G̃zθ = G̃zr = 51.2GPa,G̃rθ = 82.1GPa,ν̃θz = ν̃rz = 0.16 andν̃rθ = 0.25.
Definitions of both “Ortho1 ” and “WA” identification methods are detailed in the work of Millithaler et al. [18].
Finally, the comparison of the average values|∆ f | andMAC for the above-mentioned methods is shown in Table9.

In Table9, the 17% relative decrease of|∆ f | and only 4% relative decrease ofMAC between “Ortho1 + Tricl1 ”
and “Ortho1 ” scenarios show a significant improvement in the simulationaccuracy of the above-presented ovalisation
modes, of particular importance regarding electric motor acoustics [10]. This tends to compensate the complexity
increase due to replacing explicit orthotropic elastic constants by a fully-defined elasticity matrix for the zone “teeth”,
although the identification method can be automatised with low-resource computer algorithms, and the computation
costs for any FE simulations remain unchanged regardless ofthe type of materials. As for the “WA” scenario, it can
be seen that modelling the stator core with a single equivalent material identified with the “rule of mixtures” leads to
an overall frequency discrepancy which is more than twice aslarge as for “Ortho1 + Tricl1 ”.

5. Specificities of the methods

Several details about the properties of the method presented above have to be added. For both the “orthotropic” and
“triclinic” methods, creating a sample whose global geometry is not a cuboid highly complicates the establishment
of the solution. Indeed, if one of the element’s faces is not aperfect rectangle (for instance if one of its angles
differs from 90°), the reaction forces computed on neighbouring faces will be misused. This tendency is particularly
important for the identification of orthotropic and isotropic materials in unknown structures. For similar reasons,
using the “triclinic” method on homogeneous, orthotropic structures may lead to fewer variables than equations while
computing the matrixH (see Equation (12)), and therefore to a rank lower than 6. In such cases, pseudo-inverting
H may retrieve the expected values, including null ones.
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Figure 10: Experimental mesh (undeformed)
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1 818.6 798.6 2.5 64 cylinder mode, order 2

2 2,172.9 2,125.5 2.23 61.7 cylinder mode, order 3

3 3,847.4 3,747.7 2.66 89.1 cylinder mode, order 4

4 5,471.4 5,330.1 2.65 69.1 cylinder mode, order 5

5 6,543.8 6,286.5 4.09 75.5 cylinder mode, order 0

Averages |∆ f | and MAC 2.83 71.9

Table 8: Correlations of FE and experimental modal basis

The elements’ geometric properties have another influence on the method. In the case of heterogeneous structures,
for instance a laminated composite made of isotropic layers, the elastic constantsE, G andν vary discontinuously
in the stacking direction, thus implying heterogeneities and discontinuities in the computed reaction forces. Indeed,
while applying the “triclinic” method to a stack made of isotropic layers without perturbations, the simulations of
the seriesxx generate important and uneven reaction forces at the nodes constrained with plane contacts on faces
y= 0 andz= 0, because of the layers’ different materials. This comes out as non-negligible coupling terms between
tension-compression and shear, and therefore contradictsthe assumption of orthotropy due to the system’s symmetries
[5, 2]. This is why a laminated structure presenting a priori no coupling between tension-compression and shear needs
to be analysed with the “orthotropic” method presented in the work of Millithaler et al. [18]. In practice, applying a
single pure tension simulation to a cuboid structure would confirm the existence of non-null coupling terms between
tension-compression and shear in the equivalent material,and would therefore suggest using either the “orthotropic”
or the “triclinic” methods.

Eventually, the last point concerns the ability of both the “orthotropic” and “triclinic” methods to be applied to
superelements. In a structure to be reduced into a superelement and taken as sample for material identification, it must
be clear that none of the slave DOFs may be located on externalsurfaces, or correspond to any of the simulations’
constrained DOFs (as listed in TableA.10). Otherwise, the boundary conditions have to be taken into account be-
fore reducing the structure, which therefore requires as many independent superelements as independent simulation
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Figure 11: Correlation of FE and experimental modal bases - mode shape pairs (experimental frequencies) - blue lines: simulation, red dots:
measurement
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|∆ f | [%] 5.91 3.43 2.83

MAC [%] 74.4 74.7 71.9

Table 9: Accuracy improvement

schemes. All other nodes, not located on external faces, maybe taken as slave DOFs and reduced, without hindering
the identification process.

The “Triclinic” method can be summarised in the following sequence:

1. Zoning;
2. Creation of a representative cuboid sample in a chosen zone;
3. Application of the corresponding perturbations;
4. Computation of the preloaded sample’s stiffness matrix;
5. Determination of the superelement’s equivalent compliance matrix.

(a) Computation of the first three rows;
(b) Transposition of the submatrix of coupling between tension-compression and shear;
(c) Calculation of the remaining three rows.

6. Conclusion

This section has proposed a new method of equivalent material identification based on finite-element simulations
for general anisotropic models. With the aid of the approachdeveloped in this section, equivalent material properties
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for a continuous anisotropic model, a continuous structuresubjected to preloading and a preloaded laminated stack
have been exhibited. As a result, it has been shown that anisotropic materials can be identified with little derivation
on continuous structures if no perturbations are applied. The other analyses have shown that preloading effects alter
the initial symmetries in the material properties on a 3D isotropic model, and induce couplings between tension-
compression and shear in the equivalent material properties of a multi-layered laminated stack. It has been observed
that under preloads, anisotropic continuous structures require transverse shear simulations, whereas sliding shear
identification scenarios are more accurate for recreating the behaviour of laminated models.

Also, the modal behaviour of an electric motor stator’s laminated magnetic core has been simulated with equival-
ent anisotropic material properties that accounted for thefriction behaviour under compression preloads between steel
sheets in the teeth and the yoke. Low-frequency ovalisationmodes have been computed and showed good accuracy in
comparison to experimental data from a real stator. In comparison to simpler modelling approaches, it has also been
shown that dividing the model into several zones and taking into account the effects of preloading and friction in the
case of the stator core led to accuracy improvements for the simulation of ovalisation modes. An accuracy improve-
ment has been also observed in comparison to orthotropic properties. This new identification method raises hopes to
improve the current prediction capacities to perform noiseand vibration simulations on multi-layered magnetic cores,
without needing to rely on experimental data from costly prototypes and time-consuming model updating procedures.
The ability of this new method to be applied to superelements, and therefore estimate the influence of perturbations
on the material properties, presents a “conversion” opportunity from stiffness matrices to elasticity matrices.

AppendixA. Appendices

The following subsections gather some data and applications that were not shown in this article’s main matter.

AppendixA.1. Determination of equivalent material properties for transverse shear scenarios

Following the identification steps presented in the Subsection “Determination of the elastic properties”, the fol-
lowing paragraphs detail the determination of the remaining compliance coefficients by transverse shear schemes
(therefore corresponding to the “Tricl2 ” method). The fourth series of simulations corresponds to atransverse shear
schemey− z, as shown in FigureA.12: it combines an enforced displacementδz along+z at the nodes of the face
y= 1, and plane contact constraints on the same facey= 1 in order to generate pure shear. In this example also, DOFs
Tx, Ty andTz are blocked at node 1, and DOFsTy andTz at the other nodes of facey= 0.
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Figure A.12: Pure transverse sheary−z on the superelement

As is the case for the previous series, Equations (6) through (11) yield the stress values needed for this simulation.
Also, new boundary conditions enable creating two new independent simulations to complete this series (more details
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are given in TableA.10). The system obtained is thus:
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, (A.1)

where

γyz=
δz

Ly
. (A.2)

The 3×6 matrix
[
H (4)

]
can be divided into the two submatrices

[
σ (4TC)

]
and

[
σ (4SR)

]
, respectively consisting

of the terms of tension-compression and shear:

[

H
(4)
]

=
[

σ (4TC) | σ (4SR)
]
. (A.3)

In detail, they stand for

[
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]

=
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and

[
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]

=
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, (A.5)

where the superscripts(4a), (4b) and(4c) refer to their corresponding simulations in the fourth series. Knowing the

values of the constants̃S41, S̃42 andS̃43 through Equation (15) yields the vector
{

γ(p)yz

}

such that


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

γ(p1)
yz

γ(p2)
yz
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yz




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=
[

σ (4TC)
]


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S̃41

S̃42

S̃43







, (A.6)

with the help of which the remaining unknown coefficientsS̃44, S̃45 andS̃46 may be computed:




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S̃44

S̃45

S̃46




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=
[

σ (4SR)
]−1




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γyz− γ(p1)
yz

γyz− γ(p2)
yz

γyz− γ(p3)
yz




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. (A.7)

At last, the matrix
[
S̃
]

is completed with the last two series, namelyxzandxy, from which the symmetrỹSi j = S̃ji

has to be verified again. The detail of all boundary conditionsets is given in TableA.10.
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DOFs to be blocked on nodes enforced displacements

series
simulation

x y z x y z
scheme

(1a) Ux0 1 1, 4 Ux1

(1b) Ux0 Uy0, Uy1 1 Ux1

xx (1c) Ux0 1 Uz0, Uz1 Ux1

(1d) Ux0 Uy0, Uy1 Uz0 Ux1

(1e) Ux0 1 Uz0 Ux1

(1 f ) Ux0 Uy0 1 Ux1

(2a) 1 Uy0 1, 2 Uy1

(2b) Ux0, Ux1 Uy0 1 Uy1

yy (2c) 1 Uy0 Uz0, Uz1 Uy1

(2d) Ux0, Ux1 Uy0 Uz0 Uy1

(2e) 1 Uy0 Uz0 Uy1

(2 f ) Ux0 Uy0 1 Uy1

(3a) 1 1, 2 Uz0 Uz1

(3b) Ux0, Ux1 1 Uz0 Uz1

zz (3c) 1 Uy0, Uy1 Uz0 Uz1

(3d) Ux0, Ux1 Uy0 Uz0 Uz1

(3e) Ux0 1 Uz0 Uz1

(3 f ) 1 Uy0 Uz0 Uz1

(4a) 1 Uz0 Uz0, Uz1 Uz1

zy - Tricl1 (4b) Ux0 Uz0 Uz0, Uz1 Uz1

(4c) Uz0 Uz0 Uz0, Uz1 Uz1

(4a) 1 Uy0, Uy1 Uy0 Uy1

yz - Tricl2 (4b) Ux0 Uy0, Uy1 Uy0 Uy1

(4c) Uy0 Uy0, Uy1 Uy0 Uy1

(5a) Uz0 1 Uz0, Uz1 Uz1

zx - Tricl1 (5b) Uz0 Uy0 Uz0, Uz1 Uz1

(5c) Uz0 Uz0 Uz0, Uz1 Uz1

(5a) Ux0, Ux1 1 Ux0 Ux1

xz - Tricl2 (5b) Ux0, Ux1 Uy0 Ux0 Ux1

(5c) Ux0, Ux1 Ux0 Ux0 Ux1

(6a) Uy0 Uy0, Uy1 1 Uy1

yx - Tricl1 (6b) Uy0 Uy0, Uy1 Uz0 Uy1

(6c) Uy0 Uy0, Uy1 Uy0 Uy1

(6a) Ux0, Ux1 Ux0 1 Ux1

xy - Tricl2 (6b) Ux0, Ux1 Ux0 Uz0 Ux1

(6c) Ux0, Ux1 Ux0 Ux0 Ux1

Table A.10: Boundary conditions for the “Triclinic” method
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AppendixA.2. Additional details for validation

Following the validation case described in Subsection “Preloaded laminated structure”, the equivalent values of
the node-to-ground elements after preloading can be computed from the stiffness matrix of the global structure under
preloads. The idea is to select a corner node, to which a node-to-ground stiffness element is linked, and to extract
the values involving both its neighbouring nodes (except for the node at the interface of two different materials) and
itself. As an example, the corner node 1 and its direct neighbours 2 and 4 are selected (see FigureA.13).

node-to-ground

stiffness element

1

4

2

Figure A.13: Corner node and direct neighbours

When assembling the stiffness matrices of different elements in a system, the values corresponding to identical
DOFs present on several elements are added [7]. As nodes 2 and 4 are each linked to two elements having identical
stiffness matrices (same dimensions and material), the diagonal values in the global stiffness matrixK f of the free
system (without either node-to-ground stiffness elementsor boundary conditions) verify the equations:

2×K
f
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f

2x:2x

= K
f

4x:4x

}

, (A.8)

2×K
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}

(A.9)

and
2×K

f
1z:1z = K

f
2z:2z

= K
f

4z:4z

}

, (A.10)

in which the indicesnd : nd refer to the component of row ’nd’ and of column ’nd’ in matrix K f , and wheren and
d respectively stand for the node number and the direction. When a node-to-ground element of stiffness valuesKntg

x ,
Kntg

y andKntg
z is linked to node 1, the equations become:
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and
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K
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)
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In the case of a preloaded structure, a way of computing equivalent stiffness valuesKLMT
x , KLMT

y andKLMT
z for

the node-to-ground elements is by averages. Therefore, from the preloaded system’s global stiffness matrixK p, we
have:

KLMT
x = K

p
1x:1x−

K
p

2x:2x+K
p

4x:4x

4
, (A.14)
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KLMT
y = K

p
1y:1y−

K
p

2y:2y+K
p

4y:4y

4
(A.15)

and

KLMT
z = K

p
1z:1z−

K
p

2z:2z+K
p

4z:4z

4
, (A.16)

whereK p is the stiffness matrix of the global system under preloads.For the system studied, the final values are:

KLMT
x = 20.4·106 N ·m−1

,

KLMT
y = 19.4·106 N ·m−1

and
KLMT

z = 120·106 N ·m−1
.

This shows that the influence of the preloads affects the stiffness elements in a similar way along the directionsx
andy, and that the equivalent suspension stiffness values are greater than the original ones (Kntg = 10.0·106 N ·m−1).

AppendixA.3. Material definitions for validation cases

Some of the matrices defining material properties in the validation cases are gathered hereafter, throughout Equa-
tions (A.17) to (A.24).

[
C̃ISO1]=


















265 118 110 −4.82·10−6 −1.66·10−5 −1.89·10−6

316 118 −5.55·10−6 −1.69·10−5 7.56·10−6

264 −1.29·10−5 −4.43·10−5 6.54·10−6

51.2 8.27·10−6 5.16·10−4

sym. 97.4 9.97·10−1
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
















·109 (A.17)

[
C̃ISO2]=


















265 118 110 −8.39·10−6 −1.32·10−5 −8.44·10−7

316 118 −9.64·10−6 −1.35·10−5 3.79·10−6

264 −2.24·10−5 −3.52·10−5 3.43·10−6

88.9 −2.20·10−5 −4.07·10−8

sym. 77.4 0.00

89.1


















·109 (A.18)

[
Cstl]=











273 125 125 0 0 0
273 125 0 0 0

273 0 0 0
80.1 0 0

sym. 80.1 0
80.1











·109 (A.19)

[
CLMT1]=











146 52.2 36.1 −2.16 −2.03 −0.207
146 36.1 −2.16 −2.03 −0.207

110 −6.61 −6.21 −0.635
30.2 0.416 1.68

sym. 30.1 1.33
47.6











·109 (A.20)
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[
CLMT2]=











147 52.6 37.2 −4.89 −4.60 −1.02
147 37.2 −4.89 −4.60 −1.02

114 −15.0 −14.1 −3.14
66.5 2.87 7.65

sym. 66.2 7.28
49.1
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

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·109 (A.21)

[
C̃O1]=











164 59.3 9.63 0 0 0
164 9.63 0 0 0

19.4 0 0 0
3.34 0 0

sym. 3.34 0
51.3
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[
C̃yoke]=


















227 65 29 6·10−4 −1·10−5 2·10−8

227 29 6·10−4 −1·10−5 5·10−8

90 2·10−3 −4·10−5 1·10−8

45 3·10−3 4·10−1

sym. 45 4·10−1

78.1
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
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


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·109 (A.23)

[
C̃teeth]=


















233 69 43 2·10−7 −2·10−7 3·10−8

233 44 2·10−7 −2·10−7 1·10−8

14 2·10−7 −2·10−7 2·10−8

3.3 2·10−4 1·10−1

sym. 3.3 1·10−1
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



·109 (A.24)

AppendixA.4. Frequency response function measured on the magnetic core

A frequency response function, obtained in the measurements described in Section “Electric machine stators:
finite-element modelling accounting for frictional effects”, is shown in Fig.A.14. The magnitude of the signal is an
acceleration per unit force. This function has been obtained with a radial excitation by impact hammer and shows the
response on the radial direction and the impact point.

AppendixA.5. MAC coefficients between simulated and measured mode shapes

The correlation presented in Section “Electric machine stators: finite-element modelling accounting for frictional
effects” involved both simulated and measured modal bases. The similarities between mode shapes have been ex-
pressed with the aid of so-calledMAC-coefficients, defined with Eq. (24). The corresponding matrix comparing
simulated and measured modes up to 6,550 Hz is illustrated inFig. A.15, where only coefficients above 40% are
considered for better readability.
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Figure A.15:MAC coefficients between simulated and measured mode shapes
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