Identification of representative anisotropic materialgenies accounting for friction and
preloading effects: a contribution for the modelling oistural dynamics of electric
motor stators

P. Millithaler®P#*, E. Sadoulet-Rebo| M. Ouissé, J.-B. Dupor#, N. Bouhaddi

aVibratec, 28 chemin du petit bois, BP36, F-69131 Ecully eBRANCE
bFemto-S.T. Applied Mechanics, UMR CNRS 6174, 24 chemirépiéaphe, 25000 Besancon, FRANCE

Abstract

Simulating the dynamic behaviour and determining equivtaheaterial properties for anisotropic models, superele-
ments or structures subjected to preloads or friction resnaichallenging issue. Amongst other practical applinatio
modelling interactions between the steel sheets in indilistiagnetic cores of electric motor stators is a complek tas
as it requires anticipating behavioural heterogeneitigbé structure and possibly represents significantly yogtt
erations for performing modal or dynamic response simutati In this article, a method for identifying equivalent
material properties to anisotropic structures is devalppble to take into account the influence of preloads and fric
tion on the material properties, later used in structurakalyics simulations. The proposed approach can be used with
superelements, converting stiffness matrices into eigstinatrices. The method is first applied to a triclinic mipde
and recreates its elasticity matrix with little derivatiorhen, an equivalent linear material is computed for a conrti
ous structure under preloading. Compared at low frequenttie vibration behaviour of the preloaded structure and
its equivalent effective media are in good agreement. Tleeadipn is repeated with a laminated stack under preload-
ing. Again, the modal behaviour of the equivalent structhiews good accuracy compared to the initial preloaded
stack. Finally, the magnetic core of an electric machinmsia modelled with equivalent anisotropic material prop-
erties, accounting for friction and preload in the yoke’d #ime teeth’s steel sheets. The simulation of the strugture’
low-frequency radial vibration modes is satisfying, andves improvement compared to orthotropic properties.

Keywords: representative medium, homogenisation, electric madtater, laminated structures, superelement,
preloading, friction

1. Introduction

For finite-element simulations, modelling heterogenedussires strictly as they are in reality is sometimes both
delicate and unrealistic if the heterogeneities are smmailumerous: representing such models by equivalent homo-
geneous material properties may be a necessity in ordedteeethe number of degrees of freedom in the models.
In addition to this, constraints of cost-effectiveness fiexibility justify a great interest of the industry for effive
methods able to recreate the dynamic behaviours of heteeogs structures with equivalent material properti. [
Some of the existing techniques able to determine homogen@operties in order to model heterogeneous structures
are called “homogenisation” methods.

A large number of homogenisation methods already existréses of 2D, laminated, honeycomb or many other
types of composite structures. A thorough review has beaterbg Kalamkarov et al.14]. As for simulations on
structures where simplifications are not possible, a 3-Dagmth needs to be preferred. This article focuses on this
case.

There exist some cases in which equivalent isotropic ootmpic materials are not accurate enough to recreate
the behaviour of a given structure, with yet the same negeskusing representative elasticity matrices. In such a
case, identifying elastic constants such as Young'’s mpsludiar moduli or Poisson’s ratios is not possible in the case
of anisotropic, or so-called “triclinic” structures, dedih by 21 independent constan®. [In this general case, the
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material’s 21 independent coefficients form the elastigigtrix [C] in Hooke’s law{ g} = [C]{&}, where{o} is the
stress tensor angk} the strain tensorg). The entire linear system is:
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where the indices 1, 2 and 3 correspond to the respectivetidinsx, y andzin a rectangular coordinate systemyor
6 andzin a cylindrical coordinate system.

Begis et al. ] have developed a homogenisation method that can be appligidlinic periodic structures, the
principles of which were taken as a reference for other tieckas. Although it yields equivalent elasticity matrictes
approach requires solving analytical equations that migdie them delicate to implement for finite-element analyses
(difficulty reported by Chung et al6]). A different analytical formulation of elastic coefficits has been proposed by
Luciano and Barberaolf]. In spite of the ability to model equivalent anisotropicteréal properties, the expressions
of only 6 coefficientsﬁij amongst the elasticity matrix’s 21 independent constardsdatailed. Mathan and Siva
Prasad 17] have developed a method of evaluation of equivalent netproperties for a spiral-wound gasket and
analysed its elasto-plastic behaviour. The principle sv&rage the stress-strain behaviour of a representativeneo
element over its volume by the means of independent loadscaserder to determine the equivalent compliance
matrix's constants. However, the method is applied to thdist gasket only, and the structure itself is changed
(angle of sealing ring) to ensure the independence of tltedaaes before averaging the results.

In some situations, the material properties of given stmest can be affected by perturbations such as preload or
friction. Therefore, modelling such a structure with e@lént properties requires taking the effects of the perturb
ations into account in the homogenisation or the identifioaprocess. Peillex et al2(] successfully homogenised
a model made of 10% of isotropic heterogeneities into amapat matrix, taking into account dynamic frictional
contact conditions. By coupling their method to homogeathiseal friction coefficients, they were able to fairly ap-
proximate the stresses present in a heterogeneous modtleandvolution through time. Smit et aR?] as well as
Yvonnet et al. 28 have tackled similar issues and taken into account passibh-linearities in their models. Yet
both approaches analyse the behaviour of a non-lineardgeteeous structure without determining any equivalent
elasticity matrix, and no finite-element analyses have Ipeeformed to recreate the samples’ mechanical behaviours.

In the field of laminates, Pirnat et aR]] have developed a numerical model of a laminated stack woth b
tangential and normal contact conditions between the $ayldre 14%-error in the prediction of the natural frequescie
of a laminated stack was considered good by the authors,diti@u to the fact that they also updated the inter-
layer contact parameters with experimental modal data.ustog on electric machines, Kim and Ki4] have
shown experimentally that the first natural frequencies lainainated rotor increased with the stack’s pressure (i.e.
preloading). Similarly, the works of Watanabe et @5][have outlined the fact that the natural frequencies of non-
purely-radial modes on a segmented-core stator tend tedseras the clamping force increases. Dias’ experimental
analyses9] have confirmed this conclusion, with the observation theely-radial (or “ovalisation”) modes were not
affected by any variations of the clamping force held by thedabeads (called tie rods). However, in spite of the
new opportunities they represent to the knowledge in latathatructures’ vibratory behaviours, these approaches ar
highly dependent on experimental data or model updatinggohares and do not lead to any elasticity matrices that
could represent the material properties of equivalent lgemeous structures.

The influence of preloads has also been analysed in the frAnadweay dynamics. The simulations performed
by Wu and ThomsonZ7] highlighted a strong influence of preloading on the studiaitivay’s vibrations. The
measurements of Kaewunruen and Remennili@y ¢n railpads led to similar observations concerning theaayic
stiffness of all types of pads.

As for industrial projects in structural dynamics, a greaeiest is shown for accurate and cost-efficient model-
ling techniques applicable to common finite-element sitmtg such as modal bases. In particular, the automotive
industry currently focuses on new technologies such asdhgbrl00%-electric powertrains, the stators of which are
built on multi-layered magnetic cores with lateral weld d&#0, 24, 26]. Performing dynamic simulations on such
heterogeneous structures is however highly dependentsily @and time-consuming experimental analyses. This is
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why understanding and being able to predict the vibratohyab®ur of a stator's laminated magnetic core without
experimental data is key to performing efficient noise aimlation simulations on entire electric motors. In addition
to this, Van der Giet et al23] reported non-linearities in the mechanical behavioumafihated stacks, as a result of
their experimental analysis on a real electric machine.

Concerning finite-element simulations, Verma et a#] [and Williams et al. 6] suggested to model the entire
magnetic core with a single homogeneous isotropic mateviaht was applied by Dia®]. An orthotropic material
property identification method and modelling guidelinesenbeen presented by Millithaler et alg and allowed
to simulate the modal behaviour of an electric motor staiithh good accuracy, with an efficient zoning of the finite-
element model accounting for the influence of weld beads.Wdr& presented by Millithaler et al1B] also showed
that the correlation accuracy between simulated and medwalisation modes on a real stator would have been
decreased by a relative factor of 68.5% if the finite-elenmeadel had not been zoned. This article follows the work
presented by Millithaler et al1B], in which a method of 3D material property identification faulti-layered ortho-
tropic laminates has been developed and where its apgitgalsas compared to other existing 3D homogenisation
techniques. In this paper, friction and preload will be tak@o account phenomena in the computation of represent-
ative anisotropic materials for improving the accuracy yiamic simulations on the magnetic core’s finite-element
model.

In order to compute representative elasticity matricesrfodelling heterogeneous structures, several interesting
methods have been reviewed. While some of them are able telnviedinic properties in finite-element models,
others deal with perturbations and their non-linear infb@snon the behaviours of the studied structures. To the
authors’ knowledge, there currently exist no approachés tattake such external perturbations into account in the
definition of equivalent, linear, representative elagtionatrices. Modelling such perturbations on a given stmect
generally requires performing non-linear simulations,ickhare in principle longer, more complicated and more
restrictive (e.g. requiring special licences) than lingalutions. Approximating non-linear effects by repreaéne
linear material properties that could be used in any finiégerent solution therefore offers interesting opportesiti
that include analysing the influence of such effects on theenah coefficients themselves, and integrating these
material definitions into linear solutions such as modelating) procedures.

This is why a new method is proposed, based on finite elemfentsiodelling equivalent triclinic material prop-
erties for periodic structures and which is able to take auwount the influence of perturbations on the represeatativ
elasticity matrix. Amongst the possible applications fustmethod, triclinic bodies as well as preloaded heterogen
eous structures will be modelled with homogeneous moddls equivalent material properties identified with the
presented approach. Apart from the development itselfinthi@ interest of this paper is to model multi-layered mag-
netic core bodies with representative homogeneous migbeoiperties that take into account the influence of preload
and friction in the structure. As stated earlier, the idetbiapproximate non-linear effects by representative finea
material properties and allow performing simulations Jilear models. Aiming at predicting the radial modes with
best possible accuracy, the modal basis of the magneti¢s agaivalent model will be compared to experimental
data acquired on a real electric machine. This is why modaslmarrelation criteria are preferred for all the proposed
validation cases in this paper.

2. Development of the “Triclinic” method

As it has been explained by Millithaler et al{], orthotropic material properties imply that tension-qoassion
and shear phenomena are not coupled. For a structure ®dijecperturbations, these no-coupling assumptions
may not be valid in the general case, and any linear elgstitétrix approximating its behaviour shall be therefore
expressed as anisotropic, or “triclinic”. The correspagdHooke’s law in the general case has been shown on Equa-
tion (1); in this case, the material can no longer be expressed waitingy's moduli, shear moduli or Poisson’s ratios
[5]. Therefore, the method presented by Millithaler et aB]] which aimed at identifying these elastic coefficients
directly, is extended for application to triclinic matdsiand with effects of perturbations such as preload antidric

First of all, the prerequisite steps for this method are:

1. The zones to be modelled with equivalent, homogeneousrialaproperties are distinguished and analysed
separately;

2. For a given zone, a sample exactly recreating the peiipditthe structure as well as the perturbations (if any)
is created:;

3. A stiffness matrix taking into account the influence of pleeturbations is computed.



2.1. Computation of the stiffness matrix

In order to detail step2 and3 of the sequence introduced above, a sample with two 8-ndidkeedements is used
as an example as shown in Figurethe elements <1, 2, 3, 4, 101, 102, 103, 104> and <105, 106, 138, 5, 6,
7, 8> are superimposed along thaxis, and preloads are applied to the structure (red ajrolse two elements
have to be separated if contact properties are to be takemdcbunt (in such case, the interface nodes are doubled,
although each node pair is perfectly coincident). If no aohor friction properties are modelled, the interface sode
are merged. The global cuboid’s dimensions lageLy andL,, and its faces’ respective areag (facesx = 0 and
x= 1), Ay (facesy = 0 andy = 1) andA,; (facesz= 0 andz = 1). Also, the nodes located within an ellipse on
the figure have the same coordinates. The description ofreftéaces is simplified with= 0" or "= 1’ notations
(referring to the limits of the structure’s volume), in spdf the dimensionky, Ly andL..
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Figure 1: Example of a sample under preloading

For any types of finite-element simulations on a global s$tmec(e.g. modal basis computation on a laminated
core), a global stiffness matrix is computed by the solverdfescribing a given state (or increment) with the effects
of perturbations such as preload or friction. Considerinty @ representative sample as illustrated in Figlyre
the corresponding stiffness matrix takes into account #mesproperties at the same state. The idea is therefore
to approximate these properties with a linear homogenelagsiaty matrix describing the same state at which the
stiffness matrix was output by the solver.

Now, for the solution to be computed, the system has to béliseh the outer nodes 1, 2, 3, 4,5, 6, 7 and 8
are respectively doubled with the nodes 11, 12, 13, 14, 15171 &nd 18, at the exact same coordinates. The nodes
11 through 18 are then clamped, and each pair is linked witlstffhess elements (this is equivalent to linking a
node-to-ground stiffness element to each of the structunater nodes 1 to 8). The numerical values of these stiffness
elements have to be small enough to not perturb the enturetgte’s stiffness matrix values.

As an example, the stiffness matrix’s diagonal componehts b mm-long cube made of isotropic steel with
E = 210GPa and’ = 0.25 have a value of .67-10'N-m~2. In this case, using stiffness elements with a value
of 1,000N-m~1 in every direction is considered negligible compared todfiigness matrix’s values, and does not
perturb the structure’s overall behaviour.

For the rest of this sectior,o, %a, %y, %y, %n and %, are defined as the node sets corresponding to the
respective faces=0,x=1,y=0,y=1,z=0andz= 1. The case of a two-layer, 8-outer-node structure is @etail
in Tablel.

The prestress effectsy and oy are then applied to the system along #exis, so that

=~ S F @
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node set ‘ face ‘ nodes
Uso x=011,2,5,6,101, 102
Ua x=11 3,4,7,8,103, 104

Uy y=0]1,4,5,8,101, 104
U y=1]2,3,6,7,102, 103

Uxn z=0 1,2,3,4
Un z=1 56,7,8

Table 1: Details on node set names in the case of a 8-outerstadtture with two layers

and
1
oo=—-+— Y F, 3)
ZicUn
where the valuek; stand for the loadings at the nodes 1 through 8. If modelkeicontact properties are then defined
according to the physics of the interface (deformable tmdiection, etc.).

Creating the superelement with the twelve nodes 1, 2, 3, 4, 102, 103, 104, 5, 6, 7 and 8 (DORg Ty
andT,) is an efficient way to output a stiffness mattixit seems important to emphasise that the solver used has
to take into account the influence of the perturbations dvewalues — if modelled — and export the corresponding
stiffness matrix. In the case illustrated in Figurethe superelement created stands for a structure with tyarda
and four common interface nodes instead of two separateeelsm The elasticity matrix computed with this new
method is linear and approximates the non-linear pertini&to which the structure is subjected. In other terms, the
stress-strain law it describes corresponds to the samaisituin which the stiffness matrix was computed

2.2. Determination of the elastic properties

Unlike finite elements for which materials would be clearbfided, the stiffness matrix of a superelement does
not give any direct information about the materials it seafat. The matrix may however be imported by a solver to
recreate the elastic properties of an entire structureuircase composed of two 8-node solid elements and twelve
nodes (the node pairs at the interface were merged durirgufi@element’s creation process). Itis therefore passibl
to compute the displacemems, ;, Aly; andAl; as well as the reaction forcég;, F,; andF;; at each node

As it has been shown, the 21 independent coefficients of awadgut triclinic elasticity matrix[(f] have to be

identified. To do this, the proposed approach consists irpetimg the compliance matriﬁé] such tbat[é] = [é] -
The general relation of Hooke’s law, detailed in Equatib)y) ¢an be reversed to express the maﬁﬂ}c

(& ) [S11 Sz Sz Su S5 Sie] (0]

&y S22 S8 4 S5 36| | Oy

&7z S3 S4 S5 S Ozz
= S : (4)

2-&; Sis %5 §46 Oyz

2- Ezx sym. 8.35 %}6 Ozx

2- &y L Se] \ Oxy

To calculate all the constants {ﬁi the method needs six series of simulations, ie. one per coemt of{¢}.
The first series, callexl, refers to the deformed statg. For better visibility, this development is made on the selco
series, callegy, referring to the deformed statg,, and repeated similarly for the deformed stadgsande;,..

The second row of Equatiod)is then:

Ey = é'J.2‘ Gxx+é22‘ Oyy+ é23‘ Ozz+ ~&4‘ Oyz + é25‘ Ozx+ sﬁ‘ Oxy - 5)

IFor instance, the ASCIl-format DMIG (“Direct Matrix Input a Grid”) is a convenient way to export and reuse stiffnessines.
2depending on the solver and the solution, the stiffnessixean be output at a given increment in function of time, pmion of total
preload applied, etc.



Thus, this series needs six independent simulations i twddentify Equation$)’s six constant$;, = $1, So,
S3, Soa, S5 andSye. This seriegy corresponds to a pure tension scheme, as shown in RXgaretatic displacement
oy is enforced along-y to the nodes of the fage= 1, whereas plane contact constraints are applied to the/fade
In other terms, the nodes of the fage- O are blocked in the directiopand left free in the directiong andz. To
equilibrate the system, DOHg and T, are blocked at node 1, and DAF at node 2 (more details are given in the
appendices, in Tabla.10).

A
® o
5 8
° *=>
6 7
101
[ o
102 104
°®
103
BRI ->

Figure 2: Pure tension alornygon the superelement

Then, the values of nodal reaction forces lead to the stseﬁ%aé, where the superscrigRa) refers to the first
simulation of the seriegy.

O = Z R (6)
XIE”/X]_
(2a) Z 2a) 7 (7)
yleﬁ/yl
(2a)
F 8
0z, AZIE% zi > (8)
(2a
- ; Ry, 9)
yIE U1
(2a
XZ A Z (10)
XieZa
and
(2a) 2a) ( 1 1)

For other uses such as local stress field computation, iteaoted that these expressions may be adapted to specific
node sets (e.qg. for determining stress fields at interfaces)

The next five simulations of the serigg(corresponding to superscrigt&b) through(2f)) obviously recreate the
same pure tension scheme along yrexis. The difference made between each simulation fordheesserieyy is
in the boundary conditions of the scheme (unlike in the wdrklathan and Siva PrasadT]), i.e. which DOFs are
blocked or set free, while enforcing the same displacenerai simulations(2a) through(2f). The independence
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between each simulation’s boundary conditions must thearenthat the 6-equation system (one equation similar
to (5) for each simulation of the series) is of rank 6. Finally, dugiation system obtained is

o) [ o o af o o (%
Eyy o a;,;b) 0. a;,zzb) 0. af(;b) S
&y - O_)((id) U)(/;d) O_Z(zzd) O-;/sz) O')((zzd) O_)((;d) 524 ) (12)
o) Lo o o g a als

where the 6< 6 matrix is referred to ag#’(?], and where:

sy = -2 . 13
W= (13)

Now, solving the system yields the six coefficieBs = S throughéze. These steps are [epeated with two new
simulation seriesxx andz2, in order to complete the first three rows of the complianegrix [S] as

S §B]
; (14)

where the sub-matrice[ﬁ}] and [§B] are both of size X 3. The next step consists in using the symmetnﬁ}fto

transpose the submatr&s|:
S S
5]

33 _

so that computing the last three rows[é} only requires three simulations each instead of six. Thiesgzrefers to
the deformed statg, = 2 £,,. The corresponding row in Equatio#) (s then:

Wz = §.L4‘ Oxx + ~&4‘ Oyy + é34‘ 077+ §44‘ Oyz+ é:15‘ Ozx+ §46‘ Oxy - (16)

In a similar way as shown by Millithaler et alL§], the analysis separates sliding shear from transverse,she
the respectiveTricll ” and “Tricl2 ” scenarios, for which the identification of the compliancatrix’s first three rows
yet remains identical. Taking as exampi¢l2 ” scenario (i.e. transverse shear), the identification efrémaining
rows is detailed in the appendices. Eventually, the compdéanatrix[é] is fully constituted from all six simulation
series, and thus stands for homogeneous material prapegpeesentative of the initial heterogeneous structure.

3. Validation

For the above-presented method to be applied, three \ialidedses are detailed throughout the following para-
graphs, each presenting a specific use of the identificatethod:

» a simple homogeneous structure composed of a tricliniernat
 a preloaded homogeneous structure and a comparison withéthod developed by Millithaler et alL§];
» a preloaded laminated structure for which the method dgesl by Millithaler et al. 18] could not be applied.

In addition to these validation cases, the next sectiondeiil the creation of a representative finite-element rhode
for an industrial stator core made of laminated steel andevpesloading and friction effects are accounted for.
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3.1. Homogeneous triclinic sample

The method Tricl1 ” has been first validated on a simple, homogeneous casehiBaxample, a cuboid 8-node
element whose dimensions drg = 20mm, Ly = 40mm andL, = 60mm was used, to which a triclinic material
defined by the elasticity matrix

351 047 127 —-0.67 —-0.02 —0.56]
132 103 -0.04 —-0.07 024

297 -023 -059 014
exp) .
[C™] = 0.37 017 -0.07 10° (17)
sym. 109 006
L 0.81 |
and the associated compliance matrix
[0.926 —0.016 —0.397 1848 —-0.538 0913
0.079 -0.022 -0.041 Q001 -0.034
0570 -0.649 0426 0454
Xp] 109
(5™ = 6.719 —-1483 2093 10 (18)
sym. 1407 -0.678
2.186 |

was applied, but without any external perturbations.

Given these input material properties, this applicatioh attempt to show to what extent the elasticity matrix
identified by the method corresponds to the inf@&ft®]. In this case, each simulation has been made with enforced
displacements of magnitude= 1 mm.

A linear static solution is initiated (each solution is cdetpd within a few seconds), including output requests at
all nodes in terms of displacements and reaction forces.r@$dts of thexx-series lead to the systerh?) (adapted
to row 1 i.e. directiorxx), whose numerical values are given in the following system:

(5.102 [5.4010°  0.00 0.00 252107  0.00 0.00 | (S
5102 9.1810° 1.891C°  0.00 0.00 0.00 -3.83107| | S5
5102 8.3910 0.00 4.4610 0.00 1.8510 0.00 Si3
_ ) , (29)
5.10°2 1.2110° 1.0010° 0.00 -1.5910" 1.451¢F -3.4810 | | S
5102 55410  0.00 0.00 0.00 2.4010° -8.33 Sis
5102 |7.5910'  0.00 0.00 0.00 0.00 -2.2110 | Sis

and whereg,y = 0.05.

The 6x 6 matrix [%(1)] has a rank of 6. As it can be seen in Equati®8)(the independence of the boundary
condition sets led to a number of null or negligible valuesniatrix [,%ﬂ(”]. This is done so that e~ach simulation in
the series involves a minimum of terms in the compliance imatn particular, the diagonal ter$,; is identified
alone in the first row oi[%ﬂ(l)]. Solving Equation 19) yields the first row of the equivalent compliance matrix, as
shown in EquationZ0):

= 9.262.10710 )
S, —1.582.10 11
Sia —3.973.10°10
& )| 1sas10° [ 20
Sis —5.376-10°10
Sis 9.133.10° 10




The values found here are very close to the initial compgamatrix, including the terms of coupling between
tension-compression and shear, nan&ly S;5 andS;g. The maximum relative discrepanb&{?gx is such that

S -§°

S
j
which is very low and therefore shows that the computed t&suik close to the initial values. The other rows are

computed in the same way. The symmetry{é]f is confirmed, and the values match; the validation is sutuefss
this triclinic homogeneous element. Identical resultsfaumd with method fricl2 .

U= max

: = 0.8%, (21)
I7J

3.2. Preloaded homogeneous structure
3.2.1. Global structure:

The second application of the “Triclinic” method is an arsdyof a preloaded structure. The objective is to
analyse the effects of the preload on the initial materiksticity matrix, and to what extent a linear, homogeneous
material could recreate the vibratory behaviour of thaahipreloaded structure. The FE model is a homogeneous
cuboid of isotropic steel (Young’s modullis= 207 GPa, Poisson’s ratio = 0.292 and density = 7875kg m—3)
of respective dimensions aloxgy andz of 100 mm, 70 mm and 80 mm, and has 1,008 elements and 8,034.DOFs
Tension preloads are applied along directjoio the structure. The facgs= 0mm andy = 70mm are subjected to
static forces of respective total magnitude819 10° N and—9.81- 10° N, equally distributed on the faces’ nodes, so
that+81.1- 10®N is applied to each of these nodes algngThis value has been chosen to be voluntarily high to
ensure observing notable effects on the responses, yeofidmeyield or fracture limits are taken into account in the
simulation: the material is assumed to never reach any stthmits while calculating the solutions. Therefore, the
total pre-stress fieldyﬁ, applied to the structure is:

oh =1.23-10"Pa. (22)

Also, a node-to-ground stiffness element is linked to eddheglobal cuboid’s 8 outer nodes, with stiffness values
of K" =1N-m~! on each directiox, y andz. The initial structure is illustrated in Figu@e

“<————_ node-to-ground
« stiffness elements

Figure 3: Initial isotropic steel structure under preloagd{red arrows)

3.2.2. Equivalent material properties:

To apply the identification method and determine equivateaterial properties, a sample is created from a few
elements of the structure: 3 elements algr{g8 DOFs), as shown in Figure To recreate the stress field existing in
the global structure, the sample is subjected to the sarmstiarss fieldsyy. To stabilise the system, a node-to-ground
stiffness element is linked to each of the sample’s 8 outdespwith stiffness values &"9 = 1N-m~! on each
directionx, y andz.

It seems important to note that in spite of the initial staweis boundary conditions, applying the presented
methods to identify equivalent materials must be made ia€"frconditions, or in other words without any DOF
constraints. Yet, a structure subjected to preloads nedmsdtabilised, which explains the addition of node-taigob
elements to the sample (for this example, although othertisak may exist), and which is completely independent
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node-to-ground
stiffness elements

Figure 4: Isotropic steel sample under preloading (redas)yo

from the global structure’s boundary conditions. For thiestenial identification, the stiffness values of the node-to
ground elements have to be sufficiently high to enable coimgulhe stiffness matrix, and as low as possible to be
negligible compared to the matrix’s values. In this casejust be verified that their values after preloading are still
negligible compared to the new stiffness matrix’s values.

A 48 x 48 real and symmetric stiffness matrix is computed, acdogrfor the influence of the preload. By
creating a new model with the sample’s 16 nodes (and no eksinamd importing the stiffness matrix as an external
superelement, a linear static solution is initiated to ppipé method according to the scenarigadl1” and “Tricl2”
presented in Sectio. Post-processing the results yields the elasticity megni€'S®Y| and [C'S° (respectively
corresponding toTricll " and “Tricl2 ” methods), detailed in the Appendices, in the respectiveaigns A.17) and
(A.18). As a reference for comparisons, the elasticity ma@ﬂ%'], corresponding to steel (without preloading), is
shown in EquationA.19).

In order to compare it with these results, the methodttiol ” developed by Millithaler et al. 18] (intended
to be applied to orthotropic laminated structures) has lzggolied to the same superelement (computed from the
|sotrop|c steel sample under preloading), and yieldeddhewing elastic coefficientsE, = ZOlGPaEy =242GPa,
E,= ZOlGPaGZy_ 116 GPaG,x = 49.5GPa ny = 89.1GPa,Vy, = 0.313, Uy, = 0.298 andvy, = 0.259. Judging
from the values of the matrices, the following observatioas be made:

« While [C!] has a shape inherent to isotropic properties, this is notase of[C'S%Y and [C'S®?]: the pre-
loading effects have altered the initial material’s isptro

* Relatively low terms of coupling between tension-compi@s and shear have been determined by the two
scenarios Tricll ” and “Tricl2 ™;

« In both matrices/C'S®Y] and [C'SOZ] the tension preloading alongresulted in an increase of the coefficient
Cz» from its value in[CS!], which is the diagonal term of Hooke’s law in directigy This is consistent with
the expected stiffening effect from tension preloadidiy [

Two equivalent homogeneous structures are then compuitdihe same dimensions and the same density as the
initial model.

3.2.3. Modal correlation analysis:

To evaluate the capacity of the equivalent material praggetd recreate the behaviour of the preloaded structure,
a state of modal correlation is calculated. To perform tmisgal bases of the first 200 vibration modes are computed
for the structures detailed in Tab® The first 6 modes, describing the “suspension” related eontbde-to-ground
elements (all below 14 Hz), have been discarded. Comparttdstathe lowest  mode frequency amongst all the
structures (and thus first to be correlated) is at 14,5 Hz.

The criteria defining the correlation consist in compariaghevibration mode of the first model to each of the
second. When comparing the modes of two structures, sewétalia can be referred tdl9]. The approach we
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Structure Basis name
Steel (initial) Init
Steel (under preloads) Prid
Homogeneous (scenaridricll ") Tricll
Homogeneous (scenaridricl2 ") Tricl2
Homogeneous (methoftthol ") Orthol

Table 2: Definition of the modal bases

Init Tricll (sliding shear) Tricl2 (transverse shear) Orthol
Nb paired modes| 194 194 194 194
|Af] (%] 3.85 7.64 1.40 6.25
MAC %] 72.0 42.6 90.3 48.5

Table 3: Correlation of the first 194 modes above 3,000 Hz

propose in this article is to compare both natural frequesneind deformed shapes, to assert the extent to which one
structure reproduces the modal behaviour of the secondseltriteria are the same as in the work of Millithaler et
al. [18].

Therefore, the relative frequency differenfié (mej, my j) between the natural frequency of the first structure’s
i-th modemy; and the second structurgish modem, j is computed with the following relation:

f L f .
Af (my,mp ) = == (23)
N
where fy; et f,; are the natural frequencies corresponding to the modgsandmy j, respectively. In addition to
this, the similarities between the deformed shapes of theéeswy,; andmy ; (respectively calledp; and ¢, ;) are
determined according to the so-called MAC criteridfofal Assurance Criterion by the expressionl]:

T |2
MAC () = — (@} {e ] (24)

{oit {oii { @i} {®i}

Then, the pairs of modes for which MAC values are highest aserabled, and are taken into account if the
MAC values are above a fixed threshold. All the other modesie discarded from the correlation process. For the
correlation, the reference modal basismsld”, to which the other bases are compared. The MAC-threstsolicked
at 0% for pairing the modes (so that all the modes are pairddaken into account). The results of the correlation
are gathered in Tablg. For N,y mode pairs in a given correlation, the entit@ andMAC are defined by the

expressions:

17 Nem
q:
and
1 Nem
AC= o ZlMAc(m‘l‘,mg) , (26)
q=

wherem{ andmj] are the modes composing theh pair.
The results given in Tablg can be summarised as below:

» Both natural frequencies and deformed shapes are affégtede application of preloads, as the figures of
column ‘nit” show;

e Scenario Tricl2” is capable of recreating the behaviour of the structureeunmteloads with good accuracy,
while method Tricl1 ” is much less efficient in this setting.
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« In spite of the similarities of the shapes [@'S%Y] and [C'S®?] with that of an orthotropic material's elasticity
matrix (for which no tension-compression/shear and skle@al coupling terms exist), it can be clearly seen
that using the Ortho1l " method is not adapted to such a setting.

3.3. Preloaded laminated structure

3.3.1. Global structure:

For the last validation case, the same structure as in th& afoMillithaler et al. [18] has been analysed: a
laminated cuboid of 5,024 elements, 30,144 DOFs and ragpatimensions along, y andz of 210 mm, 110 mm
and 60 mm. The stack’s base cell is composed of 3 isotropérsaghe properties of which are detailed in Tahland
is oriented alon@. For each layelE: is the Young’s modulusy the Poisson’s ratiqy the density and the thickness.
Also, the volume fractionx,, of layern is defined by the layer’s volumé, and the base cell’s total volumé&®!, so
that

3
vel— $ v, (27)
n=1
and
Vh
Xn:mo (28)
2
o
g |
_ = =
n o =
E [GP3 207 | 2.0 | 121
v I[-] 0.25 | 0.40 | 0.34
p [kg-m—3] || 7,875| 1,200 4,430
| [cm] 0.40 | 0.20 | 0.40
X -] 0.40 | 0.20 | 0.40

Table 4: Characteristics of the layers

In this case, the structure is subjected to tension prelakuig the stacking directiorz)( The total loads on the
top and bottom faces are respectively21:30’ N and—13.2- 10’ N, equally distributed on the faces’ nodes, so that
+500- 10° N is applied along to each of these nodes. As before, this value has been chmbervoluntarily high to
ensure observing notable effects on the responses, yeofidmeyield or fracture limits are taken into account in the
simulation: the material is assumed to never reach any eétlimits while calculating the solutions. Also, no contact
conditions are taken into account between the differerriythe structure is assumed to experience no delamination
Similarly to the corresponding structure in the work of Miialer et al. L8], a node-to-ground stiffness element is
linked to each of the global cuboid’s 8 outer nodes, witHrsti§s values ok™9 = 10’ N-m~! on each directior, y
andz. The global structure taken as reference is illustratedgnre 5.

3.3.2. Equivalent material properties:

To apply the material homogenisation approach and deterarirequivalent material, a sample is created from a
few elements of the structure. In this application, the darmpnsists of the 3-layered base cell (48 DOFs) of which
the entire model is composed, and is illustrated in Figureo recreate the stress field existing in the global stregtur
the sample’s 8 outer nodes are subjected to the same nodal@eB00- 10° N per node), as the thicknesses of the base
cell layers are identical in the sample and in the globalcstine. To stabilise the system, a node-to-ground stiffness
element is linked to each of the sample’s 8 outer nodes, Wifthess values oK™ = 1N-m~! on every directiorx,

y andz
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node-to-ground
stiffness elements

Figure 5: Global laminated structure under preloading &redws)

node-to-ground
stiffness elements

2

Figure 6: Base cell under preloading (red arrows)

As before, the addition of node-to-ground elements to timepéa is necessary to stabilise the system, and yet
independent from the initial, global structure. Again, stifiness values of the node-to-ground elements are riblglig
in comparison to the sample’s stiffness matrix’s.

A 48 x 48 stiffness matrix is computed (which is real and symmgtitd takes into account the influence of
the preload. By creating a new model with the sample’s 16 sigdad no elements), and importing the stiffness
matrix as an external superelement, a linear static soluidnitiated to apply the methoddricl1” and “Tricl2”
presented in SectioR Post-processing the results yields the elasticity mesfi€-"™ | and [C-MT2] (respectively
corresponding toTricll ” and “Tricl2” methods), detailed in the Appendices, in the respectiveaiigns A.20) and
(A.21). Associated to them, the matr[f:Ol] composed of the elastic moduli determined 18][(in the case of an
orthotropic material without perturbations) is recallacEiquation A.22).

Judging from the values of the matrices, several obsenatian be made:

» Non-negligible terms of coupling between tension-corapi@en and shear have been determined by the two
methods Tricl1 ” and “Tricl2 ”;

« The matrice§C*"™] and [C"MT2] are both positive definite (their eigenvalues are all d§rigbsitive), which
is a necessary condition for a system to be stdfjte [

* In both matricegC"™*] and[C"MT?], the tension preloading alomgesulted in an increase of the coefficients
Cs3, C44 andCss from their values in[COl], which are the diagonal terms of Hooke’s law in each directio
involving z (respectivelyzz yz andx2. This is consistent with the expected stiffening effecinirtension
preloading #];
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Structure Basis name
Laminated (initial) Init
Laminated (under preloads) Prld
Homogeneous (scenaridricll ” - sliding shear ) Tricll
Homogeneous (scenaridricl2 ” - transverse shear ) Tricl2

Table 5: Definition of the modal bases

* In both matricesC-M™*] and [C"MT2], the directions« andy have similar coefficients, which shows that the
laminated structure has in this case an equivalent behaviglanes normal to the stacking direction;

« In [CMT2] the absolute values involving shear in directigmandxzare significantly greater than {€-"T1],
which is similar to the comparison between tl@tho2 ” and “Orthol” cases in the work of Millithaler et al.
[18].

The homogeneous structure to which the equivalent matefiahch method is applied has the same dimensions
and the same total mass as the reference cuboid, and is mddeeotimetre-long cubic, 8-node, solid elements.
Therefore, the equivalent densyiyis calculated by the relation of weighted average:

p= Pn-Xn, (29)

Mz

n=1

wherepy, is the density of each layer.

A density value and an elasticity matrix fully define a matkfor the computation of a real modal basis: an
equivalent homogeneous structure is created with eaclegh#terial properties respectively computed with methods
“Tricl1 " and “Tricl2 ". For each of them, the dimensions are identical to the esfee matrix’s, but one-centimetre-long
cubic elements replace the three-layered base-cells #rat nomogenised.

3.3.3. Modal correlation analysis:

To evaluate the capacity of the equivalent material to egerthe behaviour of the preloaded structure, the modal
correlations between the models are analysed. To perfasymtiodal bases of the first 50 modes are computed for the
structures detailed in Table The first 6 modes, describing the “suspension” relatedaéamtide-to-ground elements
(all below 2,500 Hz), have been discarded.

For the correlation, the reference modal basi$isd”, to which the other bases are compared. The paired modes
for which MAC values are below 70% are discarded. Also, caingahe dynamic behaviours of the homogeneous
global structures no longer requires involving suspenstidfmess elements, even though their values in the bake cel
were small enough to have negligible impacts on the idedtélastic properties. For including them in the laminated
global model under preloads, equivalent values can be ctadpuith the approach described in the Appendices. The
results of the correlation are gathered in Taﬂi;lwherem corresponds to the average of the frequency differences’
absolute values, ardAC the mean MAC value of the paired modes.

Init Tricll Tricl2

Nb paired modes| 23 36 17
|Af] [%] 380 | 121 | 147
MAC [%] 90.3 | 875 88.1

Table 6: Correlation of the first 44 modes above 2,500 Hz
The results given in Tablé can be summarised as below:

» Both natural frequencies and deformed shapes have bemmeaffby the application of preloads, as the figures
of column “Init” show;
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* In spite of the important behaviour difference induced ly &pplication of the preloads, methottitll” is
capable of identifying 36 of the 44 modes;

* However, the material from methodrfcl2” is not efficient to simulate the behaviour of the initialstture
under preloading, as only 17 of the 44 modes are identified.

As shown by Millithaler et al. 18], it can be said that recreating the lower-frequency modédsnoinated structures
with homogeneous equivalent material properties requilestifying them with sliding shear simulations instead of
transverse shear. On the contrary, the results of the amahyBaragrap3.2show that identifying equivalent material
properties for a continuous structure is much more accwilketransverse shear simulations.

4. Electric machine stators: finite-element modelling acamting for frictional effects

4.1. Finite-element model

The ability of an electric machine stator’s finite-elemermtd®l with orthotropic material properties to simulate the
modal behaviour of the corresponding real structure has beewn by Millithaler et al. 18], along with modelling
guidelines that led to zoning the model. The same statornsidered in this section, and consists in a stack of
several hundreds of steel sheets separated from each gtharrish. During its manufacturing process, weld beads
are applied on the lateral side of the stack, while the magieete is placed under a press. When the pressure is
released, the stack is held in one piece by the weld beadt imhhe rest of the structure, the only bond between
the sheets is the varnish. This is a source of heterogenéitithe behaviour of the entire structure. Therefore, the
finite-element model of the magnetic core has been dividedseveral zones according to the distance to the weld
beads (see Figuré), with specific material properties associated to each efzttnes. The same model as in the
work of Millithaler et al. [L8] is used in this section. It is made of 19,158 elements ande®4nodes (expressed in a
cylindrical coordinate system of directions@ andz) for 12 teeth, its dimensions are 154 mm (length) and 245 mm
(outer diameter). The sheets are stacked along-thés.

yoke

“prox,!

weld
beads

teeth

Figure 7: Magnetic core’s finite-element model (axis alang

4.2. Equivalent material properties

The present analysis focuses on the interaction betweestdlbé sheets and the possibility to take such effects
into account in the equivalent material properties. Beeanigheir proximity to the weld beads, the zone “prox” is
assumed to experience no friction effects between thedayidrerefore, this zone is associated to the same orthotropi
material as in the work of Millithaler et al1B].

On the contrary, friction effects between the steel sheetsrdelled in the epoxy layers for the zones “yoke”
and “teeth”. Compressive preload is taken into account deioto model the residual pressure remaining after the
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material E [GPa] v [—] [ [um] nodes transition
steel 207 0.25 180 111,’122’,3;_’;’14 common
epoxy 3.0 0.37 1.5 2](-)]; 3-022, ]2-;]:2‘:)’4 nodes interface
epoxy 3.0 0.37 1.5 2255,’2521 21077,’ i?BS common e
steel 207 025 | 180 15’512’ %7;318’ nodes

Table 7: Stacking sequence - base cell

manufacturing process, and is assumed to be homogeneaashizene. The unit (or base) cell periodically repeated
in this zone is thus a set of four 8-node solid elements soppaEsed along the-axis. The base cell is illustrated
in Figure8, and the stacking sequence is detailed in Tabl&he same density (acquired from measurements) is
applied to the entire structur@: = 7, 750kg- m~3.

A node-to-ground
i stiffness elements
5
6
steel
16
epoxy .206
interface S
202
epoxy ,, @
A
steel
) {
e | |
r L ‘
o

Figure 8: Base cell - zones “prox” and “teeth”

The entire base cell is composed of 24 nodes and thus 72 DORs.id€a is to identify equivalent material
properties from a superelement in which the master-nodezitde the glued elements (nodes 1 to 18 - written in bold
in Table7) and the slave-nodes the interface (nodes 201 to 208 - io)itat this article, a superelement’s “master” or
“external” DOFs correspond to the DOFs kept after conden@imat still exist in the superelement’s reduced stiffness
and mass matrices). On the contrary, “slave” or “internaDf3 are not present after the reduction, as explained for
instance in the so-called “Craig-Bampton” meth@&{l idely used in FE simulations. The pairs of interface reode
have the same coordinates. To stabilise the system, a naglednd stiffness element is linked to each of the outer
nodes 1, 2, 3, 4, 5, 6, 7 and 8, with stiffness valuek'8¥ = 1N-m~1 on every directiorr, 8 andz

To the authors’ knowledge, there are currently no dataavigilconcerning either prestress values on a magnetic
core’s tooth or friction between two steel sheets. In thigliaption, the initial load applied to the stator during its
production is equivalent to a mass of 2,500 kg (25 kN), and therefore corresponds to a compressive presifes
1.52-10° N -m~2 along thez-axis.

In order to evaluate the distribution of residual stressale different zones of the stator, the static stiffnessasl
computed in the work of Millithaler et al1p] are taken as references. The mean values wérd @ N -m~tin zone
“prox”, 2.5-10°N-m~1 in zone “yoke” (i.e. 83% of zone “prox”) and.3- 1(N-m~1 in zone “teeth” (i.e. 43% of
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zone “prox”). Using the same factors to represent the bision of prestresses, a compression @7110° N - m—2

is applied on zone “yoke” and.B3- 10°N-m~2 on zone “teeth”. Apart from this prestress, the identifimatof
equivalent properties is made in the same way and with the &mwe cell for both zones. The contact properties are
described by a Coulomb dry friction with a coefficignt= 0.9, and occur at the interface described previously.

A 72 x 72 real symmetric stiffness matrix is computed and takes &ecount the influence of the preload and
friction. Reducing it with the “Craig-Bampton’8] method (widely used in FE simulations) with master-nodés 1
18 yields a new stiffness matrix (real, symmetric and of dige 48). By creating a new model with the 16 master-
nodes (and no elements) and importing the reduced stiffnagx as an external superelement, a linear static solutio
is initiated to apply the methodrticll ” presented in Sectiof (sliding shear scenario). Post-processing the results
yields the elasticity matricefCY°k€] and [C'®e] |, detailed in the Appendices, in the respective Equati#n3d) and
(A.24).

Judging from the values of matric@yo"e] and [étee”‘] , several observations can be made:

* non-negligible inter-shear coupling terms have beenrdeted for both zones, as well as non-negligible
tension-shear coupling terms for zone “yoke”;

 inrows 4 and 5 of both matrices, the diagonal terms cormedpo the equivalent sliding shear stiffness values
in directionsf — zandr — z;

« in both matrices, the rows relative to seriresand 86 (as well asfz andrz) have similar values. Globally, this
expresses the fact that directianand 6 are equivalent, which is consistent with the apparent syimynod the
base cell;

» compared to the material properties of homogeneous sicteteel (see Equatioi\(19)), the diagonal values
of both matrices/C¥%¢] and [C***" are lower than in matri{C®!], especially for rows 4 and 5. This seems
consistent with the fact the base cells are subjected ttofniinstead of being glued elements (with common
nodes);

e compared to each other, the diagonal values of rows 4, 5 amd Bigher in zone “yoke” than in zone “teeth”.
This indicates that the tightening effect due to prestresaadre notable in the yoke’s shear properties than in
the teeth’s.

As for zone “prox”, the material properties are kept ideditias in the work of Millithaler et al.1g8]: E, = Eg =
205GPak, = 157GPang = G, =512GPa Grg = 821GPa, andig, = Vy; = Vg = 0.25. The weld beads are
modelled with isotropic steel, such Bs= 207 GPa and = 0.29.

4.3. Comparison with experimental data

A modal basis is simulated in real domain between 0 and 10;2d@om the entire magnetic core’s finite-element
model. This simulated modal basis is compared with a set afiialr modes (same experimental modal basis as in
the work of Millithaler et al. [L8]), extracted from frequency response functions measuitgtdam impact hammer
on the magnetic core of a real stator (purely radial impaite frequency response function measured on the radial
direction at the impact point is shown in Fi§§.14 (placed in the appendices). These modes are sometimesedefer
to as “cylinder” or “ovalisation” modes, and can be cleamypted by the peak magnitude values on the response
function shown in FigA.14. Although their shapes are purely radial in theory, theisa#ibn is not pure in practice
due to boundary effects. This motivates accounting fotifnicand preload in the modelling process of the structure.

The resonance probability of ovalisation modes is yet strure to the nature of the electromagnetic excitations
occurring at the air gap (i.e. the inner tooth surface) wthikemachine is operatind.{]. Therefore, they are critical
for the acoustic behaviour of the entire stator: being ablerédict them accurately is then of particular intetest

The experimental settings of the measurements are préesentEig.9 and Fig.10. The experimental mesh is
composed of 108 degrees of freedom (36 points of 3 DOFs).

3In addition to the ovalisation modes, out-of-plane modasgdalso be measured with these experimental settings,adnert-negligible
Poisson’s effects (as shown in the work1d). However, the probability of resonance in operation fot-afuplane modes is significantly
smaller than for ovalisation modes in the case of a non-sttenagnetic corel[0]. Simulating such modes with finite-element models is out
of the scope of this study.
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Figure 9: Experimental setting

The comparison of the simulated and experimental modalshiaseresented in Fidl1l and Table8, where the
columns ‘FEA” and “EMA” respectively refer to the mode frequencies in the FE modélia the experimental modal
basis. TheAf| and MAC averages have been computed with E2f) (and @6) and shown in the bottom line of
Table 8. In addition to this, the similarities between simulated aneasured mode shapes are illustrated with the
MAC-matrix shown in the appendices, in Fi§.15.

In order to estimate the accuracy improvement of taking amtmount friction and preload effects on the structure,
the results of Tabl8 (called “Orthol + Tricl1 ") are compared withOrthol " averages (neglecting friction and preload
effects). Furthermore, an additional model is built withuieglent properties computed with the so-called “rule
of mixtures”, based on weighted averages. This last modélbeireferred to asWA”, does not involve friction
or preload effects, and consists in a single equivalent maateroperty set for the entire structure, whose values
are: Er = Ee = 205GPaEZ = 132GPang = GZr =512GPa Grg = 821GPa,Vg, = V;, = 0.16 andi,g = 0.25.
Definitions of both Orthol” and “WA” identification methods are detailed in the work of Millitea et al. [L8].
Finally, the comparison of the average vaIt|Ff;| andMAC for the above-mentioned methods is shown in T&ble

In Table9, the 17% relative decrease |@f| and only 4% relative decrease MAC between Orthol + Tricl1 ”
and ‘Orthol ” scenarios show a significant improvement in the simulasiocuracy of the above-presented ovalisation
modes, of particular importance regarding electric motmuatics L0]. This tends to compensate the complexity
increase due to replacing explicit orthotropic elasticatants by a fully-defined elasticity matrix for the zone ttée
although the identification method can be automatised withriesource computer algorithms, and the computation
costs for any FE simulations remain unchanged regardleedfpe of materials. As for theWA” scenario, it can
be seen that modelling the stator core with a single equivahaterial identified with the “rule of mixtures” leads to
an overall frequency discrepancy which is more than twider@e as for Orthol + Tricll ”

5. Specificities of the methods

Several details about the properties of the method predabi@/e have to be added. For both the “orthotropic” and
“triclinic” methods, creating a sample whose global geasnét not a cuboid highly complicates the establishment
of the solution. Indeed, if one of the element’s faces is npedect rectangle (for instance if one of its angles
differs from 90°), the reaction forces computed on neighingufaces will be misused. This tendency is particularly
important for the identification of orthotropic and isotiopnaterials in unknown structures. For similar reasons,
using the “triclinic” method on homogeneous, orthotrogitstures may lead to fewer variables than equations while
computing the matrixZ (see Equation1(2)), and therefore to a rank lower than 6. In such cases, psieudding
¢ may retrieve the expected values, including null ones.
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Figure 10: Experimental mesh (undeformed)
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1 818.6 798.6 2.5 64 || cylinder mode, order 2
2 || 2,172.9| 2,125.5 | 2.23 | 61.7 || cylinder mode, order 3
3 || 3,847.4| 3,747.7 | 2.66 | 89.1 || cylinder mode, order 4
4 || 5,471.4) 5,330.1 | 2.65| 69.1 || cylinder mode, order 5
5| 6,543.8| 6,286.5 | 4.09 | 75.5|| cylinder mode, order O
Averages |[Af|and MAC | 2.83 | 71.9

Table 8: Correlations of FE and experimental modal basis

The elements’ geometric properties have another influenteeomethod. In the case of heterogeneous structures,
for instance a laminated composite made of isotropic laybeselastic constants, G andv vary discontinuously
in the stacking direction, thus implying heterogeneitiad discontinuities in the computed reaction forces. Indeed
while applying the “triclinic” method to a stack made of isggic layers without perturbations, the simulations of
the seriexx generate important and uneven reaction forces at the nagtestrained with plane contacts on faces
y = 0 andz = 0, because of the layers’ different materials. This comessumon-negligible coupling terms between
tension-compression and shear, and therefore contrddéssumption of orthotropy due to the system’s symmetries
[5, 2]. This is why a laminated structure presenting a priori nggtimg between tension-compression and shear needs
to be analysed with the “orthotropic” method presented evlork of Millithaler et al. [L8]. In practice, applying a
single pure tension simulation to a cuboid structure wouwldficm the existence of non-null coupling terms between
tension-compression and shear in the equivalent mataridlwould therefore suggest using either the “orthotropic”
or the “triclinic” methods.

Eventually, the last point concerns the ability of both tleetfiotropic” and “triclinic” methods to be applied to
superelements. In a structure to be reduced into a suparetemnd taken as sample for material identification, it must
be clear that none of the slave DOFs may be located on extsunialces, or correspond to any of the simulations’
constrained DOFs (as listed in Tal#el10). Otherwise, the boundary conditions have to be taken iotownt be-
fore reducing the structure, which therefore requires asynradependent superelements as independent simulation
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Figure 11: Correlation of FE and experimental modal basesdenshape pairs (experimental frequencies) - blue linesulation, red dots:
measurement

Orthol
Orthol + Tricll

E

|Af][%] || 5.91| 3.43| 2.83
MAC (%] || 74.4| 74.7 | 71.9

Table 9: Accuracy improvement

schemes. All other nodes, not located on external faces bm&gken as slave DOFs and reduced, without hindering
the identification process.

The “Triclinic” method can be summarised in the followingjgence:

Zoning;

Creation of a representative cuboid sample in a chosegr zon

Application of the corresponding perturbations;

Computation of the preloaded sample’s stiffness matrix;

Determination of the superelement’s equivalent compkamatrix.
(a) Computation of the first three rows;

(b) Transposition of the submatrix of coupling between itmm&gompression and shear;
(c) Calculation of the remaining three rows.

arwbdE

6. Conclusion

This section has proposed a new method of equivalent miatégiaification based on finite-element simulations
for general anisotropic models. With the aid of the appradaeloped in this section, equivalent material properties
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for a continuous anisotropic model, a continuous structuitgiected to preloading and a preloaded laminated stack
have been exhibited. As a result, it has been shown thatterp$o materials can be identified with little derivation
on continuous structures if no perturbations are applidae dther analyses have shown that preloading effects alter
the initial symmetries in the material properties on a 30rgguic model, and induce couplings between tension-
compression and shear in the equivalent material propesfia multi-layered laminated stack. It has been observed
that under preloads, anisotropic continuous structurgsine transverse shear simulations, whereas sliding shear
identification scenarios are more accurate for recreatiadpéehaviour of laminated models.

Also, the modal behaviour of an electric motor stator’s lzaéd magnetic core has been simulated with equival-
ent anisotropic material properties that accounted fofribon behaviour under compression preloads betwees ste
sheets in the teeth and the yoke. Low-frequency ovalisatiodes have been computed and showed good accuracy in
comparison to experimental data from a real stator. In coisqato simpler modelling approaches, it has also been
shown that dividing the model into several zones and takig account the effects of preloading and friction in the
case of the stator core led to accuracy improvements foritlation of ovalisation modes. An accuracy improve-
ment has been also observed in comparison to orthotroppepies. This new identification method raises hopes to
improve the current prediction capacities to perform naise vibration simulations on multi-layered magnetic cores
without needing to rely on experimental data from costlyt@igpes and time-consuming model updating procedures.
The ability of this new method to be applied to superelemeantd therefore estimate the influence of perturbations
on the material properties, presents a “conversion” opjpdtst from stiffness matrices to elasticity matrices.

AppendixA. Appendices

The following subsections gather some data and applicatitet were not shown in this article’s main matter.

AppendixA.1. Determination of equivalent material prajgsr for transverse shear scenarios

Following the identification steps presented in the Sulime¢Determination of the elastic propertieshe fol-
lowing paragraphs detail the determination of the remagirdampliance coefficients by transverse shear schemes
(therefore corresponding to the&rlcl2 ” method). The fourth series of simulations corresponds tramsverse shear
schemey — z, as shown in Figuré.12: it combines an enforced displacemeéptalong+z at the nodes of the face
y =1, and plane contact constraints on the sameyaeé in order to generate pure shear. In this example also, DOFs
Tx, Ty andT; are blocked at node 1, and DOFgsandT, at the other nodes of fage= 0.

Ny

81
w

Figure A.12: Pure transverse shgar z on the superelement

As is the case for the previous series, Equati@shfough (1) yield the stress values needed for this simulation.
Also, new boundary conditions enable creating two new ieddpnt simulations to complete this series (more details
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are given in Tablé.10). The system obtained is thus:

Si1
(4a) (4a) (4a) (42) (4a) (4a) 842
a,
Wz Oxx Oy Oz ‘ Oy, xz  Oxy ~
B (4b) (4b) (4b) (4b) (4b) (4b) Si3 A1l
Wz ¢ = | Oxx Uyy zz ‘ yz Xz Xy ~ ’ ( : )
(4c) (4c) (4c) (4c) (4c) (4c) 544
Yz XX vy Oz | yz Xz Xy -
~ Si5
VA Si6
where
0
WZ: - . (A.Z)
Ly

The 3x 6 matrix [ can be divided into the two submatricgs*T®] and[o*SR], respectively consisting
of the terms of tension-compression and shear:

(#9| =[0“TO | gl4sR] . (A.3)
In detail, they stand for
(42) (4 _(4a)
Oxx yy zz
[0.(4T )] _ U)((z)t(b) G;,;b) ng) (A.4)
(40) (%) (40

Oxx Oy Oz

and
(4a) (4a) (4a)
vz Xz Xy
(4SR| _ (4b) (4b) (4b)
|:O- - GyZ Oz ny ) (A . 5)
(40) (4c) (40)
Oy; Oyxz Oy

where the superscriptda), (4b) and(4c) refer to their corresponding simulations in the fourthegriKnowing the
values of the constanf;, &, andSi3 through Equationi() yields the vector{ W<§)} such that

Vi &a
W2 o =[0TG b (A.6)
s Siz

with the help of which the remaining unknown coefficiefis, &5 andSis may be computed:

Su WZ—W<§1)
Sis g = [09R] 2 b (A7)
§16 WZ_W%B)

At last, the matrix[é] is completed with the last two series, namehandxy, from which the symmetr$ j = éji
has to be verified again. The detail of all boundary condiiets is given in TablA.10.
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DOFs to be blocked on nodes

enforced displacements

. simulation
series scheme x y z x y z
(la) U0 1 1,4 U
(1) o Uy, Un 1 U
xx (1e) U0 1 U, Uz || Ui
(1d) U WUy, Uy U U
(le) %o 1 Uz U
(11) U0 Wy 1 U
(24) ] Uy 1.2 U,
(2b) U0, U1 Uy 1 Uy
»y (2¢) 1 8 U, U= U
(Zd) ?/xO, %xl gZ/yO %0 ’/'2/);1
(2¢) 1 Uy Ueo U
(2f) U0 U 1 U
(3a) 1 1,2 Uy Uz
(3b) U0, U\ 1 U U
zz (3¢) 1 Uy, Uy U U
(34) U, U1 Uy U U
(3e) Uxo 1 U0 U
(3f) 1 Uy U U
(4a) 1 U U, U U
zy - Tricll (4b) Uro U-o U-o, U= U
(4c) Uy U0 U, U U
(4a) 1 U, Uy U U
yz - Tricl2 (4b) Uxo %0, %1 %0 /’]/}1
(4c) o Uy, U 8 Uy
(5a) U0 1 U, U || U
zx - Tricl (50) WUy Uy U, U U
(5¢) Ueo Uy Ueor, Ut || U
(5a) U0, U 1 U U
xz - Tricl2 (5b) U0, U\ U0 U U
(5¢) U0, U U U U
6 | %  wewm 1| u
yx - Tricll (6b) U Uy, U 20 U
(6¢) Uy Uy, Uy K0 Uy
(6a) Uro, U Uxo 1 Ui
xy - Tricl2 (6b) U0, U U U0 U
(6¢) U0, U Uso Uso U

Table A.10: Boundary conditions for the “Triclinic” method
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AppendixA.2. Additional details for validation

Following the validation case described in SubsectiBrefoaded laminated structtiréhe equivalent values of
the node-to-ground elements after preloading can be cadgudm the stiffness matrix of the global structure under
preloads. The idea is to select a corner node, to which a teadesund stiffness element is linked, and to extract
the values involving both its neighbouring nodes (excepttie node at the interface of two different materials) and
itself. As an example, the corner node 1 and its direct n@ighh2 and 4 are selected (see Figlre3).

node-to-ground
stiffness element

Figure A.13: Corner node and direct neighbours

When assembling the stiffness matrices of different elamigna system, the values corresponding to identical
DOFs present on several elements are addedds nodes 2 and 4 are each linked to two elements havingicént
stiffness matrices (same dimensions and material), trgodal values in the global stiffness matrik ' of the free
system (without either node-to-ground stiffness elementundary conditions) verify the equations:

2x ‘%/lrclx = ‘%/ZI(:ZX
f 9 (A'8)
= ‘%/le:4x
2% j{f. —
y:ly 2y:2y
‘ } (A.9)
- '%/4y:4y
and . .
2 ‘%/].zlz = ‘%/2222
] , (A.10)
‘%2242

in which the indicesd : nd refer to the component of romd and of column hd’ in matrix # ', and wheren and
d respectively stand for the node number and the directioneM¢hnode-to-ground element of stiffness valkg¥,
Ky'9 andKj" is linked to node 1, the equations become:

—

o (s K9) = s
= Jﬁ&ﬂx |
25 (Hagy =) = iy (A.12)
- ‘%/4;/:4y ’
and
2x (M= KE®) = Hpea (A.13)

f
= ‘%/4242

In the case of a preloaded structure, a way of computing atgriv stiffness valuekM™, K{MT andKMT for
the node-to-ground elements is by averages. Therefom, thie preloaded system’s global stiffness mat#¥, we
have:

_ ‘%/Z)BZZX + ‘%/415:4x

) , (A.14)

K™ = iy
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P P
Aoy +

4y 4
KgMT = 50, — yE— (A.15)
and 0 0
Kooy + Koy
KIMT — %212_ 2z2z | TAz4z (A.16)

4 ’
where_7 P is the stiffness matrix of the global system under prelo&ds.the system studied, the final values are:

KMT =204.1°FN-m™ 1,

KM =194-1°N-m™*

and
KIMT —120.-10°N-m™?.

This shows that the influence of the preloads affects thimeti§ elements in a similar way along the directigns
andy, and that the equivalent suspension stiffness values aagegrthan the original oneKT9=10.0- 1°N-m1).

AppendixA.3. Material definitions for validation cases

Some of the matrices defining material properties in thalatiibn cases are gathered hereafter, throughout Equa-
tions (A.17) to (A.24).

[265 118 110 —4.82-10°% —-166-10°> —1.89-10 9]
316 118 -555.106 -169-10° 7.56-10°
. 264 —1.29-10° —443.10° 654.10°
[C1S91] = -10° (A.17)
51.2 827-10% 516-10%
sym. 974 997-101
I 182 |
[265 118 110 —839-10°% —-1.32.10° —-8.44.-107]
316 118 —-9.64.-106 -135.10° 3.79-10°°
B 264 —224.-10° —-352.10° 343.10°
[C1597] = -10° (A.18)
889 —2.20-10° —4.07-10°8
sym. 774 0.00
I 891 |
(273 125 125 0 0
273 125 O 0 0
273 0 0 0
[c] = 801 0O ol 10° (A.19)
sym. 801 O
i 80.1]
(146 522 361 —2.16 —2.03 —0.207]
146 361 —-2.16 —2.03 —0.207
110 -6.61 —6.21 —0.635
LMT17] _ .
] = 302 0416 168 10° (A.20)
sym. 301 133
i 47.6

25



[147 526 372 —-4.89 —-460 —1.0Z]
147 372 —-4.89 —-4.60 -—-1.02
114 -150 -141 -3.14 1P

LMT27 __
[ I= 665 287 765 (A.21)
sym. 662 7.28
L 49.1 |
[164 593 963 O 0 0]
164 963 O 0 0
~ 194 O 0 0
[COY = 334 o0 o |1 (A.22)
sym. 334 O
I 513]

[227 65 29 6104 —1-10°5 2.-10°°8]
227 29 610“4 —-1-10° 5.10°8
. 90 2103 —4.10° 1.-10°8
[Cyoke] = -10° (A.23)
45 310°% 4.101

sym. 45 4101
781 |

233 69 43 2107 -2-107 3.-10°8]
233 44 2107 -2.107 1-10°8

. 14 2.107 -2.107 2.10°8
Creet) = -10° (A.24)
3.3 2.104 1-101

sym. 33 1.10°1
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AppendixA.4. Frequency response function measured ondbeetic core

A frequency response function, obtained in the measuresraiggcribed in SectionElectric machine stators:
finite-element modelling accounting for frictional effggtis shown in Fig.A.14. The magnitude of the signal is an
acceleration per unit force. This function has been obthimiéh a radial excitation by impact hammer and shows the
response on the radial direction and the impact point.

AppendixA.5. MAC coefficients between simulated and medsuode shapes

The correlation presented in Sectidaléctric machine stators: finite-element modelling actimgrfor frictional
effects involved both simulated and measured modal bases. Thdasitieis between mode shapes have been ex-
pressed with the aid of so-calleéd AC-coefficients, defined with Eq24). The corresponding matrix comparing
simulated and measured modes up to 6,550 Hz is illustratédginA.15, where only coefficients above 40% are
considered for better readability.
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