femto-st T

MU ENMSCIENCES &
TECHNOLOGIES

INSTITUT FEMTO-ST

UMR CNRS 6174

Using nested graphs to distribute Parallel and
Distributed Multi-Agent Systems

Version 1

Alban ROUSSET — Benedicte HERRMANN — Christophe LANG — Laurent PHILIPPE —
Hadrien BRIDE

Rapport de Recherche n® RR-FEMTO-ST-9964
DEPARTEMENT DISC - February 1, 2016

femto-st

B WY SCIENCES &
TECHNOLOGIES

Using nested graphs to distribute Parallel and Distributed Multi-Agent
Systems

Version 1

Alban ROUSSET , Benedicte HERRMANN , Christophe LANG , Laurent PHILIPPE , Hadrien
BRIDE

Département DISC
CARTOON

Rapport de Recherche no RR -FEMTO-ST-9964 February 1, 2016 (15 pages)

Abstract: Simulation has become an indispensable tool for researchers to explore systems without
having recourse to real experiments. In this context multi-agent systems are often used to model
and simulate complex systems. Depending on the characteristics of the modelled system, methods
used to represent the system may vary. Whatever the modelling techniques used, increasing the
size and the precision of a model increases the amount of computation needed, requiring the use
of parallel systems when it becomes too large. Usually, to efficiently run on parallel resources, the
model must be adapted to be distributed. In this paper, we propose a new modelling approach, based
on nested graphs, that allows the design of large, complex and multi-scale multi-agent models which
can be efficiently distributed on parallel resources. A PDMAS (Parallel and Distributed Multi-Agent
Platform) that supports this approach and efficiently run parallel multi-agent models is introduced.

Key-words: PDMAS, parallel, distributed platform, Nested Graphs, Modelisation

FEMTO-ST Institute, DISC research department

UFR Sciences - Route de Gray - F-25030 BESANCON cedex FRANCE
Tel: (33 3) 81 66 65 15 — Fax: (33 3) 81 66 64 50 — e-mail: fvernill@femto-st.fr

Version 1

Résumé : Pas de résumé

Mots-clés : Pas de mot-clef

FEMTO-ST Institute, DISC research department

UFR Sciences - Route de Gray - F-25030 BESANCON cedex FRANCE
Tel: (33 3) 81 66 65 15 — Fax: (33 3) 81 66 64 50 — e-mail: fvernill@femto-st.fr

Using nested graphs to distribute Parallel and Distributed
Multi-Agent Systems

February 1, 2016

1 Introduction

Computational simulation is becoming increasingly important even in fields that have not tradi-
tionally used computational models such as archaeology, anthropology but also in traditionally
fields like psychology [4] or biology [22]. Depending on the characteristics of the modelled sys-
tem, several methods such as differential equations or Monte-Carlo simulations may be used
to represent the system behaviour. Multi-agent systems (MAS) are often used to model and
simulate complex systems. In such systems the complexity of the dependencies between the
phenomena that drive the entities behaviour makes it difficult to define a global law modelling
the entire system. Based on a simple algorithmic description of individual behaviours, multi-
agent systems provides a support to observe emergent behaviours generated by interactions
between agents. Recently, the interest for parallel multi-agent platforms has increased. Parallel
platforms indeed offer more resources to run larger agent simulations and thus allow to obtain
results previously intractable using a smaller number of agents (e.g. simulation of individual
motions in a city /urban mobility).

Whatever the modelling approach used, increasing the size and the precision of a model
increases the amount of computation, requiring the use of parallel systems. While linear sys-
tems based models can benefit from a large set of parallel libraries to take advantage of many
computing nodes and run large simulations, multi-agent systems suffer from a lack of platforms
that ease the use of parallel systems. Only some simple models may benefit from the approach
used to parallelize linear systems and there is few generic approaches available to efficiently
run more general agent models on parallel machines such as clusters. This is due to the less
regular interactions and the more dynamic behaviours of agents. So we can raise a question :
do traditional ways to model MAS fit the parallelization step?

Our aim is then to propose a simple way to model Parallel and Distributed Multi-Agent
Systems (PDMAS) in a manner that allows them to be efficiently distributed and executed on
parallel systems. In this paper we assess the use of Nested Graphs (NG) [20] as a data structure
to represent agent models. We also show that this data structure provide a simple and efficient
way to distribute and parallelize the simulation at different level.

This article is organised as follows. In section 2, we detail some basic knowledge about Multi-
Agents Systems and the Parallel and Distributed Multi-Agent platforms (PDMAS) context
before identifying the limits regarding distribution of the existing platforms. In section 3, we
explain the advantages of using NG structures and we illustrate it on a well-known model. We
present some execution results of our proposition in section 6. Finally we present conclusion
and future work.

RR -FEMTO-ST-9964

2

2 Context and related work

A multi-agent system is a platform which provides support to run simulations based on several
autonomous agents. Among the most known platforms we can cite NetLogo [24], MadKit [14],
Mason [18] and Gama [23]. For large models, these platforms are sometimes no longer sufficient
to run the model in terms of memory and computation power. This is, for example, the case
if we want to simulate individual behaviour of urban mobility [6] in a large city. Increasing
the size or the precision of models could however bring emergent behaviours that we never
expected or never seen otherwise. Using parallel systems is a way to exceed these limits in terms
of computation power and memory. Several Parallel and Distributed Multi-Agent Platforms
(PDMAS) exist, we can cite RepastHPC [8], D-Mason [10], Pandora [2] and Flame [7]. All
these platforms provide a native support for parallel execution of Multi-Agent models but also
most important mechanisms of distribution, migration and load balancing for the simulation
run. In [1] we survey existing PDMAS and compare them with a qualitative analysis and a
performance evaluation. Several key points must be enforced for an efficient parallel execution:
load balancing, agent migration, communication between agents and coherency in agent vision
to cite some of them.

The load, between the processors which participate to the execution, needs to be as much
balanced as possible in order to minimize the waiting time between the processors. Indeed, in
parallel multi-agent simulations the set of agents is distributed among the processors and each
processor runs at its own speed. Multi-agent simulations are synchronous simulations that are
driven by time steps. Running one time step may be more or less longer depending on the
number of agents mapped to this processor and of the speed of the processor. To keep the
consistency of the simulation or computation, all the processors must run in the same time
step and synchronization barriers are thus necessary. At each synchronization barrier, at the
end of the time step, each processor waits until this synchronization is performed so that the
simulation step is bounded by the slowest processor participating to the simulation. To be more
efficient and get more performance in terms of running time, the load of the processors must
then be as similar as possible all along the simulation.

In an urban mobility model, agents are situated and mobile: they have a position in the
environment and they can move on the environment. If the environment is statically distributed
among computing nodes, agents must be able to migrate between environment parts. Agent
migration may impact both load balancing and communication between agents. Migration
may interfere with load balancing as agent migrations may generate imbalances. When agents
migrate, the system must follow the agent places in order to deliver messages.

Due to the environment distribution, different parts of the simulation are run on several
processors so that the perception field of an agent could be cut between different nodes. Parts
of its perception field are recorded in the memory of different nodes. This could be managed,
by hand, in the model implementation but this leads to complex algorithmic development.
For this reason PDMAS usually tackle this issue by providing parallelized structures. These
structures usually provide overlapping areas, areas on the distribution borders are replicated on
the neighbour nodes, to avoid to much communication when an agent accesses the remote parts
of its perception field.

Currently, the most used structure for environments in PDMAS is the grid. Grids are a
good base to represent a two dimensional environment on which agents can move and evolve.
To distribute the model, most platforms use a Cartesian decomposition of the grid as presented
on Figure 1.

The Cartesian decomposition allows the distribution on one axe x or on two axes x and y
such as on the Figures 2, 3. The problem is, even with a fine grain division of the grid as it is

FEMTO-ST Institute

P1 P2 P1 Pz
0 1 2 3 4 5 01 2 3 4 5
0 0 |:| P1 Buffer
1 1
2 2
3 Al B2 3 A1 B2
4 c3 D4
4 c3 D4 5
5 6
6 7
7 P3 P4
] P4

Figure 1: An example of grid decomposition for the RepastHPC platform on four processors
with overlapping zone of size 1 [9]

done in the D-MASON platform [3], we always have a square or rectangle distribution which
could not be appropriate for all types of models. Moreover this structure may not be flexible
enough to correctly balance the load.

0 / KF T—L?
Figure 2: An example of grid decomposition Figure 3: An example of grid decomposition
on = axe for the platform D-Mason on three on x and y axes for the platform D-Mason on

™

o

processors [9] nine processors [9]

To address this issue, we propose to use graphs as a base to model multi-agent systems.
Graphs are extensively used in parallel and distributed computing as a structure to model
problems such as task graphs in scheduling problem [17] or partitioning problem [15]. It exists
a lot of tools to partition graphs on parallel or distributed computers such as Parmetis [16]
or Zoltan [11]. These tools have great performance results even for large graphs [21]. Taking
advantage of these tools is thus possible to improve PDMAS runs on parallel computers. The
price to pay is to change the way agent models are represented.

A multi-agent simulation could be seen as a set of entities which interact together and with
an environment, which could in turn be a set of agents as in [23]. Multi-agent models could thus
be modelled using graphs with vertices representing agents and edges representing interactions
between agents. The modelling job could however be a hard task because the graph structure
is very likely to be complex and modelling a complex graph is not always easy or natural for
MAS users. On the other hand, if the agent simulation is represented by a graph, it is more
easy to propose algorithms or tools to distribute or balance the simulation load.

We then propose to use a suited structure, based on Nested Graphs, to model a Multi-Agent
simulation. This structure natively integrates a more easy-to-use and flexible graph structuring
and enhance the support for distribution and load balancing on parallel platforms.

RR -FEMTO-ST-9964

4

3 Proposition

We propose the use of Nested Graphs (NG) and Nested Graph transformation as a way to model
large, complex and multi-scale multi-agent simulations.

Nested Graphs are graphs which nodes can be Nested Graphs. They are then recursive
structures. The new aspect introduced by Nested Graphs is the definition of different abstraction
levels that can be used to conceptually divide a model in a hierarchical structure. In [20], the
authors introduce a model of Nested Graphs to represent and to manipulate complex objects
that they apply to databases. In the context of Multi-Agent Systems Nested Graphs have been
already used but not in a parallel and distributed context. In [19], authors use Nested Graphs to
model simulation of complex systems. Using a hierarchical structure is a way to conceptualise
more easily the complex system that is to be modelled. We show in the following that Nested
Graphs allow the description of any multi-agents system at different levels of abstraction and are
natively adapted to be efficiently distributed in a parallel environment. We base our proposition
on the two Formal principles for a multi-scale simulation explained in [19]:

e Any agent may dynamically encapsulate an environment. This is the basis of a recursive
nested structure, but this structure must be able to change in time.

e Any agent may be situated in several environments at the same time, without a prior idea
of what those environments represent (a micro/macro level of the physical world, a group,
an organization, a spatial memory, a social network, etc.).

We only change the first principle to adapt these definitions to our proposition: “Any agent
may dynamically encapsulate an agent. This is the basis of a recursive nested structure, but
this structure must be able to change in time”.

In our proposition, we set that all the components participating to the simulation are agents
as in [23]. It means that the environment is modelled by one or more agents, depending on the
type of environment, similarly to non environmental agents. Due to the first principle, the whole
model represents a hierarchical structure of agents which provides a multi-scale mode. We, then,
set that each agent in the simulation is a typed and labellised Nested Graph, called Agent Graph
(Multi-agent Representation Graph). Agent behaviours are represented as transformations of
Agent graphs, that is to say arcs or vertices modification in the graph. Relations between
agents of the same context, i.e. relations between Agent Graphs which are contained in the
same Agent Graph, are represented by typed and valued edges. These relations could for
instance be, communication between agents or an agent position relative an environment cell.

Formally, let I" be a set of types, 3 be a set of labels and A a set of values, the set G of
Agent Graphs is recursively defined by G € G & G = (6,2, T, £,0) where & C G is a set of
Agent Graphs (also called nodes) representing the agents of the model, A C & x & is a set of
directed arcs (or edges) representing relations between agents, ¥ : & — IT' is a typing function
assigning a type to each agent, £ : & — ¥ is a labelling function assigning a label to each agent,
and U : A — A is a valuing function assigning a value to any arc.

The state of a simulation is fully described by its Agent Graph. Agents behaviours are
described as Agent Graph transformations which are modelled using a pair of Agent Graphs
with no labelling function and a special Agent graph. Agent Graph transformations can be
applied to an agent of the same type as its special place. When apply, if the first Agent Graph
can be found as a sub Agent Graph of the Agent Graph of the simulation (i.e. there is a
one-to-one correspondence between the first Agent Graph and part of the simulation’s Agents
Graph), then the found sub Agent Graph is transformed into the second Agent Graph. The
first Agent Graph of the Agent Graph transformation can be seen as a pattern which have to

FEMTO-ST Institute

5

be recognized before being transformed into the second Agent Graph. In other word we can see
a Graph Agent transformation as a conditional structure (if [we have this configuration| then
[we need to arrived to this configuration] end) so that the expected behaviour can be performed.
When a type of agent have multiple behaviours, its Agent Graph transformations are applied
according to a defined work-flow.

Based on these definitions, our proposition is based on two main points:

e A modelling method where multi-agent systems are modelled using Agent Graphs. In
this method all elements of the multi-agent model are agents without difference between
environment and agents. Agents and their relations are represented by Agent Graphs, a
special kind of Nested Graphs. Agent behaviours are implemented based on Agent Graph
transformations.

e An adapted PDMAS using Agent Graphs models is used to efficiently run the simulation
in parallel environment (see Section 5).

With this proposition, complex systems and complex behaviours can be modelled in a graph-
ical way while providing a fully formal basis similarly to Petri Net [5]. It also encompasses multi-
level of abstractions needed by the modellers. The proposition is illustrated in the following
section with the modelling of a well-known model.

4 Proposition illustration

In this section, we illustrate our proposition with the Wolf-Sheep Predation Model [25] which
is a classical model in Multi-Agent Systems.

Let us first introduce some graphical notations: Agent Graphs nodes are represented by
ellipses with labels of the form Label: Type giving the labels and types of the associated nodes.
Edges between nodes are represented by arrows with labels of the form Type:Value giving the
types and values of the associated edge. An Agent Graph transformation is described by two
Agent Graphs linked by a large arrow. We denote by a bold ellipse the special node of an Agent
Graph transformation.

The environment of the Wolf-Sheep Predation Model (WSPM) is a grid composed of cells.
It represents the first and highest level of abstraction of our simulation. It is modelled using an
Agent Graph in which nodes are Agent Graphs of type Cell and adjacent nodes are connected
by edges of type Adjacent (see Figure 4). Any Agent Graph of type Cell has a node of type
Origin which is used to connect agents contained in the same cell.

-

Figure 4: Graph representation of a grid

Cells contain grass, sheeps and wolves. They represent a second level of abstraction. Within
Agent Graphs of type Cell, Agent Graphs of type Grass, Sheep, and Wolf represent the agents
present in a cell and are linked by edges of type On to the Origin node of the cell.

The third level of abstraction considers characteristics of agents within cells. Any Agent
Graph of type Sheep and Wolf also has a node of type Origin as well as a real valued arc (from

RR -FEMTO-ST-9964

6

Origin to Origin) of type Force which represents the vital force of the considered agent. Agent

Graphs of type Grass have no characteristics and are therefore empty.
At each timestep of the simulation, the following behaviours modelled as Agent Graph

transformations are applied:
- Grass growth (Figure 5): according to a given probability grass appears on a cell.

CellA:Cell CellA:Cell

On:0

OCellA:Origin NewG:Grass

Figure 5: Grown Grass behaviour representation

- Move behaviour (Figure 6): sheeps and wolves randomly move to an adjacent cell.

CellA:Cell CellB:Cell

On:0

Adjacentl:

@)

OCellB:Origin

Shl:Sheep OCellA:Origin

O CellB:Cell

CellA:Cell

OCellA:Origin Shl:Sheep OCellB:Origin

Figure 6: Move behaviour representation of a sheep agent

- Eat behaviour (Figure 7): sheeps (resp. wolves) eat grass (resp. sheeps) and increase their
vital force. The grass (resp. sheeps) eaten must be removed from the simulation.

CellA:Cell

Wo1:Origin

Force:x

Wol:Wolf

Wol:Origin

Force:x+2

OCellA:Origin

Wol:Wolf

Figure 7: Eat behaviour representation of a wolf agent

- Reproduce behaviour (Figure 8): according to a given probability, sheeps (resp. wolves)
reproduce and create new sheeps (resp. wolves) with a default vital force, their vital force is

then divided by two.

FEMTO-ST Institute

CellA:Cell

Sh1:Origin

Sh1:Sheep

Sh2:Sheep

Figure 8: Reproduce behaviour representation of a sheep agent

- Die behaviour (Figure 9): sheeps (resp. wolves) die whenever their vital force drop to zero.
They must then vanish from the simulation.

CellA:Cell CellA:Cell

Wo1:Origin

OCellA:Origin
Wol:Wolf

Figure 9: Die behaviour representation of a wolf agent

Figure 10 shows a workflow defining the order in which the behaviours of sheep agents are
applied at each timestep. This workflow is almost the same for wolf agents except for the eat
behaviour: wolf agents does not eat grass but sheeps.

alea>reproduction Tx—s Reproduce

No

.—» Move No
No
Have Grass Energie =

Eat Grass Die

Figure 10: Diagram state transition of a sheep agent behaviour

5 Simulation distribution using Nested Graphs

We have presented the use of nested graphs to model agents and agents behaviours, we then
focus on the other advantage of this proposition: the distribution of model in parallel or dis-
tributed platform. To illustrate this, we use the same WSPM and we compare our proposition
to classical grid modelling. The presented illustration is based on a 3x3 grid which represents
the environment on which agents (sheeps, wolves) can evolve.

Figure 11 represents an arbitrary initial configuration of a WSPM using a grid structure.

RR -FEMTO-ST-9964

@

@ |V O
Voo @ o

Figure 11: An initial configuration of the WSPM using a grid structure

Using our proposition, the representation of the initial configuration shown in Figure 11 is
given in Figure 12. This initial configuration is composed of three nested levels of graphs. The
first level, the environment, is represented by the main ellipse and is a container for the lower
levels. The second level represents environment agents in the shape of a grid using vertices and
the third level represents wolfs and sheep agents.

VWolf O Sheep O Grass

Figure 12: An initial configuration of the WSPM using Nested Graphs structure

Figures 11 and 12 represent the initial configuration to run the model. As we are in a parallel
context we need to divide these initial structures to distribute them on several processors.

If we distribute this initial configuration on 2 processors using a cartesian grid, as it is
implemented in most PDMAS platform, we obtain Figures 13 and 14.

As we can see on these figures, the grid based distribution is not efficient because the density
of agents on each processor is not correctly balanced. The workload in Multi-Agent Systems is
indeed mainly generated by running the agent behaviours and not by the environment which is
actually data. Note that, due to the time step mode of running multi-agents simulations, all the
nodes must run synchronously. This means that the slower nodes will determine the running
speed of the whole simulation. This is of particular importance to correctly balance the load
generated by the simulation as it has a direct impact on the performance.

With the Nested Graphs structure it is easy to compute the distribution based on the density
of agents contained in each vertex of higher level. In order to efficiently balance the distribution,
we can assign to each agent a weight representing an estimation of the load generated by this
agent.

FEMTO-ST Institute

PO P1

PO P1

v |-
Wolf O Sheep Q Grass

== |nter-processor communication

)
\4

Figure 14: An other example of grid decom-

Figure 13: An example of grld decomposition position on z axe for the WSPM on two pro-
on z axe for the WSPM on two processors Cessors

v Wolf Q Sheep <> Grass

<> Inter-processor edges <— Local edges

Figure 15: A configuration of the WSPM using Nested Graphs structure distributed on 2
processors

Figure 15 represents the initial configuration on 2 processors using a Nested Graphs structure
and a distribution based on density. We can note that the distribution more balanced between
processors and so more efficient. Even if it depends on the model that we simulate. The
imbalance is more pronounced if we distribute on 4 processors.

Figures 16 and 17 represent an example of grid decomposition for the Wolf-Sheep Predation
Model on 4 processors. Considering the density of agents in these figures, we can note that
processors do not have the same workload. Whereas a configuration of Wolf-Sheep Predator
using Nested Graph structure distributed on 4 processors, as shown on Figure 18, the workload
is balanced between the processors.

To perform the distribution we compute the density of each cell in terms of agents using

this formula:
n m
Z Z Agtweight;;
i=0 j=0
where i represents the number of hierarchical levels and j represents the number of elements.
One of the interests of using graph based structures is that we can benefit from existing
powerfull tools. We use the Zoltan Framework to perform the distribution of the Nested Graph.
The strength of the Zoltan Framework is that Zoltan completely separates Zoltan’s data struc-
tures from application’s data structures. This separation is achieved through the use of callback

RR -FEMTO-ST-9964

10

PO P1

@[V | O
v Wolf Osheep <>Grass

<= Inter-processor communication

Figure 16: An example of grid decomposition
on x and y axes for the WSPM on four pro-
Cessors

PO P1

O

p2 N "4P3 v

@ V |+ O
v Wolf Osheep Qerass

== Inter-processor communication

Figure 17: An example of grid decomposition
on x and y axes for the WSPM on four pro-
cessors

v Wolf O Sheep <> Grass

<> Inter-processor edges <«— Local edges

Figure 18: A configuration of the WSPM using Nested Graphs structure distributed on 4
processors

functions (eg. ZOLTAN_NUM_OBJ_FN, ZOLTAN_EDGE_LIST_MULTI_FN;, etc.). Callback
functions are functions written by the user that access the user’s data structures and return
needed data to Zoltan. For example, using callback functions, we can easily get the number
of vertices owned by a process or the number of edges for each vertex owned by a process,
etc. When an application calls a Zoltan service (e.g. Zoltan_LB_Partition), Zoltan calls these
user-provided callback functions to get the application data it needs to realize the partitioning.
Figure 19 represents how a Zoltan Partitioner can be integrated in an application to perform
Distribution or Load Balancing.

To assess our proposition, we have developed an implementation of our solution. In the next
section we present performance results of two models with our implementation.

FEMTO-ST Institute

11

INITIALIZE APPLICATION
- Read files, create data structures, efc.

¥

Perform one-time Zoltan set-up.

- Initialize Zoltan: Zoltan_Initialize

- Allocate memory for use by Zoltan: Zoltan_Create

- Select Zoltan partitioning method: Zoltan_Set_Params

- Set partitioning parameters: Zoltan_Set_Params

- Register callback functions describing data: Zoltan_Set_Fn

l

—bk (Re)partition application data: Zoltan_LB_Partition ‘

| Move data to new part assignments: Zoltan_Migrate ‘

'

| Free Zoltan_LB_Partition’s results: Zoltan_LBE_Free_Data |

!

PERFORM APPLICATION COMPUTATIONS
- Matrix fill, linear solve, particle push, etc.

Free Zoltan’s memory: Zoltan_Destroy ‘

¥
COMPLETE APPLICATION
- Write files, visualize results, etc.

Figure 19: Use of Zoltan in a typical dynamic application. Calls to Zoltan functions are prefixed

by Zoltan_ [12]

6 Experimentation

In this section we present some results using the Nested Graph structure to model and distribute
Multi-Agent simulation. We implemented our proposition in our Parallel and Distributed Multi-
Agent Platform. To assess the performance of our proposition, we have implemented the WSPM

presented in Section 3.

10000

S
=

7500 1
Legend

® Sheep

-
/..--‘

Wolf

.‘I.
cosese® ** ‘-‘.

5000 1

Number of agents

00,
n-.ououtoo-no 000 @ oo
o00

%m0 00 0n
hat TYTSON
®ee,

I oo ® 000 ©

25001

S Y
haae LTI T TS LXX TEPTe

-u"".-’ T
P
e e ”

.

UV,

. . \
200 400 60!
Timesteps

Figure 20: Execution results of the WSPM using Nested Graphs structures on 8 cores (Initial
configuration: 800 sheeps and 80 wolfs

Figure 20 presents the execution results of the WSPM using Nested Graphs structures on 8
cores. As we can see, the balance of the ecosystems is respected.

RR -FEMTO-ST-9964

12

Nevertheless as the WSPM is not implemented in other Parallel and Distributed platform
and to compare our work to other platforms we decided to implement a reference model defined
in [1] to exhibit the performance of our solution. This reference model respects the main proper-
ties that can be found in Multi-Agent Systems: (i) perception, to interact with the environment
and other agents, (ii)communication, to communicate with other agents or environment, and
(iii) mobility, to move on the environment.

In this model the environment is represented by a square grid. Agents are mobile and move
randomly on the grid. A perception field, characterised by the “radius” property, is associated
with each agent. It represents the limited perception of the agent on the environment. Each
agent is composed of 3 behaviours: (i) with the walk behaviour agents move in a random
direction on the environment. This behaviour is used to test the mobility and the perception of
the agents, (ii) with the interact behaviour agents interact and send messages to other agents in
their perception fields. This behaviour simulates communications between agents and evaluates
the communication support of the platforms, (iii) with compute behaviour agents compute a
"Fast Fourier Transform (FFT)” [13] in order to generate a workload. This behaviour simulates
the load generated by the execution of the agent inner algorithms.

The global agent behaviour consists in performing each of this three behaviours at each time
step. The reference model has several parameters that determine the agent behaviour and also
the global model properties. For instance, the model allows to vary the workload using different
sizes of input for the FFT calculus. It is also possible to generate more or less communications
between agents by setting the number of contacted agents in the interact behaviour or to assess
the agent mobility by setting the agent speed in the walk behaviour.

CellA:Cell CellB:Cell

Agtl:Agent OCellA:Origin

CellA:Cell : CellB:Cell

OCellA:Origin Agtl:Agent OCellB:Origin

Figure 21: Walk behaviour representation of an agent

Figure 21 represents the walk behaviour using our modelling proposition. The interact
and compute behaviours are not represented during the modelling phase because they does
not perform any transformation on the graph structure. They are only calculus or messages
sent /received.

About the HPC experimental settings, we have run the reference model on a 764 cores cluster.
Each node of the cluster is a bi-processors, with Xeon E5 (8*2 cores) processors running at
2.6 Ghz frequency and with 32 Go of memory. The nodes are connected through a non blocking
DDR infinyBand network organised in a fat tree. The system is shared with other users but the
batch system guaranties that the processes are run without sharing their cores.

We have realised several executions in order to exhibit the MAS behaviours concerning
scalability (Figures 22). To assess scalability we vary the number of nodes used to execute the
simulations while we fix the number of agents. We then compute the obtained speed-up. Each
execution is realised several times to assess the standard variation and the presented results are

FEMTO-ST Institute

13

the mean of the different execution durations. Due to a low variation in the simulation runtime,
the number of executions for a result is set to 10.

Execution results on the scalability of a 10 000 agents model are given on Figure 22. Note
that the reference time used to compute the speed-up is based on a two cores run.

40+

plat

—o— Flame
FPMAS

RHPC

40
Number of cores

Figure 22: Scalability of FractalPMAS, RepastHPC, FLAME simulations using 10 000 agents,
FFT 100 and 200 cycles

This is due to RepastHPC which cannot run on just one core so that its reference time must
be based on two core runs. The speedup is therefore limited to half the number of nodes. We
can note that the three platforms scale well up to 32 cores In addition on Figure 22 we can see
that RepastHPC results are above the ideal speedup for simulations with less than 50 cores.
As we suspected that these better results come from cache optimizations in the system, we did
more tests to confirm this hypothesis. On the Figure 22, FPMAS is above other platforms for
more than 55 cores.

The Figure 22 shows that our proposition with NG scale well and can be compared to other
platforms. It’s important to notify that FractalPMAS is a proof of concept and that a lot of
optimization should be done.

7 Conclusion

In this paper, we present a new approach to model Multi-Agents Systems based on Nested
Graphs as a data structure to model Parallel and Distributed Multi-Agent simulation. This
structure allows us to dynamically distribute the simulations amoung parallel machines with
finner granularity on multiple levels of abstraction. Our contribution aims at proposing a
common and generic framework which represent the agent models as well as their distribution.
In addition, this framework define a more graphical method to model Parallel and Distributed
Multi-Agent Simulations.

In our future work, we intend to precisely examine the efficiency of synchronisation mecha-
nisms using Nested Graphs structure in parallel platforms and propose a platform which includes
Nested Graphs structure as a modelling and distribution tool. In addition, we are preparing a
formal basis describing our proposition of Nested Graphs applied to Parallel and Distributed
Multi-Agent Systems.

RR -FEMTO-ST-9964

14

Acknowledgment

Computations have been performed on the supercomputer facilities of the Mésocentre de calcul
de Franche-Comté.

The Nested Graphs C++ implementation is available at
https://github.com/LoW12/FractalGraph

References

[1] Alban Rousset Bénédicte Herrmann Christophe Lang Laurent Philippe. A survey on par-
allel and distributed multi-agent systems. 8805, 8806, 08 2014.

[2] Elaini S Angelotti, Edson E Scalabrin, and Braulio C Avila. Pandora: a multi-agent system
using paraconsistent logic. In Computational Intelligence and Multimedia Applications,
2001. ICCIMA 2001., pages 352-356. IEEE, 2001.

[3] Michele Carillo, Gennaro Cordasco, Rosario De Chiara, Francesco Raia, Vittorio Scarano,
and Flavio Serrapica. Enhancing the performances of d-mason - a motivating example. In
Nuno Pina, Janusz Kacprzyk, and Mohammad S. Obaidat, editors, SIMULTECH, pages
137-143. SciTePress, 2012.

[4] Gregory Carslaw. Agent based modelling in social psychology. PhD thesis, University of
Birmingham, 2013.

[5] Jose R Celaya, Alan Desrochers, Robert J Graves, et al. Modeling and analysis of multi-
agent systems using petri nets. In Systems, Man and Cybernetics, 2007. ISIC. IEEE
International Conference on, pages 1439-1444. IEEE, 2007.

[6] Sebastien Chipeaux, Fabrice Bouquet, Christophe Lang, and Nicolas Marilleau. Modelling
of complex systems with aml as realized in miro project. 2014 IEEE/WIC/ACM Inter-
national Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies
(IAT), 3:159-162, 2011.

[7] Simon Coakley, Marian Gheorghe, Mike Holcombe, Shawn Chin, David Worth, and Chris
Greenough. Exploitation of hpc in the flame agent-based simulation framework. In Pro-
ceedings of the 2012 IEEE 14th Int. Conf. on HPC and Communication & 2012 IEEE 9th
Int. Conf. on Embedded Software and Systems, HPCC 12, pages 538-545, Washington,
DC, USA, 2012. IEEE Computer Society.

[8] Nicholson Collier and Michael North. Repast HPC: A platform for large-scale agentbased
modeling. Wiley, 2011.

[9] Nick Collier. Repast hpc manual, 2010.

[10] Gennaro Cordasco, Rosario Chiara, Ada Mancuso, Dario Mazzeo, Vittorio Scarano, and
Carmine Spagnuolo. A Framework for Distributing Agent-Based Simulations. In Euro-Par
2011: Parallel Processing Workshops, volume 7155 of Lecture Notes in Computer Science,
pages 460-470, 2011.

[11] Karen Devine, Erik Boman, Robert Heaphy, Bruce Hendrickson, and Courtenay Vaughan.
Zoltan data management services for parallel dynamic applications. Computing in Science
& Engineering, 4(2):90-96, 2002.

FEMTO-ST Institute

https://github.com/LoW12/FractalGraph

15

[12]

22]

[23]

[24]

[25]

Karen D Devine, Erik G Boman, Lee Ann Riesen, Umit V Catalyurek, and Cédric Cheva-
lier. Getting started with zoltan: A short tutorial. Sandia National Labs Tech Report
SAND2009-0578C, 2009.

Matteo Frigo and Steven G Johnson. The design and implementation of fiftw3. Proceedings
of the IEEE, 93(2):216-231, 2005.

Olivier Gutknecht and Jacques Ferber. Madkit: A generic multi-agent platform. In Pro-
ceedings of the fourth international Conf. on Autonomous agents, pages 78-79. ACM, 2000.

Bruce Hendrickson and Tamara G Kolda. Graph partitioning models for parallel computing.
Parallel computing, 26(12):1519-1534, 2000.

George Karypis, Kirk Schloegel, and Vipin Kumar. Parmetis. Parallel graph partitioning
and sparse matriz ordering library. Version, 2, 2003.

Mehmet Can Kurt, Sriram Krishnamoorthy, Kunal Agrawal, and Gagan Agrawal. Fault-
tolerant dynamic task graph scheduling. In High Performance Computing, Networking,
Storage and Analysis, SC14: International Conference for, pages 719-730. IEEE, 2014.

Sean Luke, Claudio Cioffi-Revilla, Liviu Panait, and Keith Sullivan. MASON: A New
Multi-Agent Simulation Toolkit. Simulation, 81(7):517-527, July 2005.

Sébastien Picault and Philippe Mathieu. An interaction-oriented model for multi-scale
simulation. In IJCAI’2011-Barcelona (Spain)-July, 16-22 2011, pages 332-337. AAAI
Press, 2011.

Alexandra Poulovassilis and Mark Levene. A nested-graph model for the representation
and manipulation of complex objects. ACM Transactions on Information Systems (TOIS),
12(1):35-68, 1994.

Sivasankaran Rajamanickam and Erik G Boman. An evaluation of the zoltan parallel graph
and hypergraph partitioners. Technical report, Sandia National Laboratories (SNL-NM),
Albuquerque, NM (United States), 2012.

Vincent Rodin, Abdessalam Benzinou, Anne Guillaud, Pascal Ballet, Fabrice Harrouet,
Jacques Tisseau, and Jean Le Bihan. An immune oriented multi-agent system for biological
image processing. Pattern Recognition, 37(4):631-645, 2004.

Patrick Taillandier, Duc-An Vo, Edouard Amouroux, and Alexis Drogoul. GAMA: A Sim-
ulation Platform That Integrates Geographical Information Data, Agent-Based Modeling
and Multi-scale Control. In Nirmit Desai, Alan Liu, and Michael Winikoff, editors, Prin-
ciples and Practice of Multi-Agent Systems, volume 7057 of Lecture Notes in Computer
Science, pages 242-258. Springer Berlin Heidelberg, 2012.

Seth Tisue and Uri Wilensky. Netlogo: Design and implementation of a multi-agent mod-
eling environment. In Proceedings of Agent, volume 2004, pages 7-9, 2004.

U Wilensky. Netlogo wolf sheep predation (docked) model. Online] Center for connected
learning and computer-based modeling, Northwestern University, Fvanston, IL. Available
at: hitp://ccl. northwestern. edu/netlogo/models/WolfSheepPredation (docked).[Accessed 2
June 2009/, 2005.

RR -FEMTO-ST-9964

MY WP SCIENCES &
TECHNOLOGIES

FEMTO-ST INSTITUTE, headquarters

15B Avenue des Montboucons - F-25030 Besancon Cedex France
Tel: (33 3) 63 08 24 00 — e-mail: contact@femto-st.fr

FEMTO-ST — AS2M: TEMIS, 24 rue Alain Savary, F-25000 Besan¢on France
FEMTO-ST — DISC: UFR Sciences - Route de Gray - F-25030 Besangon cedex France
FEMTO-ST — ENERGIE: Parc Technologique, 2 Av. Jean Moulin, Rue des entrepreneurs, F-90000 Belfort France
FEMTO-ST — MEC'APPLI: 24, chemin de I'épitaphe - F-25000 Besancon France
FEMTO-ST — MN2S: 15B Avenue des Montboucons - F-25030 Besancon cedex France
FEMTO-ST — OPTIQUE: 15B Avenue des Montboucons - F-25030 Besancon cedex France
FEMTO-ST — TEMPS-FREQUENCE: 26, Chemin de I'Epitaphe - F-25030 Besancon cedex France

http://www.femto-st.fr

	Introduction
	Context and related work
	Proposition
	Proposition illustration
	Simulation distribution using Nested Graphs
	Experimentation
	Conclusion

