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Abstract—High positioning accuracy with MicroPositioning
Robots (MPRs) is required to successfully perform many complex
tasks, such as micro-assembly, manipulation and characterization
of biological tissues, and minimally invasive inspection and
surgery. Despite the widespread use of high-resolution micro-
and nanopositioning robots, there is very little knowledge about
the real positioning accuracy that can be obtained and what the
main influential factors are. Indeed, very few notable methods
are available to measure multi-degree-of-freedom motions with
adapted range, resolution, and dynamic capabilities.

The main objective of the paper is to quantify the positioning
accuracy of serial MPRs and to identify the main influential
factors (a typical XYΘ serial robot is chosen as a case study).
To reach this goal, a measuring system that combines vision
and pseudo-periodic patterns with an extremely large range-
to-resolution ratio is introduced as a new way to quantify the
positioning accuracy of MPRs for in-plane motions. Then, an
open loop control approach based on MPR calibration is chosen
for several reasons: the use of different models to identify
influential factors, the quantification of the positioning accuracy,
and the necessity of the method when sensor integration is too
complex. Experiments using five different calibration models
were conducted to classify factors influencing the positioning
accuracy of MPRs. The results show that positioning accuracy
can be improved by more than 35 times from 96 µm with no
imperfection compensation to 2.5 µm by compensating for geo-
metric, position-dependent, and angle-dependent errors through
the MPR calibration approach.

Index Terms—Micropositioning robots, microrobotic calibra-
tion, open loop, accuracy, serial robot.

I. INTRODUCTION

Achieving highly accurate and reliable position control with
MicroPositioning Robots (MPRs) is required to successfully
perform many complex tasks, such as microassembly [1],
[2], characterization of microscale components [3], biological
micromanipulation [4], [5], specimen handling [6], microdis-
pensing [7], and laser [8] or AFM scanning [9]. Considering
many factors (e.g., success rate, speed, and contamination),
these tasks usually rely on MPRs with automatic control,
semi-automatic control, or teleoperation instead of manual
operation [10]–[13]. Positioning accuracy is a key criterion
of MPRs because it directly impacts the performance and
capabilities. Similar to macrorobots [14]–[16], MPRs have
high repeatability, but accuracy can become an issue when
reaching any specific target positions or orientations rather
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than only taught positions. For instance, in the MOEMS
field, the coupling of monomode fibers or the assembly of a
micro-interferometer requires assembly with relative position-
ing accuracy better than 1 µm to enable sufficient product
performance [17] [18]. Such accuracy can be achieved by
using micro- and nanorobots, which enable motions to be
generated with extremely high repeatability (often below tens
of nanometers). Nevertheless, many factors directly result in
low positioning accuracy at the microscale [19]. For instance:

• A 0.1◦ Perpendicularity error between the X and Y axes
induces 20 µm of positioning error of the robot end-
effector over a 20-millimeter motion

• A 150-µrad yaw deviation during a linear motion induces
about 5 µm of positioning error in the robot end-effector.

Such sources of inaccuracies accumulate due to the
widespread use of a coarse-fine positioning principle that
combines several micropositioning stages (friction-based guid-
ance stages that generally include mechanical motion trans-
formation) and nanopositioning stages (guidance stages based
on compliant and backlash-free structures moved by active-
material-based actuators). The effects of imperfections in-
crease substantially with the complexity of robotic structures.
This problem becomes more complicated when the robotic
structures in many microscale applications are required to have
more than 10 Degrees-of-Freedom (DoF) [20], [21].

Several works investigated the improvement of positioning
accuracy for MPRs and showed that an intrinsic positioning
accuracy of several tens of micrometers can be obtained (with-
out any external sensors) [20], [22], [23]. These works mainly
relied on vision-based measurement, which offers multi-DoF
measurements (in the plane for one camera) but suffers from
a severe range-to-resolution ratio trade-off (which is often
used to measure motion ranges of several millimeters with
µm range resolution). They also used black-box or semi-
black-box modelling, which enables consideration of many
possible influential parameters at the same time but induces
difficulties to understand what the most influential factors are
and to quantify the influence of each factor. Several works also
investigated the issue of tolerance analysis in fields such as
machine tools and microrobotics. Pac and Popa used interval
analysis to bound the error that accumulates at the end-effector
of a serial manipulator (a XYΘ structure was chosen as a case
study) [24]. This study highlights that MPRs may have very
large error bounds because many uncertainties accumulate, and
every uncertainty cannot be identified precisely enough at the
microscale.
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These different studies show several key difficulties and
complexities: (i) successfully performing meaningful multi-
DoF measurements with enough range-to-resolution ratio, (ii)
understanding what the factors that influence positioning accu-
racy are and quantifying their real effects, and (iii) quantifying
the positioning accuracy that can really be achieved with
MPRs. This paper intends to address these three key issues,
to clarify the typical behavior of MPRs, and to quantify their
actual potential in terms of positioning accuracy when factors
influencing their accuracy are compensated.

First, an original measurement setup is used. It relies on a
principle introduced by Sandoz for biological sample localiza-
tion purposes [25]. It is based on a camera (which is usually
already integrated in most applications with MPRs) that is
mounted onto a microscope and looks at a pseudo-periodic
pattern. A dedicated algorithm based on phase measurements
and binary coding provides position measurement of the
pattern with very high range-to-resolution ratio as well as
simultaneous measurements of the three DoF of the plane.
This principle has been used and adapted for robotic purposes
in previous work [26]. The method appears very promising for
microrobotics or microsystems because it typically provides
high resolution (typically a thousandth of a pixel), possible
infinite range, self-calibration, and 3 DoF (in-plane) measure-
ment. A case study of an XYΘ MPR is investigated using
this principle for several reasons: widespread use, widespread
study, adequate measurement capabilities, and the presence of
all kinds of imperfections that can be met at the microscale.

Several calibration models are used to integrate the compen-
sation of different parameters that may influence the position-
ing accuracy of the MPR. Experiments using these different
models and related robot calibration enable quantification of
the positioning accuracy that can be achieved for each case.
Finally, the results are compared and analyzed to understand
the main parameters that influence the positioning accuracy
of MPRs, as well as to quantify their influence and the final
positioning accuracy that can be achieved.

The remainder of this paper is organized as follows. Section
II provides the typology of imperfections that are considered
throughout the paper based on a usual typology for macroscale
robotics and known microscale specificities and behaviors.
Section III presents the measuring system based on a pseudo-
periodic pattern. Geometric models and calibration procedures
are presented in Section IV, while parameter identification is
discussed in Section V. Section VI presents the experimental
setup and MPR positioning accuracy results. Influential ge-
ometric parameters are presented in Section VI. Finally, the
paper is concluded in Section VII.

II. TYPOLOGY OF GEOMETRIC IMPERFECTIONS OF
MICROROBOTIC STRUCTURES

MPRs are widespread in microscale applications. They are
based on stick slip piezoelectric actuation or DC motors
and have some common features [10]. For example, MPRs
usually rely on a friction-based mechanical guiding principle
(in contrast to nanopositioning systems, which are based on
compliant joint linkages). The MPR imperfections or unknown
parameters can be classified into three types:

1) The assembly errors between stages
2) The position-dependent errors along the translation axis
3) The angle-dependent errors induced by the rotation axis
These three types of imperfections are geometric errors.

Dynamic parameters are less significant for MPRs and are
not considered in this work.

The first type of error is shown in Fig. 1a. We as-
sume that a joint axis that is attached to a frame
{Ok, ~xk, ~yk, ~zk} links with an adjacent axis attached to a frame
{Ok+1, ~xk+1, ~yk+1, ~zk+1}. Three parameters ak, bk, and ck
depict their relative positions along the ~xk, ~yk, and ~zk axes.
Another three parameters αk, βk and γk depict their relative
orientations. These parameters are affected by the assembly
process and are called assembly parameters.

The second type of error is local imperfections along a
translation axis (e.g., the ~xk axis in the case shown in Fig.
1b). Because the motions of micropositioning axes are not
perfectly linear, the commanded positions are not equal to
the positions actually reached, and there are coupling errors
on one axis when the motion happens on another axis. For a
given joint input qk, there are three translation errors and three
rotation errors along the axis. The real position along the axis
is qk+ak(qk), which is accompanied by coupling errors bk(qk)
and ck(qk) along ~yk and ~zk, respectively. Meanwhile, there are
three angular imperfections αk(qk), βk(qk), and γk(qk) in the
motion.

The counterparts of a rotation axis are shown in Fig. 1c.
Depending on the rotating angle qk, the rotation center changes
in 3-dimensional space. This eccentricity is defined with three
positions ak(qk), bk(qk), and ck(qk). Rotation motion may
also generate angular-dependent errors in three directions,
which are qk + αk(qk), βk(qk), and γk(qk).

These imperfections have different influences on positioning
accuracy. In the following case study, we construct different
models that consider the imperfections to quantify their influ-
ence on positioning accuracy.

III. IN-PLANE VISUAL MEASUREMENT USING
PSEUDO-PERIODIC PATTERN

Most high-resolution imaged-based motion-detection algo-
rithms rely on phase-like correlation methods. For example,
such a method has been implemented by Moddemeijer [27],
who reported a resolution of 13.3 nm. The main drawback of
these correlation-like methods is the useful field of view. Such
methods are feature-dependent, so the pattern has to remain
inside the region of interest to be analyzed, which limits the
range of measurement. To overcome this drawback, techniques
based on pseudo-periodic patterns have been proposed [25],
[28], [29].

One method [25] is based on an encryption of a binary
code over a pseudo-periodic pattern (PPP). The position is
obtained by combining fine and coarse measurements that are
complementary. The fine measurement is performed after a 2D
Fourier transformation to separate the different directions of
modulation of the pattern. The phase of the periodic grid is
then computed in both directions using two analysis functions.
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(a) Assembly errors between two stages (b) Position-dependent errors along a prismatic
joint

(c) Angle-dependent errors about a revolute joint

Fig. 1. Typology of geometric imperfections of microrobotic structures ({Ok, ~xk, ~yk, ~zk} is the frame attached to the base part joint k and
{Ok+1, ~xk+1, ~yk+1, ~zk+1} the frame of mobile part of a joint or to the next stage for the case a).
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Fig. 2. Frames definition for the measurement: image frame which is also
the frame in which the measurement are provided (MF), the pattern frame
(PF) and the world frame (WF) which is the initial pattern frame location.

Given the phases (in rad) and the period of the pattern (in
meters), it is straightforward to calculate the relative position
of the pattern in the image reference frame. This process gives
the position with a typical subpixel resolution of 10−3 pixels
but also with an indeterminacy equal to the wavelength of the
pattern.

The coding allows for absolute but coarse coordinate trans-
formations of the image reference frame into actual positions
on the observed part of the pattern. This codification is
based on linear feedback register sequences (LFRS). Pose
retrieval involves complementary image processing to identify
the location of the missing points and thus to return the
line and column orders necessary to obtain the fine position
provided by phase computations.

The measuring range is limited by the size of the pattern,
which is 9.5 mm for the x-axis and 4.2 mm for the y-axis in the
present case. The repeatability of the visual measurement has
been experimentally evaluated and is better than 10 nm [30].
More details about the algorithm and the fabrication of the
pattern can be found in another study [31].

We propose using this technique to characterize the in-
plane motion of MPRs. There is great interest in using the

method for MPR calibration. The method is a non-contact
measurement and thus does not affect the motion of the robot.
Also, there is no need to calibrate the imaging system, which
is a delicate task at this scale. Indeed, as the period of the
pattern is precisely known (4 µm in the present case), the
measurement is intrinsically self-calibrated. Finally, the most
interesting point is that the method is able to measure 3-
DoF in-plane displacements simultaneously. This allows the
position-dependent errors of the stages to be measured along
X, Y, and Θ with accuracy that has only been achieved before
in one direction using interferometry.

The pattern is fixed on a substrate located on the rotation
stage Θ. A part of this pattern is seen in the field of view of the
vision system (Fig. 2). In this paper, M is named as the origin
of the image frame {M,xMF , yMF }. Based on these images
and their processing, the positions (xmi, ymi) and orientation
(Θmi, clockwise) of the pattern are measured in the image
frame. Subscript m refers to data issued from experimental
measurement, while subscript i refers to the ith measurement
achieved. The pattern frame PF {Pi, xPFi , yPFi , zPFi} is
thus the current location of the pattern. PF is considered as
the tool frame, which is moving with different configurations
or poses of the MPR. The origin P of the pattern is con-
sidered as the tool tip of the end-effector and is the point
of interest to be controlled. Finally, the world frame WF
{OWF , xWF , yWF , zWF } is defined as the initial location of
the pattern, i.e. WF = PF(when i=0). The position of OWF is
then defined by xm0, ym0, and Θm0 in the MF frame. Based
on xm0, ym0, Θm0, xmi, ymi, and Θmi, the coordinates of Pi
in WF can be defined by xPmi and yPmi as follows:

[
xPmi
yPmi

]
=

[
cos(Θi) sin(Θi)
− sin(Θi) cos(Θi)

]
.

[
xmi − xm0

ymi − ym0

]
(1)

IV. CALIBRATION MODELS AND PROCEDURES

MPRs generally consist of an assembly of translation and
rotation axes that suffer from the imperfections mentioned in
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Fig. 3. Frames definition of the kinematics including parameters to be
identified.

Fig. 1. Without loss of generality, an XYΘ MPR is chosen
as a typical case study. Based on commonly used devices
for microscale applications, this XYΘ structure faces all
imperfection types mentioned.

A. Definition of frames

The stages are assembled in series of Y, X and Θ where
the Y stage is on the bottom and the Θ stage is on the
top. Fig. 3 displays the frames used to define the kinematics
of the XYΘ stage used. Frames F1 {O1, x1, y1, z1} and F2

{O2, x2, y2, z2} are assigned to the mobile parts of the Y
and X stages, respectively. The Y motion is along y1, and
the X motion is along x2. The frame F3 {O3, x3, y3, z3} is
attached to the mobile part of the Θ stage. The Θ motion
rotates clockwise about z3. In the initial state, all the frames
are superimposed on the world frame WF .

B. Forward and inverse kinematics

Because the external reference system can only measure in-
plane motions, we do not consider the out-of-plane imperfec-
tions (ck, βk and γk). In addition, some of the imperfections
cannot be identified independently from the others. So, we
selected a combination of imperfections that are directly
identifiable and that are sufficient to calibrate the complete
kinematics.

The assembly errors between the three axes are represented
by four parameters:

• ξ is the alignment angle between xWF and x2 which
is 180◦ in the ideal case; and includes the assembly
error between the stage X (F2 Frame) and the rotation
stage (F3 Frame) on which is fixed the pattern (i.e.
ξ = αassembly,1)

• α is the perpendicularity error between the X stage and
Y stage, which is also the angle between x1 and x2 (i.e.
α = αassembly,2), α = 0 in the ideal case

• (xR, yR) are the coordinates of the rotation center O3

with respect to F3 (F3 is superimposed on the world
frame at the beginning).

The position- and angle-dependent errors are also repre-
sented by four parameters:

• ex and ey are the combinations of position-dependent
errors along stages X and Y;
i.e. ex = aposition,1(X)− aposition,2(Y ) sin(α)
and ey = bposition,1(X) + bposition,2(Y ) cos(α);

• hax and hay are the angle-dependent errors for the
rotation stage

Given joint coordinates q1 = Y , q2 = X , and q3 = Θ
and parameters φ = {xR, yR, ξ, α}, and considering ex, ey,
hax, and hay , the coordinates of end point Pi {xP , yP } in the
world frame could be calculated by:[

xP

yP

]
=


(X − ex) cos(ξ)− (Y − ey) sin(ξ + α)

+xR + hax(Θ)− xR cos(Θ)− yR sin(Θ)

(X − ex) sin(ξ) + (Y − ey) cos(ξ + α)
+yR + hay(Θ) + xR sin(Θ)− yR cos(Θ)

 , (2)

which is the forward kinematics of the MPR. ex and ey
are the corresponding position-dependent errors of coordinate
(X ,Y ). hax(Θ) and hay(Θ) are angle-dependent errors when
the rotation angle equals Θ. Then, the inverse kinematics can
be obtained accordingly:

[
X

Y

]
=



1
cos(α)

(
xP cos(ξ + α) + yP sin(ξ + α)

−xR cos(ξ + α)− yR sin(ξ + α)

+xR cos(Θ + ξ + α) + yR sin(Θ + ξ + α)
)

+gax + ex

1
cos(α)

(
− xP sin(ξ) + yP cos(ξ)

+xR sin(ξ)− yR cos(ξ)− xR sin(Θ + ξ)

+yR cos(Θ + ξ)
)

+ gay + ey


, (3)

where gax(Θ) and gay(Θ) are the inverse increments of
hax(Θ) and hay(Θ) provided to the joint input, respectively.

We chose lookup tables to construct the position- and angle-
dependent error functions. Linear interpolation is used when
a value is not inside the lookup table.

C. Calibration models and procedures

We propose five models to investigate the influence of every
imperfection on the positioning accuracy of the whole robot.

First, for a MPR with a rotation axis, the location of the
rotation center is the desired knowledge for modeling and
control. So, the first model (Model I) considers the basic
parameters identified as xR and yR. The nominal values
ξ = 180◦ and α = 0◦ are used as alignment and assembly
parameters. The position- and angle-dependent errors are zero.
This model considers the minimum requirements of modeling
while ignoring other errors and could also be called the basic
geometric model. In addition to the basic parameters xR
and yR, Model II also addresses the inaccuracy induced by
alignment parameter ξ and assembly error α.

As an enhanced version of Model II, Model III compensates
errors along X and Y considering microscale specificities,
namely, the position-dependent errors ex and ey.

To quantify ex and ey, a preliminary experiment is per-
formed, and values of ex and ey are obtained as a set of
discrete points along the X and Y axes. One-dimensional
lookup tables are built for each errors along each axis. It is then
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easy to interpret errors stored in tables but also to reuse them
even if the assembly of stages is different. Linear interpolation
is used to calculate the corresponding ex and ey at the points
not measured.

Instead of position-dependent errors, Model IV (another en-
hancement of Model II) directly compensates angle-dependent
errors induced by Θ motion.

Finally, the most advanced model (Model V) takes into
account all four kinds of imperfections.

In summary, different models address different sets of the
mentioned imperfections. Their corresponding relations are
summarized in Table I. The model complexity increases from
Model I to Model V.

Model I and Model II follow the conventional calibration
procedure (1. Modeling, 2. Data acquisition, 3. Identification,
4. Implementation, 5. Validation). A pre-calibration step has
been introduced before parameter identification for Models III,
IV, and V. For these models, the position-dependent errors are
measured for each axis and added to the joint input during the
identification and implementation phases using interpolated
functions.

V. PARAMETER IDENTIFICATION

Parameter identification is performed in four steps. First, a
cost function is built to include calculated poses and measured
poses. Second, the identifiability of the parameters is exam-
ined. Third, observability analysis is performed to estimate
the optimal number of poses. The last step is to identify the
parameters through minimizing the cost function. The second
and third steps are investigated through simulation. The last
step is performed with experimental data and discussed in
section VI, while the first three steps are discussed in detail
in the following.

A. Cost functions

Parameters are identified through minimizing the error be-
tween measured position (given in the WF) Pmi{xPmi, yPmi}
and calculated position Pci. Pci is calculated through forward
kinematics using Eq. (2), that is, Pci = Pi. The ith element
of the cost function is defined as:

ei = ε2xi
+ ε2yi

where: {
εxi = xPi − xPmi
εyi = yPi − yPmi

(4)

Initial pose coordinates xm0 and ym0 can be eliminated by
subtracting two poses:{

εxi,j
= εxi

− εxj

εyi,j = εyi − εyj
(5)

xPi and yPi can be obtained by forward kinematics (2). The
following cost function E can be defined with different pose
combinations for n poses:

E = εT ε (6)

where:

ε =



εx1,2

εy1,2
εx2,3

εy2,3
...

εxn−1,n

εyn−1,n


,with 2(n− 1) elements.

Parameter identification turns into an optimization problem
minimizing E.

B. Identifiability analysis

Identifiability analysis evaluates how much the parameters
are identifiable [32]. The determination of the identifiable
parameters must be done before the identification process.
Equation (2) can be written in a general form f(q, φ) = P
(where q is the vector of joint coordinates, φ is the vector of
kinematic parameters, and P is the vector of tool coordinates).
The equation can be linearized as:

∆P =
∂f

∂φ
∆φ. (7)

For the ith, jth pair poses, the Jacobian of εi,j is:

Ji,j =

[ ∂εxi,j

∂xR

∂εxi,j

∂yR

∂εxi,j

∂ξ

∂εxi,j

∂α
∂εyi,j
∂xR

∂εyi,j
∂yR

∂εyi,j
∂ξ

∂εyi,j
∂α

]
. (8)

Through QR decomposition [33]:

QR = J.

An upper triangular matrix R is obtained where the elements
on the diagonal correspond to the kinematic parameters. The
non-identifiable parameters are those equal to zero. In this
case, all elements on the diagonal are not equal to zero, which
means all parameters are identifiable. QR decomposition of
(8) can be done through simulation. One example of the
simulation results is:

R =


2.0077 −1.7347e-18 0.5169 8.2052e-18

2.0077 0.0158 8.3210e-17
−464.5673 −72.7559

168.83890
 .

The matrix demonstrates that all four geometric parameters are
identifiable for two cost functions using randomly generated
poses.

C. Observability analysis

To identify unknown parameters, a set of poses is cho-
sen and measurements are performed at these poses. In the
expertise of robotic calibration, observability index measures
the quality of the poses chosen. The observability index is
based on singular values by Singular Value Decomposition
(SVD) [34]. For a problem with m parameters, n poses, and
2-dimensional measurements, applying SVD to the Jacobian
yields:

J = UΣV T (9)
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TABLE I
TABLE OF ERRORS AND PARAMETERS CONSIDERED BY THE FIVE CALIBRATION MODELS (POSITION-DEPENDENT AND ANGLE-DEPENDENT ERRORS ARE

COMPENSATED USING ONE-DIMENSIONAL LOOKUP TABLES).

Calibration Model Rotation center Assembly parameters Position-dependent
errors

Angle-dependent
errors

Model
complexity

xR yR ξ α ex ey hax hay

Model I: Basic
geometric ? ? 180 0 0 0 0 0 ?

Model II: Geometric ? ? ? ? 0 0 0 0 ??
Model III: Geometric
+ position-dependent ? ? ? ? ? ? 0 0 ? ? ?

Model IV: Geometric
+ angle-dependent ? ? ? ? 0 0 ? ? ? ? ?

Model V: Geometric
+ position-dependent
+angle-dependent

? ? ? ? ? ? ? ? ? ? ? ? ?

where U is a 2n × 2n orthogonal matrix, V is an m × m
orthogonal matrix, and Σ is the 2n × m matrix of singular
values:

Σ =

[
S

02n−m,m

]
, (10)

where:

S =


σ1 0 0 · · · 0
0 σ2 0 · · · 0
...

...
...

...
...

0 0 0 · · · σm

 (11)

is a m × m matrix of ordered singular values, with σ1 ≥
σ2 ≥ · · · ≥ σm ≥ 0. Four observability indices have been
previously proposed [34]–[36], which are denoted by O1, O2,
O3 and O4.

Borm and Menq [37] proposed an observability index
termed O1 that maximizes the product of all of the singular
values:

O1 =
m
√
σ1σ2 · · ·σm

m
. (12)

Index O2 [38] is the ratio of the minimum singular value to
the maximum singular value:

O2 =
σm
σ1
. (13)

Index O3 [39] is the minimum singular value:

O3 = σm. (14)

Index O4 [39] is the product of O2 and O3 which is termed
the noise amplification index:

O4 =
σ2
m

σ1
. (15)

Based on maximization of these indices, the optimal number
of poses and optimal poses can be selected. Fig. 4 shows the
simulation results of observability with increasing number of
random poses for the cost function E. Among these indices,
O3 only takes into account the minimum singular value instead
of both minimum and maximum singular values. Index O1 was
found to be worse than the others [39]. Hence, we mainly
consider indices O2 and O4. However, there is no obvious

change in index O2 after about 400 poses, indicating that this
number is the minimum. Meanwhile, the slope of the index
O4 curve becomes smaller and smaller, which means taking
more poses becomes less and less important. Moreover, index
O4 is an indicator of the amplification of sensor noise. To
balance the best number and the elimination of sensor noise,
a trade-off between O2 and O4 is made such that 1200 pairs of
measurements will be taken (each pair includes xm and ym).
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Fig. 4. Observability of cost function E with 3 to 2000 poses.

VI. EXPERIMENTAL IDENTIFICATION AND VALIDATION

This section aims at identifying factors that influence the
positioning accuracy through quantifying the positioning ac-
curacy with and without compensation of these factors. This
quantification is done through experimentations based on the
five models previously defined.

A. Experimental setup

Pictures of the whole experimental setup and the end-
platform (supporting the substrate) are shown in Fig. 5. The
MPR is mounted on an anti-vibration table. It consists of
two translation stages (X and Y) and a rotation stage (Θ)
in a 3-DoF serial robotic structure. The two translation stages
are PI M-111.1DG stages equipped with a Mercury TM C-
863 controller. This kind of stage is representative of many
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Fig. 5. Large and close view of the XYΘ MPR used as experimental case
study. The microscope provides a top view of the pattern which is attached
on the substrate.

TABLE II
SPECIFICATION OF XY TRANSLATION STAGES IN DATASHEET

Stage PI M-111.1DG

Travel range 15 mm
Resolution 50 nm
Unidirectional repeatability 100 nm
Pitch angle deviation ±150 µrad
Yaw angle deviation ±150 µrad
Backlash 2 µm
Thread pitch 0.4 mm
Driving mechanism Leadscrew

micropositioning stages commonly used in micromanipulation
and work with mobile parts that are guided based on friction
principles. The rotary stage is a SmarAct SR-3610-S controlled
by an MCS-3D unit. All the micropositioning stages X, Y,
and Θ are equipped with internal sensors and are already
controlled with a closed-loop controller in the actuator layers
(since the integration of sensors in MPRs is highly challenging,
pure direct measurement remains quite rare at this scale). The
datasheet specifications of the translation stages X and Y and
rotation stage Θ are given in Tables II and III, respectively.

The external measuring reference system for calibra-
tion consists of a video camera (AVT STINGRAY F-125C
1024×768 mono), a microscope tube (Optem zoom 70XL),
and an objective with 10× magnification. An upper goniome-
ter (M-GON40-U) and lower goniometer (M-GON40-L) are
used for adjusting the parallelism between the pattern and the
camera.

Temperature was measured during experiments but no ob-
servable dependency was noticed.

B. Data acquisition and parameter identification

To identify the kinematic parameters in (2), the first step
is to acquire measuring information of the end-point. During
the data acquisition phase, the MPR is commanded to reach a
set of configurations by changing the translations and rotation
joint coordinates. Meanwhile, the vision system captures all

TABLE III
SPECIFICATION OF Θ ROTATION STAGE IN DATASHEET

Stage SmarAct SR-3610-S

Range 360 ◦

Stepwidth 0.3 m◦ to 3 m◦

Scanning range ' 4.3 m◦

Resolution < 1.1 µ◦
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Fig. 6. Joint coordinates of XYΘ stages in data acquisition.

the images of the poses and retrieves the measuring informa-
tion. The defined trajectories of the joint axes are shown in
Fig. 6. This process takes about 1.3 hours. The number of
measurements is chosen based on the presented observability
analysis. A total of 1200 pairs of measurements are obtained
in the data acquisition phase.

Geometric parameters are identified by solving a nonlinear
least-squares problem (using Matlabr function lsqnonlin).
After identification, the parameters for five models are ob-
tained as shown in Table IV. The modification of the joint co-
ordinates of the X and Y axes considering position-dependent
errors induces small differences in the identified parameters
between Model II and Model III. Models II and IV use the
same values for these four parameters. The four parameters of
Models III and V are the same. The identified results have to
be validated by implementing them in the inverse kinematics
of the MPR.

C. Models comparison

To compare the positioning accuracy of the MPR using
different calibration models, 9 target points are chosen in

TABLE IV
TABLE OF PARAMETERS FOR FIVE MODELS

Identified parameters xR(µm) yR(µm) ξ(◦) α(◦)

Model I 9572.902 7795.830 180 0
Model II 9572.902 7795.830 177.689 -0.132
Model III 9572.904 7795.858 177.685 -0.107
Model IV 9572.902 7795.830 177.689 -0.132
Model V 9572.904 7795.858 177.685 -0.107
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TABLE V
TABLE OF 9 TARGET POINTS AND ROTATION ANGLES FOR VALIDATION

Targets PT xT (µm) yT (µm) ΘT (◦)

P1 -1200 -200 1
P2 -1600 -200 2
P3 -2000 -200 3
P4 -2000 -300 4
P5 -1600 -300 5
P6 -1200 -300 4
P7 -1200 -400 3
P8 -1600 -400 2
P9 -2000 -400 1

xWF

P0

yWF

P1P2P3

P4 P5 P6

P7P8P9

-200

-300

-400 (µm)

-1200-1600-2000 (µm)

Fig. 7. Moving sequence of target points (PT ) in validation.

the world frame that cover the working range of the robot
(Table V). The trajectory of validation follows P0, P1, . . .,
P9, which is shown in Fig. 7. As shown in Fig. 8, the
signal is processed with the following procedure: 1) The
target PT {xT , yT ,ΘT } is fed into the inverse kinematics,
and the corresponding joint input Pc of the MPR can be
calculated; 2) the MPR moves under the command Pc; 3)
the measuring system saves the images and retrieves the
measurement information DPF in the pattern frame; and 4) the
measurements are transformed into the value Pm with respect
to the world frame.

The results of positioning accuracy of the MPR are shown
in Fig. 9 and Table VI, where the larger the accuracy value
is, the worse the accuracy of the robot is. Several experiments
show that the repeatability is always smaller than 0.8 µm and
is quite constant, regardless of the pose and the time.

The positioning accuracy using Model I is approximately
100 µm. The positioning error becomes larger at the points
farther from the origin of the world frame, which means that
the accuracy is highly influenced by the amplitudes of X and
Y motions. This is due to the alignment parameter ξ and
assembly error α not being considered in the model. The
greater the distance between the targets and the origin P0,
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Fig. 8. Block diagram of validation procedure.
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Fig. 9. Experimental results of positioning errors using five models on a
logarithmic scale.

TABLE VI
TABLE OF ACCURACY OF DIFFERENT CALIBRATION MODELS

Accuracy X axis (µm) Y axis (µm) XY plane (µm)

Model I 49.130 91.108 95.980
Model II 6.433 34.330 34.338
Model III 2.810 26.460 26.461
Model IV 0.940 2.677 2.838
Model V 1.651 2.122 2.568

the larger the induced errors by the two angles are.
The compensation of the errors of ξ and α greatly improves

the accuracy, which reaches 35 µm. The accuracy curve
achieved by Model II demonstrates no dependency on the
distances between the targets and the origin, but there is a
dependency on the rotation angles.

Compensation of the position-dependent errors along the X
and Y axes can reduce inaccuracy further by nearly 10 µm
with Model III. Similar to Model II, the accuracy curve of
Model III also displays a dependency on the rotation angle.
The accuracy increases with the rotation angles.

To quantify the angle-dependent errors hax(Θ) and hay(Θ)
in Models II and III, an additional experiment is required
to evaluate the residual errors. In the experiment, Models II
and III are implemented to control the MPR while moving
and following the target trajectory in Fig. 10. Every target
position corresponds to 5 rotation angles. The positioning
errors hax(Θ) and hay(Θ) at these poses form a lookup table,
through which gax(Θ) and gay(Θ) are calculated using inverse
kinematics and added to the joint coordinate inputs. When
implementing Models IV and V, positioning accuracies of 2.8
and 2.5 µm are achieved. The accuracies achieved by Models
IV and V are quite close because quantified angle-dependent
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Fig. 10. Moving sequence of target points (PT ) in measuring angle-
dependent errors hax(Θ) and hay(Θ).



9

0
1000

2000
3000

4000
5000

0

2000

4000

6000
0

5

10

15

20

25

 

Coordinates in x axis (µm)Coordinates in y axis (µm)

 

A
c
c
u

ra
c
y
 (

µ
m

)

with comp.

without comp.

A

B

C

D

Fig. 11. Accuracy of tracking square with and without compensation (model
III).

errors include a part of the position-dependent errors.
In summary, different imperfections have different ways of

influencing accuracy and to different degrees. The model se-
lection is a trade-off between model complexity and accuracy
achieved. Model I is for the most basic application. It requires
little imperfection compensation except for the position of the
rotation center.

The most influential parameters are ξ and α. The positioning
accuracy-to-cost ratio of Model II is high because these two
parameters are easy to identify, and by compensating them,
the accuracy improves by about 60% with Model II. Angle-
dependent errors are also very significant. A 5◦ rotation
induces nearly 20 µm of inaccuracy. To achieve the best
positioning accuracy, Models IV and V should be chosen, and
of course, more efforts must be made on measurement and
calibration.

Position-dependent errors are less important than the other
two kinds of imperfections, which generate inaccuracy of
about 5 to 8 µm. However, Models II and III are less complex
than Models IV and V. So, if only a medium level of accuracy
is required, Models II and III are sufficient.

D. Full trajectory example

Model III was used to demonstrate the error compensation
on a square trajectory without rotation. The trajectory is a
4000 × 4000 µm square spanning from coordinates 10 µm
to 4010 µm. The square is divided into 4 segments: AB, BC,
CD, and DA. The tracking performances with and without
compensation are shown in Fig. 11.

The inaccuracy reaches about 22 µm without compensation,
which is mainly due to the perpendicularity error (BC and
DA segments) and to position-dependent errors (AB and CD
segments). It can be seen that without compensation errors
vary cyclically. Such behavior is reasonably due to systematic
turn-to-turn nature inherent in the leadscrew. Indeed, the period
of the error is equal to the thread pitch of the stage (400 µm).

After compensation, inaccuracy is reduced to approximate
4 µm.

VII. CONCLUSIONS

In microrobotics, positioning accuracy is a very important
issue that is tightly correlated with system performance. How-
ever, there are many sources of inaccuracy in such systems.
We investigated the influences of the main sources and quan-
tified the positioning accuracy once the imperfections were
compensated through calibration.

A 3-DoF serial-type MPR was chosen as a case study
because of its popularity in microscale applications and be-
cause of the capabilities of the measuring system. The setup
consists of a regular vision system observing a pseudo-periodic
encoded pattern to measure the motion behavior of the XY
micropositioning stages. This method is particularly suitable
for microscale motion characterization thanks to its high
range-to-resolution ratio and avoidance of camera calibration.

Five inaccuracy models was proposed to depict and control
the XYΘ MPR. The five models took into account different
sources of inaccuracy at the microscale, and different levels
of accuracy were achieved. In many applications involving
rotation stages, knowledge of the coordinates of the rotation
center (xR,yR) are required. Model I is a basic model that
meets this requirement. The most influential parameters ξ and
α identified in Model II are mounting errors due to manual
assembly. Models III, IV, and V are advanced models that
compensate position- or/and angle-dependent errors.

Experimental validations of five models demonstrated sub-
stantial improvements of quasi-static positioning accuracy in
the experimental results by a factor of 40 (from 96 µm to
2.5 µm). The number of measuring poses was determined
based on observability analysis. In the case study, for required
accuracy less than 100 µm, the alignment and perpendicularity
errors could be neglected according to the results of Model
I, and nominal values (zeros) were sufficient. For required
accuracy smaller than 40 µm, these two errors must be
compensated. A further reduction of about 10 µm can be
achieved by Model III by compensating position-dependent
errors along the X and Y axes. The best accuracies achieved
by Models IV and V were below 5 µm with position- and
angle-dependent error compensation. Nevertheless, position-
dependent error compensation has no significant positive im-
pact when angle-dependent errors are also compensated. In
conclusion, the most significant sources of inaccuracy in order
of descending influence are: the rotation center, alignment
and assembly errors, angle-dependent errors, and position-
dependent errors.

These results have been established for in-plane motions.
The extension of the PPP algorithm to out-of-plane motions is
not straightforward and requires further works. Improvements
of the method could also concern the reduction of the amount
of data required to compensate position and angle-dependent
errors by using more advanced interpolation schemes.
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[1] K. Rabenorosoa, C. Clévy, and P. Lutz, “Active force control for robotic
micro-assembly: application to guiding tasks,” in IEEE International
Conference on Robotics and Automation, Anchorage, AK, USA, 2010,
pp. 2137–2142.
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