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Abstract—In recent years, considerable research efforts have
been applied in the field of fault prognostics. However, to the
authors knowledge, there are few published works that address
complete and systematic methods describing the steps required to
develop data-driven prognostics approaches for complex systems.
This paper presents a generic component-based prognostics
methodology that can be customized for different applications
and which can be useful for new researchers and engineers.
The paper is divided into two parts. The first part provides
a description of the procedures required before constructing
data-driven prognostics, such as identifying critical components,
selecting physical parameters to monitor, choosing monitoring
sensors and defining the data acquisition system. The second
part presents a novel data-driven prognostic method for direct
remaining useful life (RUL) prediction. This method relies on
two phases: offline and online. In the offline phase, a method
for constructing health indicators (HI) from sensor data is
presented. Such HIs can be used as offline models to display the
deterioration evolution of components over time. In the online
phase, similar HIs are constructed from the sensor data for a new
component. Then, a discrete Bayesian filter is applied to estimate
the current health status. Finally, the offline database is searched
to find the closest group to the online HIs. The selected offline
HIs can be used for estimating the RUL of the new component
under operation. The performance of the method is demonstrated
using two real data sets taken from the NASA Ames prognostics
data repository.

Index Terms—Data-driven prognostics, remaining useful life,
health indicators construction, discrete Bayes filter, Gaussian
process regression.

I. INTRODUCTION

Achieving high reliability and availability of complex sys-
tems is a crucial task. This can be done by adopting effi-
cient maintenance activities to detect and correct problems
before they become severe and shut down the system. Ef-
fective maintenance was shown to increase the reliability and
availability by offering greater utilization of any facility of
complex systems and reducing costs through managing work
and downtime. Many types of maintenance strategies have
been developed over last decades. Due to recent develop-
ment of sensor and monitoring technology, Condition-Based
Maintenance (CBM) has emerged as a promising strategy. It
uses visual inspection and sensor data to assess the machinery
condition. CBM replaces predefined maintenance tasks with
only the necessary ones, based on the equipment current

condition. In this way, CBM reduces maintenance costs while
increasing efficiency by performing maintenance actions only
when there is evidence of abnormal behavior. Recently, CBM+
strategy is proposed to deal with new requirements in the
maintenance domain. Such requirements necessitate predicting
the system health condition in the future and take decisions
accordingly. CBM+ can be defined as an updated maintenance
concept that emphasizes on prognostics or predictive capabil-
ities, assessment of the material condition and estimation of
the remaining useful life at any time during a system’s life.
Moreover, Prognostics and Health Management (PHM) is a set
of advanced diagnostic, prognostic, and health management
research activities that enables and supports CBM+. PHM
activity attracts significant research interest due to the need for
prediction and decision models, which are important concepts
for performing efficient CBM+ strategy.

Performing PHM for a whole complex system, however,
is challenging in practice. Instead, component-based PHM
approaches are more feasible. Such approaches are based on
two main parts. In the first part, system experts 1) identify
the critical components, 2) select the physical parameters to
monitor, 3) select the monitoring sensors, 4) perform the
data acquisition and 5) pre-process the sensor signals. In the
second part, the generated sensor data are used by PHM
researchers and data analytics engineers to perform one or
more component-based PHM tasks, such as: 1) data analysis,
2) fault detection, 3) diagnostic, 4) prognostics, 5) decision
making and 6) human machine interface. Prognostics, in
particular, has recently attracted a lot of research interest due
to the need of predictive models. In [1], prognostics is defined
as the estimation of the remaining useful life (RUL) of a
component (or a system) based on its current health state and
knowing its future operating conditions (Figure 1).

Generally, prognostics can be realized using three main
approaches: 1) model-based (physics of failure) approach,
2) data-driven approach and 3) hybrid approach. Data-driven
prognostic approaches are becoming popular due to their
intuitive nature, fast developmental cycle and the advances of
modern sensor systems as well as data storage and processing
technologies. These approaches can be used when the first
principles of the system operation are complex such that
developing of accurate physics of failure model is not feasible
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Fig. 1. Illustration of prognostics.

[2].
Data-driven approaches use empirical models to learn the

degradation mechanisms from monitoring data. Empirical
models map the relation between the system state variables,
namely input, internal and output variables without explicit
knowledge of the physical behavior of the monitored com-
ponent. Such models can be divided into two main over-
lapping groups, namely Computational Intelligence (CI) and
Machine Learning (ML) models. CI group includes bio-
inspired models, such as neural networks and fuzzy systems.
ML based approaches learn from experience and can enhance
its performance over time, such as similarity based approaches
and Bayesian based approaches. Bayesian approaches have
a natural way of representing the uncertainty in a prob-
abilistic form. This property is paramount for performing
data-driven prognostics. The RUL appears to be a random
variable and can be modeled as a stochastic process [3].
Therefore, uncertainty bounds or confidence intervals should
be applied and accompany RUL estimation [4]. In addition,
building Bayesian models does not require understanding the
system behavior and it can be used to model multidimensional
dynamic systems.

There are two main approaches to build data driven models,
namely cumulative degradation and direct RUL mapping prog-
nostics approaches [5]. In cumulative degradation prognostics
approach, empirical models are used to map the degradation
evolution of the desired system. These models are later used
to estimate the new system health status. After knowing the
new system’s current health status, the RUL can be predicted
based on the expected future behavior (Figure 2).
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Fig. 2. Cumulative degradation based prognostics.

In direct RUL mapping prognostics approach, empirical
models are also employed to build RUL models. However,
these approaches directly map the relation between sensor data
and the corresponding EOL value without the need to estimate
the health status and from that estimate the RUL of the
monitored component (Figure 3). To do this, health indicators
are extracted from the raw monitoring signals, which may have

originated from single sensor or from a number of sensors
aggregated to represent the degradation evolution over time.
This approach is relatively easy to implement and there are
few published examples in the literature [2].
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Fig. 3. Direct RUL mapping approach.

The main contribution of this paper is to present a complete
method for developing a data-driven prognostics models for
complex systems. This paper is structured as follows. Section
II presents the proposed method. The applications and results
are depicted in Section III. Section IV concludes the paper.

II. COMPONENT BASED DATA-DRIVEN PROGNOSTICS FOR
COMPLEX SYSTEM

The presented method is divided into two main parts,
namely, towards data-driven prognostics and remaining useful
life estimation of critical components based on Bayesian
approaches. The first part provides a description of the pro-
cedures required before constructing data-driven prognostics,
such as identifying of critical components, physical parameters
to monitor, the monitoring sensors, data acquisition and signal
pre-processing. The second part presents a novel method
for direct RUL mapping prognostics based on Bayesian ap-
proaches (Figure 4).
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Fig. 4. Steps of the proposed method.

A. Towards data-driven prognostics

The efficiency of data-driven prognostics models depends
on the quality of the available historical data. Extracting
such data from the industrial system is a challenging step
due to the increased complexity of modern industrial systems
and due to the noise that might affect the acquired signals.
Therefore, system experts have to study the system to decide
the monitoring level. Monitoring complex systems can be done



on two different levels. 1) System level: it is used with
large-scale systems consisting of multiple components or/and
subsystems and the fault propagates through such components
and 2) component level: components that show high failure
rate are considered critical and should be monitored. For
example, building prognostics models for a whole airplane
can be challenging and still quite difficult in practice. Instead,
component-oriented prognostics approaches build on identify-
ing critical subsystems or components in the systems to be
monitored and maintained individually.

1) Identification of critical components: one way to iden-
tify critical components in a complex system is by using
hazard analysis [6]. Hazard analysis is a methodology to
estimate the likelihood that a condition or event might happen,
which could lead to an undesirable circumstance [7]. A suc-
cessful hazard analysis requires sufficient technical knowledge
about the desired system and appropriate hazard analysis
methodology. There are many hazard evaluation techniques
which complement rather than supplant the others. Generally,
hazard evaluation can be divided into two main techniques,
namely qualitative and quantitative (Figure 5). Each technique
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Fig. 5. Summary of hazard analysis discussed in this section.

approaches the system in a different way. Therefore, there is
no one technique that is suitable for all situations. However,
Failure Mode and Effects Analysis (FMEA) and Fault tree
analysis (FTA) have been proposed in the PHM context [8].
FMEA is a systematic technique for analyzing component
failure and documenting the resulting effect on system perfor-
mance whereas FTA represents the factors and events using
standard logic symbols. The result of a hazard analysis for a
desired system is a list of all possible hazards that could result
from a failed component or subsystem and their likelihood.
Components with high failure rate are considered critical and
should be monitored (Figure 6).

2) Selection of physical parameters: after locating the
critical components, system expert chooses the appropriate
physical parameters to monitor. These parameters are cho-
sen on the basis of experience gathered from dealing with
such systems. Quantities such as position, speed, acceleration,
torque, vibration, temperature and strain are studied for long
time and chosen to monitor mechanical systems. For example,
the cause vibration in different machines can be linked to
fault progression. Accurate monitoring of the vibration using
appropriate sensors is therefore required to monitor health
status of such machines. Table I depicts an example of
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Fig. 6. Example of critical components in a commercial airplane.

possible parameters which can be used to characterize failure
mechanism for the critical components shown in Figure 6.

TABLE I
EXAMPLES OF PHYSICAL PARAMETERS FOR CRITICAL COMPONENTS.

Component Physical parameters
Bearing Temperature, vibration and acoustics
Lithium-ion batteries Charge and discharge voltage, charge and

discharge current, temperature, voltage and
battery impedance

Turbofan engine Temperature at fan inlet, pressure at fan in-
let, physical fan speed, physical core speed
and demanded fan speed

3) Selection of monitoring sensors: after choosing the
parameters that represent failure propagation, system expert
chooses the appropriate sensors to record data from such
components. Various sensors, such as micro-sensors, ultrasonic
sensors, acoustic emission sensors, etc., have been designed
to collect different types of data (Figure 7). The criteria
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Fig. 7. Example of different commercial sensors.

of selecting sensors for monitoring a system should take in
consideration six aspects, namely: 1) parameters to measure,
2) reliability, 3) accuracy, 4) measurement range, 5) resolution,
6) characteristics and 7) cost . Once the sensors are fixed and
the system is operating, the system expert starts collecting data
from such system for processing tasks.

4) Data acquisition: it is the process of gathering sig-
nals from measurement sources, such as sensors attached
to critical components and digitizing the signals for storage
on Personal Computers (PC). Generally, data collected from
the critical component can be categorized into two main
types. 1) Event data: include qualitative information about



the monitored component such as description of installation,
breakdown, overhaul, causes etc., and the description of what
was done to fix the failure and the severity of the repair
and 2) condition monitoring data: measurements related to
the health condition/state of the physical asset. They can be
vibration data, acoustic data, oil analysis data, temperature,
pressure, moisture, humidity, weather or environment data,
etc. Event data and condition monitoring data are equally
important in PHM. However, in this work we consider only
condition monitoring data.

5) Data pre-processing: data acquisition step introduces
some errors to the signals due to different kinds of noise, which
can be reduced by data pre-processing. Data pre-processing
is defined as the process of manipulating raw signals to be
suitable for the next stage. It is not used to extract features
or reduce dimensions of the raw signals. It is used as a
preparation step to enhance the input signal quality and to
remove the outliers. In this way, pre-processing raw signals
reduces the computational complexity and prepares the signal
for better analysis in the later steps. Data pre-processing
approaches can be divided in four main groups, such as
1) handling missing data, 2) noise reduction, 3) normalization
and 4) smoothing.

B. Remaining useful life estimation of critical components
based on Bayesian approaches

Measurements collected from critical components are usu-
ally multidimensional time series signals that contain immense
number of data. Thus, it is important to first extract informa-
tion that represent the degradation evolution over time. The
relation between the extracted information and EOL should
be modeled to predict the RUL. To do this, the proposed
method learns the model from the offline data set. It estimates
the current health status from new online data and predicts
the RUL by measuring the similarity to the offline data. The
method is summarized in Figure 8 and will be explained
hereafter.
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Fig. 8. Overall scheme of the proposed method.

1) Health indicators construction: in this step, different
data analysis techniques are used to discover useful informa-
tion about the degradation process. Such information can be
used to construct health indicators (HI). A HI can be defined
as a set of features extracted from monitored component

which represent the component’s degradation evolution as a
function of time. In [9] a method for HI construction has
been proposed. This method contains three steps which are
summarized hereafter.
• Variable selection: this can be done using unsupervised

variable selection as proposed in [10]. The method selects
the sensor signals that depict information about the degra-
dation evolution over time using symmetrical uncertainty
(SU), for all the input signals, defined by:

SU(X,Y ) = 2× I(X,Y )

H(X) +H(Y )
(1)

where, I(X,Y ) is the mutual information between two
random variables X and Y ; H(X) and H(Y ) are infor-
mation entropy values of the random variables X and Y
respectively.

• Dimensionality reduction: this can be done using pro-
jection algorithms such as principal component analysis
(PCA) to represent the selected variables in a compact
form.

• Trend extraction: this can be done by using empirical
mode decomposition algorithm (EMD) to extract the
residual signal rn(t), which should be constant or mono-
tonic signal from the projected variables:

rn(t) = X(t)−
n∑

i=1

imfi(t) (2)

where, X(t) is the input signal, imfi is the intrinsic mode
functions (IMF) and n is the maximum number of IMFs
[11].

A feature vector F = [a, b, x̄, s2] is then extracted from each
trend at each cycle/time, where a and b are the slope and
y-intercept of a linear curve fit of the input trend respec-
tively, x̄ and s2 are the mean and the variance of the input
trend respectively [5]. The resulting features are then used
to represent each trend according to its EOL time. HIs are
constructed for the offline data sets and saved on the data
base as reference models. In the online step, the method uses
the same previously selected variables and constructs HIs up
to the current time. The online HIs are then used to assess the
health status of the monitored component.

2) Health assessment: one way to do that is by applying
recursive estimating algorithms. Such algorithms estimate the
HIs from the online data until it reaches stopping criteria. This
can be done first by estimating the health indicators values
recursively from the monitored component sensor data using
discrete Bayesian filter, see Algorithm 1.

where the input to the algorithm is a discrete probability
distribution {pk,t} along with the recent measurement zt,
p̄k,t is prediction probability, pk,t is the posterior probability,
p(Xt = xk|Xt−1 = xi) is the state transition model and
p(zt|Xt = xk) is the measurement transition model. Discrete
Bayesian filter can be used to represent the uncertainty about
the health status in a probabilistic form, which is useful for
decision making in later steps [5].



Algorithm 1 Discrete Bayesian filter.
Input : {pk,t−1} , zt
Output: {pk,t}
forall the k do

p̄k,t =
∑
i

p(Xt = xk|Xt−1 = xi)pi,t−1

pk,t = ηp(zt|Xt = xk)p̄k,t
end

3) Remaining useful life estimation: to estimate the RUL,
the method looks for the most similar offline model by using
a k-NN classifier:

p(Ck|α) =
p(α|Ck)× p(Ck)

p(α)
(3)

where, α is the new online feature vector, Ck is the class or
the group of trends that has similar EOL value, p(α|Ck) is
the probability of observing α given Ck (also known as the
likelihood), p(Ck) is class priors and p(α) is the marginal
likelihood. If the posterior probability is less than a certain
threshold, the Gaussian process regression (GPR) model is
then used [12]. GPR is defined as follows:

f(x) = GP(m(x), k(x, x′) (4)

where, GP is the Gaussian process function defined by a mean
function m(x) and a covariance function k(x, x′) collected
for all possible pairs of the input vector x. The estimated
value of the RUL can be used as a stopping criteria for the
recursive Bayesian filter. Figure 9 shows the final result of the
prognostics method.
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Fig. 9. Final result of the online process for one HI.

III. APPLICATIONS AND RESULTS

Two real life data sets, available and described on the NASA
prognostic center of excellence web site (ti.arc.nasa.gov), are
used in the experiments: turbofan engine and lithium-ion
battery aging data sets.

A. Turbofan engine data

The turbofan engine data sets are generated using commer-
cial modular aero-propulsion system simulation (C-MAPSS).

In this work, the data file “train_FD001.txt" is used for offline
training and “test_FD001.txt" is used for online testing. Each
file contains data for 100 engines and the objective is to predict
the number of remaining operational cycles before failure in
the test set. The true RUL values for the test data are presented
in the data file “RUL_FD001.txt".

1) Variable selection: one of the results of the selection
algorithm is the pair of sensors number {8,13}, i.e. physical
fan speed and corrected fan speed respectively. The selected
group is interesting as the two variables are correlated and
both are related to the fan speed. Then, the algorithm starts
constructing the monotonic trends iteratively from each pair
at each cycle/time.

2) Health indicator construction: as mentioned before, four
features are extracted from each trend at each cycle/time and
labeled with EOL time to be saved in the offline database. The
features represent the relation between the extracted trends.
Each trend is then saved in offline database and labeled with
the EOL time and will be used for predicting the RUL of new
trends.

3) RUL estimation results: to assess the performance of the
proposed method, mean absolute percentage error (MAPE) is
calculated for all 100 online predictions:

E =
100%

n
×

n∑
i=1

|RULi −RUL∗i
RULi

| (5)

where, RUL and RUL∗ are the actual and predicted RUL
values respectively and n is the number of total predictions.
The error is calculated only for the last cycles of all 100 test
signals. The MAPE over the 100 test data is 11.41%. Figure
10 shows the result of RUL estimation for engine #81 at all
cycles.
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Fig. 10. RUL estimation results of engine #81.

B. Lithium-ion battery data

These data are collected on 34 lithium-ion batteries run
through different operational profiles (e.g. charge, discharge
and impedance) at different temperatures. In this work only
charge and discharge cycles are used. Each cycle is presented
by the mean value to reduce the processing time. In order



TABLE II
MEAN ABSOLUTE PERCENTAGE ERROR FOR BATTERY DATA SETS

Fold #1 Fold #2 Fold #3 Average

33.0966% 32.2086% 35.2726% 33.5259%

to validate the proposed method a 3-fold cross-validation is
performed, i.e. the available data sets are partitioned into three
groups of equal size. Each group is then divided into training
and testing data set.

1) Variable selection: one of the results of the selection
algorithm is the pair {6, 11}, i.e. the voltage measured at
discharge and the capacity of the battery. The selected group
is interesting as the two variables are correlated. Also, the
capacity is related to the battery health as the decrease in the
capacity indicates health degradation.

2) Health indicator construction: four features are ex-
tracted from each trend at each cycle/time and labeled with
EOL time to be saved in the offline database.

3) RUL estimation results: to assess the performance of the
proposed method, MAPE is calculated for all cycles of each
battery. The total MAPE per fold is calculated as follows:

MAPEf =
1

n
×

n∑
i=1

MAPEi,f (6)

where MAPEf is the average MAPE for a complete fold,
MAPEi,f is the MAPE for test battery i in fold f . The final
results are calculated and summarized in Table II. Figure 11
shows a plot of the RUL predicted for the battery B0025. Only
10 cycles were considered as late predictions. Furthermore, the
error was decreasing at the later cycles.

Fig. 11. RUL estimation results of battery #B0025.

IV. CONCLUSION

In this paper, a complete approach for developing a prognos-
tics models for a complex system is presented. The first part of
the approach presented different methods that can be used to
select the critical component(s) in a complex system, choose
the physical parameters from the critical component, choose
the monitoring sensors, gather and pre-process sensor data.

In the second part, a data driven method for RUL prediction
based on Bayesian approaches is presented. The method builds
on unsupervised selection of interesting variables from the
input offline signals. It construct representative features that
can be used as health indicators. The method represents the
current status of the online signals as well as the uncertainty
about the predictions in a probabilistic form. The performance
of the predictions is enhanced by integrating two models,
namely k-NN and GPR. The performance of the algorithm is
demonstrated using two real data sets taken from the NASA
Ames prognostics data repository. The selected variables from
the two applications are shown to be interesting. Moreover,
the prediction results show low MAPE values for both applica-
tions. This paper provided a generic prognostics approach that
can be customized and integrated for different applications. It
can also be useful for new PHM and data analytics researches
to understand the whole process required to develop data-
driven prognostics methods for complex systems.
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