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Abstract—Many models and methodologies in order to predict
the remaining useful life (RUL) of a critical component are
investigated nowadays. However, estimating remaining useful life
of multi-component systems is still an under explored area,
especially when there are interdependencies among the com-
ponents of these systems. Practically, prognostics can be quite
complicated when there is absence of prior knowledge about
these interactions. To optimize the availability and reliability
of the system, it is required to embed a dependency model
that implements component strength and the component’s health
status. In this paper, a novel approach is proposed in order
to emphasize the importance of interactions between complex
system’s components in the RUL’s calculating. The effectiveness
of the approach is judged by applying it to numerical studies in
order to estimate system’s remaining useful life.

I. INTRODUCTION

Nowadays, the development of industrial systems is in-
creasingly complex due to new technologies, and industrial
manufacturing systems are becoming more complicated. Com-
plex system may be defined as a coherent system composed of
many interacting entities. Controlling, managing and keeping
such a system in a good health status isn’t an easy task. This
topic has received more attention from academic researchers
and manufactures in the past decade. In fact, many research
works have been developed on reliability of complex systems
and their maintenance [11], [10], [1]-[2]. Prognostics is con-
sidered as a key process in maintenance strategies in order to
predict the RUL (remaining useful life) and the performance of
multi-component and networked systems, like aircraft, cars and
mechanical machinery. Prognostics and Health Management
(PHM) is an emerging discipline which links studies of failure
mechanisms and life cycle management [3]. According to
ISO:13381-1, prognostics is defined as the ”estimation of time
to failure and risk for one or more existing and future failure
modes” [4]. The use of prognostics methods in maintenance in
order to predict the RUL is receiving more attention over the
past years. Many experts expect that effective prognostics will
result (i) in reduced numbers and severity of failures, especially
failures in the field, (ii) optimizing operational performance,
(iii) extending the time between needed maintenance activities
and reducing life-cycle costs. However, the use of these
techniques in maintenance decision making and optimization
in multi-component systems is still an under explored area due
to the complexity of these systems which introduces additional
interdependencies between components. In fact, complex sys-
tems are handled differently from single-component systems

because we need a full understanding of interactions between
components, and neglecting them leads to inefficient prognos-
tics. Ancient approaches are reduced to consider the minimum
of critical components RULs and to neglect interdependencies
between components in order to avoid any possible system’s
shutdown. Nevertheless, many researches have reported that
the assumption of independence is impractical. In fact, Sun et
al. [7] notice that this assumption leads frequently to errors in
estimating the system’s RUL in real applications. Therefore,
the decision making based on the resulting remaining useful
life should be established in a predictive maintenance policy
which highlights dependency between system components.
Interdependencies between complex system components have
been extensively studied in operations research literature for
the past few decades. Murthy and Nguyen [5] indicate that the
analysis of maintenance policies with failure interactions is
an open problem. More recently, Nicolai and Dekker [6] have
given a thorough overview of optimal maintenance policies
for complex systems with dependency between components
(i.e. stochastic, structural or economic dependence). However,
no models that use prognostics or a prediction of Remaining
Useful Life are mentioned. This paper focuses on stochastic
dependence, where the degradation or the failure of one
component influences the life time distribution of other com-
ponents in the system, i.e. if a component degrades over
time (due to wear, environmental variables or use conditions),
it has an impact on the performance of other components
by means of accelerating their degradation. In that context,
Bian and Gebraeel focus on how degradation-based sensor
signals associated with the components evolve over time, using
stochastic models characterizing the natural degradation rates
and the effects of interactions on the degradation rate [8]-[9].
Wu et al. [10] present a method to consider stochastic loading
and strength degradation for computing the time-dependent
reliability of a structural component. Besides, Van Horenbeek
and Pintelon [11] present a dynamic predictive maintenance
policy for complex systems that minimizes the long-term mean
maintenance cost per unit time. This method is based on
prognostics information while considering different component
dependencies (i.e. economic, structural and stochastic). More-
over, Ribot [12]-[13] aims at improving classical approach to
estimate the RUL of a complex system. Mainly, Ribot’s ap-
proach has an advantage of better system modeling, when there
is absence of components dependency. Our work differs from
the papers mentioned above in two folds, as shown in Fig. 1: i)
Presenting a stochastic dependency model for degradation rate



interactions, ii) Proposing a prognostics method to calculate
the system’s RUL considering the degradation rate interactions
between system’s components. The remainder of the paper is

Fig. 1: Position of the proposed approach

organized as follows: In section 2, we describe the prognostics
method. Sequentially, we present a stochastic dependency
model in details with necessary assumptions. Under these
assumptions, we prove in section 4 our approach bu presenting
a numerical studies. Conclusions are presented in section 5.

II. PROGNOSTICS METHOD

A. Introduction

Prognostics basically consists in estimating at time ti the
time ti+1 of the system failure. A prognostics function is defined
to assess the probability associated with each possible future
failure for the system. This probability is obtained from a set
of aging models available in the current operational mode of
the system. We assume that a set of aging models is available
for each component in the system. These models represent
the knowledge available about component’s wear. They may
indicate an average value of the next component’s failure as
the mean time to failure (MTTF) [12]-[13]. We consider as an
example, a system of two interconnected components C1 and
C2 with a set of failure probability density functions denoted
by fC1(t) and fC2(t) respectively, as in Fig. 2, where the Weibull
model represents the probability density function.

B. System’s remaining useful life

We consider a system of n interconnected components
C1,C2,...,Cn with a set of aging models denoted by S1(t),
S2(t),..., Sn(t) respectively. Si(t) is defined without taking into
account interactions between components, in other word, it
represents the component’s own model. Failure probability is
determined for each component from its aging model selected
in the current operating mode. Let fi denote the probability
density function (pdf) representing the failure probability of a
component i in its current operating mode, Pmax be the maxi-
mal failure probability threshold acceptable for the component
Ci. The remaining useful life of Ci consists in determining
the time tc for which the failure probability has reached the

threshold Pmax, as in (1).

RUL(Ci) = tc such that

tc∫
0

fc(t)dt = Pmax (1)

The date of the next system failure is then calculated by :

ti+1 = ti +min(RUL(Ci)) where i ∈ [1, n] (2)

C. Weibull model

The difficulty is to establish a common prognostics rep-
resentation for each type of component. This representation
should be as flexible as possible to represent the failure
probability density functions of each component in the system.

Fig. 2: Component’s representation with the Weibull model

The probabilistic Weibull model is often used in the field of
survival and failure analysis, reliability and systems life data
analysis [14]-[12]. The Weibull probability density function is:

W (t, κ, λ, θ) =
κ

λ

(
t− θ
λ

)κ−1
e−(

t−θ
λ )

κ

(3)

where t ≥ 0, κ ≥ 0, λ ≥ 0, and θ ≥ 0. κ represents the shape
parameter of the distribution, λ defines the scale parameter and
θ determines its location on the time axis. These parameters
define the probability distribution and model component aging
signs. We assume that prognostics were done in the same time
for all system’s components, this translates into θ = 0. For a
given component Ci and a given probability threshold Pmax,
the remaining useful life is:

RUL(Ci) = tc such that

tc∫
0

κ

λ

(
t

λ

)κ−1
e−(

t
λ )
κ

dt = Pmax

(4)

III. STOCHASTIC DEPENDENCY MODEL FOR
DEGRADATION RATE INTERACTIONS

In this section, we present a stochastic methodology by
modeling the degradation interactions effects of interdependent
components C1,C2,...,Cn knowing its failure cumulative dis-
tribution functions F1(t,κ1,λ1), F2((t,κ2,λ2)),..., Fn((t,κn,λn))
(6).



A. Cumulative distribution function CDF

To facilitate the analysis of degradation interactions be-
tween system components, each component will be represented
by its cumulative distribution, as in Fig. 3. Moreover, CDF
will allows us to fully note the degradation of the component’s
health state. In probability theory and statistics, the cumulative
distribution function of a continuous random variable X can be
expressed as the integral of its probability density function fX
as follows:

FX(t) =

x∫
−∞

fX(t)dt (5)

The cumulative distribution function for the Weibull distribu-
tion is:

F (x;κ;λ) = 1− e−(
x
λ )
κ

(6)
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Fig. 3: CDF of the Weibull distribution with different
degradation states

B. Component’s degradation states

Interaction considers that the failure of one component
induces failure of all other interdependent components. We
refer to the former as the ”influencing component” and the
latter as the ”affected component”. The transition of an influ-
encing component, say Ci to a more degraded state increases
the degradation rate of the affected component, say Ca by
an amount ρi→a which depend on the degradation states of
the influencing component. We can take as an example ”the
gear train” which is a mechanical system formed by mounting
gears on a frame so that the teeth of the gears engage. The
degradation of a gear teeth may cause the degradation of the
next one, which may increase the looseness of the smooth
transmission of rotation from one gear to the next. In this
example, the system is the rotation transmission system. Thus,
based on the value of failure probability, a component Ci can
be classified into different degradation states, e.g., ”nominal”,
”degraded”, ”critical”, ”failed” (see Fig. 3). Let si(t) denotes
the degradation state of component Ci, whereby si is piece-
wise constant function, as in (7):

s(Fi(t)) =


1 Fi(t) < pi,1
2 pi,1 ≤ Fi(t) < pi,2
3 pi,2 ≤ Fi(t) < pi,3
4 Fi(t) ≥ pi,3

(7)

where pi,1, pi,2, pi,3 and pi,4 represent the probability thresh-
olds for different degradation states. s(F (t)) represents the
degradation state of the influencing component.

C. Component’s strength

Most components degrade as they age or deteriorate as a
result of some factors that termed as covariates, i.e., degree of
use, amount of load or extent of stress they experienced. To
illustrate this idea, we can take the example of health concerns
of old people. As people age, poor resistance and strength
contribute to falls, health problems and, in some cases, fatal
complications. Let Ri(t) represents the strength of component
Ci. Ri(t) is a random variable that decreases over time and
it can be described by gamma process which reduces the
reliability and accelerate the risk of failure and shortens its
life service [10]. Wu et al. [10] define the component strength
which drops below the load as : Ri(t) = R0 − x(t), where
R0 represents the initial strength and x(t) is the component
strength’s deterioration over time, as in Fig (4).

Fig. 4: Deterioration of component strength

D. Degradation rate of interactions

We denote the degradation rate of component Ci at time
t by ri(t). We assume that ri(t) is composed of two parts:
(i) Component’s strength, (ii) component’s degradation state.
Thus, our proposed degradation rate of component Ci can be
written in the following form: ri(t) = ri[t;Ri(t), s(F (t))]. To
facilitate model development, we assume that the degradation
rates of system components can be expressed as:

r(t) =
ρi→a
R(t)

(8)

Degradation occurs when the impact of influencing component
degradation is higher than affected component’s strength. Gen-
erally, the impact of influencing component’s degradation tends
to increase, while the component strength tends to decrease
due to deterioration induced by higher than expected loads or
fatigue damage.



E. Weibull model with degradation interactions

If the quantity t is a ”time-to-failure”, the Weibull distribu-
tion described in (3) gives a distribution for which the failure
rate is proportional to a power of time. The shape parameter
κ, is that power plus one [15], and so this parameter can be
interpreted directly as follows :

• A value of κ < 1 indicates that the failure rate
decreases over time.

• A value of κ = 1 indicates that the failure rate is
constant over time.

• A value of κ > 1 indicates that the failure rate
increases with time. This happens if there is an ”ag-
ing process i.e., the degradation states of influencing
components”, or parts that are ”more likely to fail i.e.,
component strength” as time goes on.

Moreover, the coefficient of variation depend only on the shape
parameter. Thus, The degradation evolution of the cumulative
distribution function Fi(t) can be modeled as in (9):

F (t;κ′;λ) = 1− e−(
t
λ )
κ.r(t)

(9)

where κ′ = κ.r(t). Equation (9) describes our stochastic de-
pendency model which characterizes the effects of degradation
interaction arising from other components. For the aim of this
model, we consider the following assumptions:

1. κ represents the original degradation rate of the
component Ca without taking into account the ef-
fect of dependency between system components, i.e.,
the strength of the ”affected component” is maximal
Ra(t) = RaMax and the degradation state of ”the
influencing component” is nominal s(Fi(t)) = 1.

2. The degradation rate of a component Ci is a linear
function of its component strength and the degrada-
tion states of other influencing components, precisely
r(t) =

ρi,a
R(t) .

3. Degradation is triggered when the degradation of
influencing component exceeds affected component’s
strength that is liable to deterioration, i.e., r(t) > 0.

4. The whole system is inspected simultaneously at a
fixed time, and all inspection actions are perfect and
instantaneous.

Figure 5 provides an example of the impact of component
degradation interactions from a system that exhibit stochastic
dependency.

IV. APPLICATION

A. System description

Our application is interested in ski lift. We illustrate our
approach by studying the Lorry system which is a must for
the good functioning of a ski lift, see Figure (6). Lorry is a
tension system that enables to maintain cable tension almost
constant on the driving pulley. In this case, an engine unit
including the driving pulley is installed on a carriage which
can move in the desired direction, forward or backward. In
fact, the cable’s length for a ski lift is made to change over
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Fig. 5: Example of cumulative distribution function with
degradation interactions

time, load and temperature. The cable’s tension is mostly
adjusted by one or two hydraulic jacks, which are powered
by a hydraulic pump. We assume that engine of hydraulic
pump and jacks present the most critical components of the
system where engine is the influencing component and jacks
represent the affected component. Thus, we consider a system

Fig. 6: Lorry system

of 2 interconnected components Cengine and CJacks with a
set of failure probability density functions denoted by fengine(t)
and fJacks(t). λ and k represent respectively the scale and
shape parameters, as in (10), and PMax defines the probability
threshold.

fengine :

{
ke = 2.6
λe = 2

PMax,e = 0.9
fJacks :

{
kJ = 2.1
λJ = 1.9

PMax,J = 0.9
(10)

Th system components are assumed to be interdependent
and their degradation interactions are manifested in their
cumulative distribution functions. For the purpose of this
study, we simulate cumulative distribution functions for all
two components using equation (6). To simulate degradation
process for different scenarios, we consider two experimental
settings: (i) In the first experiment, our model is equivalent
to models that do not consider any interactions between
components and assume components independence. (i) Next,
for the second experiment, we study degradation interactions
between system’s components.



To facilitate our simulation, we start with a baseline setup.
The initial strength of Jacks is RJmax = 750MPa, and it
decreases over time as shown in Fig. 7. Next, we note that
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Fig. 7: Deterioration of Jacks strength

ρengine→Jacks represents the engine’s degradation amplitude,
i.e., the incremental change in the jacks degradation when
engine switches to a more severe state. Engine degradation
states are described in Fig. 8 where we notice four degradation
states, nominal, degraded, critical and failed according to
(11). For these degradation states, the values of probability
thresholds pengine,1, pengine,2 and pengine,3 are respectively
0.4, 0.7 and 0.9.

s(Fengine(t)) =


1 Fengine(t) < 0.4
2 0.4 ≤ Fengine(t) < 0.7
3 0.7 ≤ Fengine(t) < 0.9
4 Fengine(t) ≥ 0.9

(11)
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To investigate the impact of different degradation magni-
tudes, we consider three levels of degradation interactions rJ
= (1.6; 2; 3), see table I. In other words, this allows us to study
the impact of different amplitudes of degradation interactions.

B. Results

With the increase of degradation rate rJ(t), the value of
the RULsystem gradually decreases which can be shown in
table II. In the first scenario where there are no interactions
between system components, the system remaining useful life
depends on the engine’s RUL, i.e., engine represents the most

TABLE I: Degradation interactions rates

ρengine→Jacks(MPa) RJacks(1000)(MPa) rJ

750 750 1 (No interaction)

800 500 1.6

900 450 2

1200 400 3

TABLE II: Simulation results

rJ RULJacks RULEngine RULSystem

1 1826.4 1750 1750

1.6 1435.3 1750 1435.3

2 1317.4 1750 1317.4

3 1168.9 1750 1168.9

critical component of the system. Taking into account the
dependencies between the components changes the behavior
of the system’s RUL, and we clearly see that it becomes
dependent of the value of the jacks RUL. Figures (9) and (10)
illustrate the change in the jacks failure probabilities.
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Fig. 9: CDF of jacks degradation interactions
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Fig. 10: Weibull model for jacks degradation interactions

Indeed, the high availability of systems such as aerospace,
defense, petrochemical and automotive, is an important tar-



get of the new developments in systems design technology
knowing that the failure is generally very expensive. To make
maintenance strategies more effective and to take into account
the system’s changing status, the maintenance action has to be
done at the right time according to the system remaining useful
life given by the prognostics process. This allows us to increase
the time of availability, performance and reliability of the
system. The stochastic dependency is included in our approach
to make it more accurate and realistic. In fact, a Weibull
model is developed to highlight the link between prognostic
method and dependencies between systems components. The
decision making determined from the resulting RUL should be
established, taking into account dependency between system
components. These interactions require to be integrated in
degradation models by considering these data as input data.

V. CONCLUSION

In this paper, we study prognostics approach for multi-
component system which have failure interactions among
them. The approach presented allows us in the first place to
calculate the remaining useful life of system’s components.
Secondly, it permits to characterize the interactions among
the degradation process of interdependent components where
both the deteriorating component’s strength and the health
status of component are modeled as stochastic process. Hence,
Our approach predicts the system’s remaining useful life and
demonstrates how the availability of a complex system is
affected by its constituent components. Through numerical
example, we demonstrate that failure interactions impacts
prognostics results and these impacts will be intensified as the
degradation interactions rate increases.
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