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Abstract The propagation of elastic or acoustic waves in phononic crystals can be
described via wave equations with periodically varying coefficients. In this chapter,
we give an overview of different methods that have been used to compute phononic
band structures and transmission through phononic crystals, and investigate the
properties of phononic crystal waveguides and cavities. We first present general
considerations on the equations and the types of problems that have been consid-
ered. We then introduce four different methods: (layer) multiple scattering theory,
plane wave expansion, finite-difference time-domain, and finite element methods.
Rather than giving a full account of each method, we stress their generic properties,
capacities, and limitations. We hope this discussion will be useful for the reader to
decide which method to select for a specific problem.

1 Basic equations for wave propagation

As a general rule, computational problems for phononic crystals are the combina-
tion of equations in a domain of a given geometry, supplemented with some given
boundary conditions. This introductory section focuses on the basic equations that
govern wave propagation inside a domain composed of either, or both, fluids and
solids. It also briefly introduces how material loss can be represented, and exposes
the Bloch-Floquet theorem and its consequences.
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1.1 Equations for solids

In the absence of internal sources, the basic equations for elastic waves propagating
in solid media are written as

Ti j(r, t) = ci jkl(r) uk,l(r, t), (1)

Ti j, j(r, t) = ρ(r)
∂ 2ui(r, t)

∂ t2 , (2)

with ui the three displacements in space and Ti j the stress tensor. In these equations,
we have explicitly written the dependence on spatial coordinates and time. Note
that we assume that the solid material with density ρ (in kg.m−3 units) and elastic
constants ci jkl (in Pa units) is static but has a spatially varying composition. As a
general rule, indices like i, j,k, or l run between 1 and 3 for the three directions
of space, a coma before an index indicates derivation (e.g., uk,l = ∂uk/∂xl), and
summation over repeated indices is implied (e.g., we have Ti j, j = ∑

3
j=1 ∂Ti j/∂x j).

Such tensorial notations are useful to keep expressions in tractable length and are
easily transposed as loops in computer programs.

The rank-4 elastic tensor ci jkl has symmetries that are directly dictated by the
lattice symmetry of the solid material. It is not the purpose of this chapter to discuss
these symmetries and the corresponding number of independent elastic constants, as
such a discussion and practical values for usual materials can be found in classical
textbooks [1, 2]. In many papers on wave propagation in solid phononic crystals, the
equations are specified for specific cases such as isotropic or cubic media; we note
however that as long as the tensor formulation is understood and correctly applied,
such simplifications do not generate any practical computational gains.

Stresses can be eliminated from Equations (1-2) to obtain a wave equation for
the displacements only

(ci jkl(r) uk,l(r, t)), j = ρ(r)
∂ 2ui(r, t)

∂ t2 . (3)

This last equation is often taken as the basis for formulating models for phononic
crystals, because it only involves one unknown field, but we stress that it is not
directly suited to surface and evanescent wave problems, for which mixed displace-
ment / stress formulations are both elegant and efficient.

In case the propagation medium (i.e., the phononic crystal) is perfectly periodic
and the fields are monochromatic, we can further make use of the Bloch-Floquet
theorem to obtain equations limited to the unit-cell (please see Chapter 2 for a def-
inition of the unit-cell). Specifically, if a is any vector giving the repetition of the
structure in space, we have ρ(r) = ρ(r+a) and ci jkl(r) = ci jkl(r+a) and all elastic
quantities describing an eigenmode can be written in the form

ui(r, t) = ūi(r)exp(ı(ωt−k · r)), (4)
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with ω the angular frequency, k the Bloch-Floquet wave vector, and ūi(r) a periodic
function defined in the unit-cell (ūi(r) = ūi(r+ a)). A similar expression holds for
the stresses. We can write for the periodic part of the solution

T̄i j(r) = ci jkl(r)(ūk,l(r)− ıkl ūk(r)), (5)

T̄i j, j(r)− ık jT̄i j(r) = −ρ(r)ω2ūi(r). (6)

The case of piezoelectric solids is a bit more involved but actually follows ex-
actly the same line. In piezoelectric materials, an electromagnetic wave travels along
with the elastic wave and provides a very efficient way to generate and detect elastic
waves with electrical signals. In the quasi-static approximation of Maxwell equa-
tions, it suffices to consider the electric field vector to derive from a scalar potential
φ , and the constitutive laws are taken in the linear limit as [3]

Ti j(r, t) = ci jkl(r) uk,l(r, t)+ eki jφ,k(r, t), (7)
Di(r, t) = eikluk,l(r, t)− εi jφ, j(r, t). (8)

Here D is the electric induction vector, eikl is the piezoelectric tensor, and εi j is the
dielectric tensor considered at low frequency (i.e., as opposed to optical frequen-
cies). In addition to the above two equations, Eq. (2) still holds, and the auxiliary
Maxwell equation Di,i = 0 must be added. As explained for instance in Ref. [4],
the equations for piezoelectric solids can be cast in a form similar to those of elas-
tic solids by defining a general displacement vector with u4 = φ and a generalized
stress tensor with T4i = Di.

To summarize this sub-section, elastic wave propagation in solids can be de-
scribed by either a constitutive relation relating stresses and displacements and the
fundamental relation of dynamics, such as the set of equations (1-2), or by a wave
equation for the displacement only, such as Eq. (3). As long as only linear phe-
nomena are considered, this model can be enriched in a straightforward manner to
include effects such as piezoelectricity, piezomagneticity, chemical potentials, and
so on.

1.2 Equations for fluids

It is well known that wave propagation in fluids (gazes, liquids) only involves longi-
tudinal displacements as long as viscoelasticity can be neglected. As a consequence,
it might be thought that propagation in fluids can be treated as a limiting case of elas-
tic wave propagation in isotropic solids with only the longitudinal displacements
considered; but it turns out that this simplification is not correct. In the absence of
applied external forces, the basic equations for propagation of acoustic waves in a
still fluid can instead be taken as
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−∇p(r, t) = ρ(r)
∂v(r, t)

∂ t
, (9)

∂ p(r, t)
∂ t

= −B(r)∇ ·v(r, t), (10)

where variable dependence has been stressed and will not be repeated in the follow-
ing. ρ is again the mass density and B is a bulk modulus expressed with the same
units as the elastic constants. We have purposely employed vector notations instead
of tensorial notations because it is the customary way to present these equations, but
of course both are equivalent. The velocity can be eliminated from Eq. (10) to get a
scalar wave equation for the pressure

1
B

∂ 2 p
∂ t2 = ∇ ·

(
1
ρ

∇p
)
. (11)

If we had eliminated the pressure instead, we would have obtained a vector wave
equation for the velocity (or the displacement) similar (but not equivalent) to Eq.
(3). Obviously, solving the pressure wave equation is the best choice in practice, in
particular for band structure computations.

Nevertheless, when surface and evanescent wave problems are considered, the
set of first-order differential equations (9-10) relating pressure and velocity is the
logical choice. Further assuming monochromaticity and making use of the Bloch-
Floquet theorem as in the previous sub-section, we have for the periodic part of the
solution

− 1
ρ
(p̄,i− ıki p̄) = ıω v̄i, (12)

ıω
1
B

p̄ = −(v̄i,i− ıkiv̄i). (13)

The case of phononic crystals containing both solid and fluid materials has been
considered quite often in the literature, especially in relation with experiments, for
instance for the steel rods in water or air cases. The reason is that macroscopic re-
alizations of phononic crystals are rather easy with these material systems. As is
apparent from the equations given above for the solid and the fluid cases, it is not
possible to use just one set of equations with coefficients assuming different values
in different regions of space. The rigorous way to consider the problem is to solve
the problem known as fluid-structure interaction. For instance, if the displacement
field has been computed inside the solid, Eq. (10) and use of the divergence theorem
from vector calculus leads to a boundary condition relating the pressure created in
the fluid with the normal acceleration of the solid boundary. Such boundary con-
ditions can be employed naturally with FDTD and FEM methods described later
in this chapter. The reverse reasoning shows that the pressure exerted by the fluid
on the solid boundary leads to a boundary condition for the acceleration inside the
solid. Simpler but only approximate methods can be followed if the solid is con-
sidered very rigid: either the solid boundary can be considered to have no motion
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(hence it is assumed there are no elastic waves in the solid), or the solid material can
be regarded as an equivalent fluid supporting only longitudinal waves (and thus hav-
ing an equivalent bulk modulus). The latter approximate solution gives results less
distant from the exact solution than the former. Such approximate solutions have
been employed mostly with PWE methods, but are not restricted to them.

1.3 Consideration of material loss

We end this section on basic equations with a short discussion of the representa-
tion of material losses. There are several physical origins for loss occurring during
the propagation of elastic waves and thus not one unique solution to represent them.
Losses occurring because of microscopic defects in the materials or because of scat-
tering at random rough surfaces can be described in statistical terms and are thus
in some limit amenable to macroscopic ad hoc loss terms. Elastic waves in solids
naturally interact with thermal acoustic phonons and this loss mechanism can be
viewed as dominating in perfectly ordered crystalline solids such as silicon, quartz,
or lithium niobate, to cite a few materials that are used for the realization of hy-
personic phononic crystals by microfabrication techniques. In general, it is found
that losses in the best elastic materials increase with the square of the frequency.
A simple approach to viscous losses that results in this behavior is to consider that
at a fixed temperature we can add a restoring term depending on a viscosity tensor
ηi jkl and the time derivative of the strain tensor so that the constitutive relation is
modified to [2]

Ti j = ci jkl uk,l +ηi jkl
∂uk,l

∂ t
. (14)

The viscosity tensor has the same symmetries as the elastic tensor. Such an ex-
pression is well suited to time-domain methods such as FDTD. For monochromatic
waves, the elastic constants are then seen to be modified from real to complex valued
as

c′i jkl = ci jkl + ıωηi jkl . (15)

This modification offers a simple means to include the effect of losses at a fixed
frequency, e.g. with the extended PWE method [5].

2 Computational problems of phononic crystals

Before turning to the different type of methods that are used to describe wave prop-
agation in phononic crystals, we outline in this section the different kinds of prob-
lems that one encounters and their characteristics in terms of numerical computa-
tion. There is a first obvious separation of problems depending on whether they are
considered in the spectral or the time domain. However, it is in principle always pos-
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Fig. 1 Classification of phononic crystals according to their geometry. Three consecutive dots in-
dicate a direction of periodic repetition of the unit-cell, while an arrow means the structure extends
homogeneously to infinity.

sible to go from one type to the other with the help of Fourier transforms. A deeper
separation of problems, in our opinion, stems from the boundary conditions that are
considered, as these lead to different types of waves (i.e. bulk, surface, and plate
waves). This is exposed in subsection 2.1. Less fundamental in character, but very
important for the understanding of the physics behind phononic crystals are the dif-
ferent problem types that can be considered: band structures, waveguides, cavities,
scattering problems. These are considered in subsection 2.2.

2.1 Classification by geometry

In case the phononic crystal is unbounded, there are no boundary conditions re-
quired to terminate the infinite domain of definition. We speak of the propagation
of bulk elastic or acoustic waves. In a physical three-dimensional space, we can
consider from 1 to 3 periodicities and it is customary to refer to 1D, 2D, and 3D
phononic crystals. When the phononic crystal fills a semi-infinite domain termi-
nated by a given surface, there are additional waves that can be guided along the
surface that we term surface waves. In case there can be radiation to the remaining
half space, we speak of interface waves. Plate (or slab) phononic crystals are limited
by 2 parallel planes and thus 2 surface or interface boundary conditions. Rather than
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Table 1 Basic computational problems for perfectly periodic and defect-based phononic crystals.

Structure Dispersion Scattering
(infinite structure) (finite structure)

Phononic crystal
Band structure ω(k)
Complex BS k(ω)

Transmission, reflection, and
diffraction of an incident plane
wave

Waveguide Guided modes Waveguide transmission

Cavity Confined modes Cavity transmission

attempting a lengthy description, we depict in Fig. 1 the different possibilities that
arise from this discussion. Note that there are even more complicated cases that can
be considered (e.g., finite phononic crystals with arbitrary enclosing surfaces), so
that our tentative classification is clearly not exhaustive.

2.2 Classification by problem type

The previous classification by geometry insists upon the physical properties of
phononic crystals, and especially upon the types of waves that they can support.
A second classification can be performed based on the phononic crystal structure,
as attempted in Table 1. Perfectly periodic phononic crystal can be thought ideally
as extending to infinity, in which case any solution of the wave equation can be writ-
ten as a superposition of Bloch waves. The dispersion relation of all Bloch waves
forms the band structure which can in general be obtained by solving a generalized
eigenvalue problem, possibly supplemented with surface or interface boundary con-
ditions. Note that Bloch waves constitute a complete basis (in the monochromatic
sense) only if all complex k(ω) solutions are considered [6]. If a perfectly periodic
phononic crystal of finite size is considered, for instance for comparison with exper-
iments, then the scattering of an incident plane wave to all orders of diffraction is an
important basic problem. Phononic crystal cavities and waveguides can be formed
by breaking locally the periodicity of the phononic crystal structure. Defect-based
phononic structures are generally mostly interesting for frequencies that fall inside a
complete phononic band gap, in which case perfect guidance or confinement can be
achieved. Otherwise, phononic crystal waveguides and cavities are leaky. By defin-
ing a supercell that artificially restores periodicity1, waveguide and cavity modes

1 A supercell extends a few periods away from the defect it encloses. Modal computations then
give physically meaningful results when only evanescent Bloch waves of the elementary phononic
crystal exist, i.e., inside a complete band gap. Furthermore, the number of phononic crystal rows
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can be estimated, and their band structures can be obtained. Finite-size defect-based
phononic crystal structures are in general considered for comparison with experi-
ments, with the accent on obtaining the transmission of the waveguide or the reso-
nance properties of the cavity.

3 Multiple scattering theory (MST) and layer multiple scattering
(LMS) methods

Multiple scattering type computation methods (MST) have a long history in con-
densed matter and particle physics. The methods used for phononic crystals have a
close relation with those used for the treatment of electron scattering in solids and
computing the band structure of photonic crystals and transmission through them.
The basic idea is to make use of the superposition principle for non overlapping
scatterers. Considering a single scatterer with a given shape, one first obtains the
field scattered from an incident plane wave with given angular frequency and wave
vector. Then the scattered field from an assembly of scatterers is constructed by sum-
ming properly all individual contributions. The method thus works very efficiently
if the single scatterer problem can be solved analytically, as is the case of isotropic
spherical scatterers in a homogeneous isotropic medium (for which spheroidal ex-
pansions are known) or of infinite isotropic cylinders in a homogeneous isotropic
medium. Multiple scattering methods have been employed with great success for
the computation of band structures, density of states, and transmission trough finite
phononic crystals, though almost always for isotropic spheres or cylinders embed-
ded in a isotropic background, as is the case for sonic crystals. Generalization of
multiple scattering methods to arbitrary anisotropic periodic materials still stands as
a highly difficult problem.

Arguably the most developed and versatile MST method is the layer-multiple-
scattering (LMS) method [7, 8, 9]. We refer the reader to these papers for a full
description of the method and only outline here the method. The basic principle of
the method is that the wave incident on a given scatterer is the sum of the waves
outgoing from all the other scatterers and the externally incident wave. A scattering
matrix relating the amplitudes (which are expansion coefficients in a given basis,
e.g., spheroidal harmonics) of the scattered wave with those of the incident wave is
obtained for the composite system from the corresponding matrices of the individ-
ual scatterers and proper propagator functions in the host medium. The LMS method
considers a phononic crystal to be constituted by a stack of phononic crystal layers.
It proceeds layer by layer by evaluating the scattering properties of the phononic
crystal from those of the constituent phononic crystal layers, for given frequency
and wave vector. The layers can be either planes of 3D scatterers with the same 2D
periodicity, or homogeneous layers. For each plane of scatterers, the method cal-

must be sufficient so that the Bloch wave with the least imaginary part of the wave vector can be
considered negligible on the boundary of the supercell.
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culates the full multipole expansion of the total multiply scattered wave field and
deduces the corresponding transmission and reflection matrices in the plane-wave
basis for the surrounding media. For homogeneous layers, the transmission and re-
flection matrices are directly obtained in the plane-wave basis of the homogenous
material.

In any multiple scattering calculation, the angular frequency is a fixed quantity.
The wave vector only appears as a eigenvalue in band structure computations or as
a particular component of the wave vector of the wave incident on a finite phononic
crystal. As such, MST and LMS methods give access to complex band structures
and to the consideration of propagation loss in the form of frequency-dependent
viscous elastic constants [10].

4 Plane wave expansion method

The discussion in this section relies on the presentation of the plane wave expansion
(PWE) method proposed in Refs. [4, 11]. However, whereas these papers contained
the full piezoelectric formulation, we restrict it here to the (anisotropic) elastic case
for simplicity of the presentation. The PWE method relies on a literate application
of the Bloch-Floquet theorem. As discussed in Section 1.1, any eigenmode of a
perfectly periodic medium (termed a Bloch wave) is the product of a plane-wave
like term and a function periodic in the unit cell. In the PWE method, the periodic
function is considered explicitly through its Fourier series expansion. Specifically,
we write for any displacement component

u(r, t) = ∑
G

uG(ω,k)exp(ı(ωt−k · r−G · r)), (16)

where the vectors of the reciprocal lattice are (for the square lattice case) G =
(2πm1/a,2πm2/a,2πm3/a)T . One should note that the Fourier coefficients uG(ω,k)
are those of the periodic part of the Bloch wave solution, ū.

The periodicity of the structure is also used to expand the material constants as
Fourier series

α(r) = ∑
G

αG exp(−ıG · r), (17)

where α is either ρ or ci jkl . The Fourier harmonics αG are easily calculated for
various scatterers and lattice geometries [12, 13].

4.1 Band structures with PWE

Assuming a truncation to a total of N harmonics in the Fourier expansions, the
following vector notations are considered for the harmonics of the generalized stress
and displacement fields (3N components each)
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Ti =
(
tiG1 . . . tiGN

)T
, (18)

U =
(
uG1 . . .uGN

)T
, (19)

where the vectors of the reciprocal lattice, Gm, are labeled using a single index m.
Bulk waves are then obtained as the eigensolutions of the secular equation

ω
2RU = ∑

i,l=1,3
ΓiAilΓlU, (20)

with the 3N × 3N matrices Γi, Ail and R defined by the N ×N blocks with 3× 3
elements

(Γi)mn = δmn(ki +Gim)I3, (21)
(Ail)mn = AilGm−Gn , (22)
(R)mn = ρGm−Gn I3, (23)

with I3 the 3×3 identity matrix and

AilG( j,k) = ci jklG, (24)

with i, j,k, l = 1,2,3 and m,n = 1 . . .N. Eq. (20) defines a generalized eigenvalue
problem which can be solved for ω2 as a function of k to obtain the band structure
of bulk waves. This formulation encompasses 1D, 2D, and 3D bulk wave problems,
plus the out-of-plane 2D bulk wave propagation problem [14].

It is also instructive to consider the problem of surface waves propagating on
the surface of a 2D phononic crystal. The phononic crystal is assumed to be pe-
riodic in the directions x1 and x2 and invariant along direction x3, except for the
presence of a surface at x3 = 0. Surface waves are defined by the angular frequency
ω and a wave vector k = (k1,k2,0)T defined in the plane of the surface. The two-
dimensional phononic crystal is not periodic along the x3 axis and k3 can be obtained
as a function of the other parameters of the model – i.e. k1, k2 and ω . We group the
displacements and the stresses normal to the surface in the 6N-components state
vector H = (U,T3)

T and obtain k3 as the eigenvalue of the equation[
ω2 R̃−B 0
−C2 Id

]
H = k3

[
C1 Id
D 0

]
H , (25)

where

B = ∑
i, j=1,2

Γi Ãi j Γj, C1 = ∑
i=1,2

Γi Ãi3,

C2 = ∑
j=1,2

Ã3 j Γj, D = Ã33. (26)

Solving this system yields 6N complex-valued eigenvalues k3q and eigenvectors
Hq. By grouping in the eigenvectors the 6 components corresponding to the m-th
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harmonic, we introduce the notation

hmq =

(
(ui)Gmq
(T3 j)Gmq

)
, (27)

with i, j = 1,2,3, m= 1, . . . ,N, and q= 1, . . . ,6N. The generalized displacement and
normal stress fields are obtained from the superposition with relative amplitudes Aq

h(r, t) =
N

∑
m=1

6N

∑
q=1

Aqh̃mq exp((ωt− (Gm +kq) · r)). (28)

This superposition is a finite approximation to the infinite series (16). From this
partial wave expansion, boundary conditions can be constructed to solve surface
and plate problems [4, 11].

The PWE method has one drawback that is apparent in Eq. (16). The Fourier
series expansion of the displacement and the stress fields implicitly makes the solu-
tion continuous everywhere inside the unit-cell. Whereas the displacements and the
normal stresses can be considered continuous at an interface between different solid
materials, such is not the case for shear stresses applying along the interface. Also,
the boundary condition at the interface of a solid and a fluid cannot in general be
satisfied, which makes the PWE method rather unsuitable for solid-fluid problems
(its application can result in the appearance of spurious modes in the fluid part).

4.2 Evanescent waves in phononic crystals

A limitation of the PWE method for band structure computations is that the eigen-
value problem of Eq. (20) gives eigenfrequencies at fixed values of the Bloch wave
vector. Thus, it is not easy to consider materials with frequency-dependent elastic
constants describing viscous losses, contrary to the LMS case. The extended PWE
method relieves this particular limitation and enables the computation of the full
complex band structure [6, 5], as we outline here.

It is well-known in the theory of diffraction gratings and near-field optics or
acoustics that evanescent waves play a essential role in all wave propagation prob-
lems. The set of all propagative and evanescent Bloch waves constitutes a complete
basis for phononic crystal problems [6]. Evanescent Bloch waves can be charac-
terized as eigensolutions of the periodic Helmholtz equation describing monochro-
matic wave propagation, for which the wave vector can be complex-valued. Usual
band structures are obtained assuming the wave vector to be a real-valued quantity
(through the ω(k) eigenvalue problem); complex band structures are obtained by
assuming real-valued frequencies and solving for the (generally complex-valued)
wave vector (the k(ω) problem).

As an example, let us outline how the complex band structure for solid phononic
crystals can be obtained from the equations we have written in Section 1. Multiply-
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ing Equation (3) with α j we get

T̄ ′i = α jT̄i j = ci jklα jūk,l− ıkci jklα jαl ūk. (29)

Inserting Equation (3) into Equation (4) we also get

ρω
2ūi =−ci jkl ūk, jl + ıkci jklαl ūk, j + ıkT̄ ′i. (30)

T̄ ′i is the component along xi of the stress tensor projected along the propagation
direction. In the two last equations, the modulus of the wave vector, k, appears in
factor of terms that are linear in the unknown periodic fields ū and φ̄ . Thus these
equations can be used to formulate a generalized eigenvalue problem for the eigen-
value k. Written in terms of the PWE notations given in Section 3, the eigenvalue
problem is as follows [6](

−C2 Id
ω2R−B 0

)(
U
ıT ′

)
= k
(

D 0
C1 Id

)(
U
ıT ′

)
, (31)

with B = ΓiAi jΓj, C1 = ΓiAi jα j, C2 = αiAi jΓj, D = αiAi jα j, and (Γi)mn = (k0i +
Gm

i )δmn. It can be checked easily that Eq. (25) appears as a special case of the
above generalized eigenvalue problem. Eqs. (29-30) can also be used to formulate
the finite element version of the generalized eigenvalue problem, by using a mixed
displacement-stress formulation.

5 Finite element method

The finite element method (FEM) is a numerical technique to solve partial differ-
ential equations (PDE) and integral equations in the time domain as well as in the
spectral domain. The primary challenge is to create an equation that approximates
the equation to be studied and that is numerically convergent. FEM is a power-
ful method suitable for solving PDE over complicated domains, when the domain
changes – e.g., for moving boundaries – and when the desired precision varies over
the entire domain. Several authors of the phononic community have recently pro-
posed FEM to study different geometries and compositions, through the calculation
of band structures [15, 16] or the design of cavities and waveguides – defect modes
– in perfect structures [17]. The commercial software COMSOL, for instance, is
now widely used to compute band structures of phononic crystals. In the following,
we describe an example of such a calculation in the case of the phononic crystal
slab.

The geometry of a square lattice phononic crystal slab is depicted in Fig. 2. The
phononic crystal is assumed to be infinite and arranged periodically in the x and y
directions. a1 and a2 are the pitches of the array, with a1 = a2 = a in the square
lattice case. The slab has a finite thickness d in the z direction. Each unit cell is
indexed by (m, p). The whole domain is split into successive unit cells, consisting
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Fig. 2 Unit cell of phononic
crystal slab.

of a single cylinder surrounded by a matrix. The inclusions are assumed to have a
circular cross section so that the filling fraction is F = πr2/a2 = 0.5, where r is
the radius of the inclusion. The unit cell is meshed and divided into finite elements
connected by nodes as shown in Fig. 2. According to the Bloch-Floquet theorem,
all fields obey a periodicity law, yielding for instance the following relation between
the mechanical displacements ui for nodes lying on the boundary of the unit cell

ui(x+ma1,y+ pa2,z) = ui(x,y,z)exp(−ı(kxma1 + ky pa2)) , (32)

where kx and ky are the components of the Bloch wave vectors in the x and y di-
rections, respectively. Considering the periodic boundary conditions above allows
us to reduce the model to a single unit cell which can be meshed using finite ele-
ments. A mechanical displacement (for elastic solids) and electrical potential (for
piezoelectric solids) FE scheme is used. Considering a monochromatic variation of
mechanical and electrical fields with a time dependence exp(ıωt), where ω is the
angular frequency, the general piezoelectric problem with no applied external force
can be written (

Kuu−ω2Muu Kuφ

Kφu Kφφ

)(
u
φ

)
=

(
0
0

)
, (33)

where Kuu and Muu are the stiffness and mass matrices of the purely elastic part of
the problem, Kuφ and Kφu are piezoelectric-coupling matrices, and Kφφ accounts for
the purely dielectric problem. u and φ represent, respectively, all displacements and
electrical potential at the nodes of the mesh, gathered together in vector form. As the
angular frequency ω is a periodical function of the wave vector, the problem can be
reduced to the first Brillouin zone. Practically, we relate all the degrees of freedom
on boundary A to those on boundary B along the x direction, according to(

ui(B)
φ(B)

)
=

(
ui(A)
φ(A)

)
exp(−ı(kxa)) , (34)



14 Vincent Laude and Abdelkrim Khelif

Fig. 3 Band structure of a
periodic array of tungsten rods
in epoxy. The lattice is based
on square symmetry. The
filling fraction is about 0.35.
A large band gap extending
from f a = 23 to 42 m/s is
obtained.
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Fig. 4 Phononic crystal slab geometry for transmission calculation.

in which kx varies in the interval (0,π/a) along the x direction. Similar periodic
boundary conditions are applied to the boundaries orthogonal to the y axis. The dis-
persion curves are then obtained by varying the wave vector in the first Brillouin
zone for a given propagation direction and by solving the eigenvalue problem to
obtain the eigenfrequency solutions, or angular pulsations, ω . The full band struc-
ture is then deduced using symmetries. An example of a dispersion calculation is
presented in Fig. 3.

In transmission calculations involving a phononic crystal of finite size, an acous-
tic wave with specific polarization (ux,uz,uy) can be generated by applying a line
source vibration on the upper surface. We apply in addition in the y direction pe-
riodic boundary conditions to account for the lateral size of the structure. The line
source generates monochromatic waves propagating along the x direction. To pre-
vent reflections of the scattering wave from the edge, a perfectly matched layer
(PML) [18] is applied. The PMLs have the property that the mechanical distur-
bances are gradually absorbed in the layers before they reach the outer boundaries.
In this way, there will be no reflections that can disturb the propagation of the source
wave. Indeed, we can write the dynamical equation as

1
γ j

∂Ti j

∂x j
=−ρω

2ui, (35)

where ρ is the density of the material. The parameter γ j is an artificial damping
factor at position x j in the PML. As the PML is added to attenuate the acoustic
wave propagating in the plane of the structure, for propagation in direction x only γx
is different from 1 and is given by



Numerical Techniques for Phononic Crystals 15

γx(x) = 1− ıσx(x− xl)
2, (36)

where xl is the coordinate at the interface between the regular domain and the PML,
and σx is a suitable constant. There is no damping outside the PMLs and γx = 1
there. A suitable thickness of the PML as well as the value of σx must be found by
calculations such that the mechanical disturbances are absorbed before reaching the
outer boundaries. Absorption, however, must also be sufficiently low as reflections
will occur at the interface between the regular domain and the PML if their material
properties are not comparable. Mechanical stresses depend on the strains as usual

Tjk = c jklmSlm, (37)

Where c jklm are the elastic stiffness constants, but strains are now defined from the
displacements as

Si j =
1
2

(
1
γ j

∂ui

∂x j
+

1
γi

∂u j

∂xi

)
. (38)

6 Finite-difference time-domain method

Finite-difference time-domain (FDTD) is a well-known computational electro- and
elastodynamics modeling technique. It is usually considered easy to understand and
easy to implement. Since it is a time-domain method, with the advantage that the
solutions can cover a wide frequency range with a single simulation run. The FDTD
method belongs in the general class of grid-based differential time-domain numeri-
cal modeling methods. Generally, the time-dependent wave equations -in partial dif-
ferential form- are discretized using central-difference approximations to the space
and time partial derivatives. The resulting finite-difference equations are solved in
a leapfrog manner: in the case of elastic wave, the displacement field vector com-
ponents in a volume of space are solved at a given instant in time; then the stress
field tensor components in the same spatial volume are solved at the next instant in
time; and the process is repeated until the desired transient or steady-state acoustic
or elastic displacement field behavior has fully evolved. Since the rise of phononic
crystal field, FDTD has emerged as an alternative technique to PWE when dealing
with finite size structure – to evaluate the transmission through a finite number of
period – and more important with acoustic / elastic wave interactions in solid / fluid
mixed phononic structures. In the later case, PWE fails in getting stable solutions
due to the non consideration of shear waves in the equations describing the fluid. In
the following, we describe how FDTD can obtain the band structure of infinite peri-
odic 2D phononic crystals composed and the spectral transmission through a finite
size structure.

We first consider a perfect 2D elastic or acoustic system composed of a periodic
array of cylinders of a material A embedded in a background material B accord-
ing to a square lattice array (see Fig. 5). Both materials are assumed to be elasti-
cally isotropic. We choose the z (= x3) direction parallel to the cylinder axis of the
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Fig. 5 Gridded unit cell of a
phononic crystal composed of
a cylinder (A) embedded in a
background (B) and arranged
according to a square lattice.
A closer view of spacial
discretization of elastic fields
is shown.

2D phononic crystal. The mass density ρ and the elastic tensor ci jmn of the sys-
tem depend only upon coordinates (x,y) = (x1,x2) in the plane perpendicular to
the cylinder axis. The equations of motion for the lattice displacement are those of
Eqs. (1-2). In the phononic crystals composed of isotropic materials and for acoustic
waves propagating in the (x,y) plane, the equations of motion can be decomposed
into two independent sets of equations. One is in explicit form

ρ(x,y)
∂ 2u1(x,y, t)

∂ t2 =
∂T11(x,y, t)

∂x
+

∂T12(x,y, t)
∂y

, (39)

ρ(x,y)
∂ 2u2(x,y, t)

∂ t2 =
∂T21(x,y, t)

∂x
+

∂T22(x,y, t)
∂y

, (40)

T11(x,y, t) = c11(x)
∂u1(x,y, t)

∂x
+ c12(x,y)

∂u2(x,y, t)
∂y

, (41)

T12(x,y, t) = T21(x,y, t) = c44(x,y)
(

∂u2(x,y, t)
∂x

+
∂u1(x,y, t)

∂y

)
, (42)

T22(x,y, t) = c12(x,y)
∂u1(x,y, t)

∂x
+ c11(x,y)

∂u2(x,y, t)
∂y

. (43)

In these equations, the cIJ are the contracted elastic constants with two indices and
the relations c21 = c21, c22 = c11 and c66 = c44 have been used. The equations are
restricted to mixed modes consisting of both longitudinal and transverse vibrations,
which means that shear modes with a pure transverse vibration along z is not in-
cluded in these equations.

The basic FDTD space grid and time-stepping algorithm traces back to a paper
written by K. Yee, which was originally applied to electromagnetic wave propaga-
tion in dielectric media [19]. To solve Eqs. (39-43), we extend Yee’s discretization
scheme in the framework of the FDTD method. The variables involved in those
equations are now defined on rectangular grids with side lengths ∆x and ∆y. Dis-
placement fields are separated in time by a unit time step ∆ t and the displacement
and stress fields are spatially interleaved by half a grid cell. Based on this scheme,
center differences in both space and time are used to approximate the equations of
motion for mixed modes. The explicit expressions for this discretization version are
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given as

u
i+ 1

2 , j;n+1
1 = 2u

i+ 1
2 , j;n

1 −u
i+ 1

2 , j;n−1
1 (44)

+
(∆ t)2

ρ i+ 1
2 , j

σ
i+1, j;n
11 −σ

i, j;n
11

∆x
+

σ
i+ 1

2 , j+
1
2 ;n

12 −σ
i+ 1

2 , j−
1
2 ;n

12
∆y

 ,
u

i, j+ 1
2 ;n+1

2 = 2u
i, j+ 1

2 ;n
2 −u

i, j+ 1
2 ;n−1

2 (45)

+
(∆ t)2

ρ i, j+ 1
2

σ
i+ 1

2 , j+
1
2 ;n

21 −σ
i− 1

2 , j+
1
2 ;n

21
∆x

+
σ

i, j+1;n
22 −σ

i, j;n
12

∆y

 ,
σ

i, j;n
11 = ci, j

11
u

i+ 1
2 , j;n

1 −u
i− 1

2 , j;n
1

∆x
+ ci, j

12
u

i, j+ 1
2 ;n

2 −u
i, j− 1

2 ;n
2

∆y
, (46)

σ
i, j;n
22 = ci, j

12
u

i+ 1
2 , j;n

1 −u
i− 1

2 , j;n
1

∆x
+ ci, j

11
u

i, j+ 1
2 ;n

2 −u
i, j− 1

2 ;n
2

∆y
, (47)

σ
i+ 1

2 , j+
1
2 ;n

12 = σ
i+ 1

2 , j+
1
2 ;n

21 (48)

= C
i+ 1

2 , j+
1
2

44

u
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2 , j+1;n
1 −u

i− 1
2 , j;n

1
∆y

+
u

i+1, j+ 1
2 ;n

2 −u
i, j+ 1

2 ;n
2

∆x

 ,
where (i, j) defines a 2D grid point (grid spacings are ∆x and ∆y), n specifies the
time step with an interval ∆ t. In the fluid region, c44 = 0 and c11 = c12, which
simplifies the equations without disturbing the stability of the solution process as no
matrix inversion is required.

6.1 Boundary conditions

Two major boundary conditions can be distinguished depending on the purpose of
calculations: (1) the periodic boundary condition simulating an infinite structure and
(2) the absorbing boundary condition or absorbing region applied when a truncation
of an open region is needed.

1. When we calculate the dispersion relation of bulk waves with a 2D wave vector
in the (x,y) plane, we may consider a 2D unit cell of a square shape involving
just one cylinder and may impose periodic boundary conditions in both x and y
directions. Here we note that the periodic boundary conditions in the (x,y) plane
are expressed as

ui(x+Lx,y+Ly, t) = exp(−ı(kxLx + kyLy))ui(x,y, t)), i = 1,2 (49)
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where ( Lx,Ly) are the periods in the x and y directions, respectively, and in
the present case Lx = Ly = a. These equations define the two-dimensional wave
vector k = (kx,ky) in the first Brillouin zone −π/Lx < kx < π/Lx and −π/Ly <
ky < π/Ly .

2. When we compute the transmission of acoustic or elastic waves through a finite
phononic crystal structure with, say, 5 periods, homogeneous regions consist-
ing of the background material are added to the lattice in the regions x < 0 and
x> 5a. At the far ends of these regions in the longitudinal (x) direction, absorbing
boundary conditions are imposed and periodic boundary conditions are applied
at boundaries orthogonal to the lateral y direction. Basicaly, the most commonly
used grid truncation techniques for open-region FDTD modeling problems are
the Mur absorbing boundary condition (ABC), the Liao ABC and various per-
fectly matched layer (PML) formulations. The Mur and Liao techniques are sim-
pler than the PML. However, PML (which is technically an absorbing region
rather than a boundary condition) can provide orders-of-magnitude lower reflec-
tions. In this work, we use Mur absorbing boundary conditions (ABC) where
we impose that the elastic or acoustic wave is propagating – at the ends of the
medium in the x direction for instance – in the forward direction and is leaving
the medium without reflexion. The condition is, therefore,

VL
∂ui(x,y, t)

∂x
+

∂ui(x,y, t)
∂ t

= 0, (50)

where the longitudinal speed of sound in the radiation medium VL is used for
both the x and y components of the displacement field. A finite-difference ap-
proximation of that condition may be used.

6.2 Calculation of dispersion relations

In the example of Fig. 6, we consider a perfect 2D periodic crystal where elastic
circular steel cylinders of radius r are embedded periodically in a water medium,
forming a square lattice with lattice spacing a. For the calculation of dispersion
relations, a small disturbance at a randomly chosen position of the structure is set as
the initial condition. Thus all possible wave modes are excited inside the considered
2D unit cell, and the displacement can be recorded and subsequently expanded into
Fourier series. Then the eigenfrequencies for a given wave vector kx,ky (imposed
via the periodic boundary conditions) are obtained by selecting the resonance peaks
of the spectrum. This procedure allows us to find all possible types of bulk waves. In
the numerical calculations, the spacings of the grid points are chosen as ∆x = ∆y =
a/60 and the unit time step ∆ t is selected as ∆ t = 0.95∆ tmax, where the stability
criterion for the FDTD method requires
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Fig. 6 Band structure of a square lattice array of steel rods in water computed with FDTD. The
filling fraction is 0.41 approximately. A full band gap extending from 700 to 1000 m/s is obtained.

∆ t < ∆ tmax =
1

vmax

√
( 1

∆x )
2 +( 1

∆y )
2
, (51)

with vmax = vsteel. In practical cases, after t = 217∆ t = 131,100∆ t time steps, the
vibration of the system become stationary and is composed of a superposition of
eigenmodes.

Fig. 6 shows the low frequency part of the dispersion curves of bulk waves along
the boundary of the irreducible Brillouin zone. The filling fraction is f = 0.41. We
can notice the existence of a large complete gap that prohibits bulk wave propagation
in the (x,y) plane.

6.3 Calculation of transmission spectra

To gain a better insight into the effects of band gaps, and also to investigate the
qualitative behavior of transmission inside pass bands, the FDTD method is a pow-
erful tool to calculate the transmission through finite size samples. To do so, the
samples are composed of three adjacent regions (see the inset in Fig. 7). The prob-
ing signal, a longitudinal wave that propagates along the x direction, is launched
from the first region and detected in the third one. The signal is the superposition
of a few sinusoidal waves with frequencies centered around the central frequency
of interest and is usually weighed by a Gaussian profile. Transmission of this signal
through a homogeneous water medium produces a broad band spectrum that covers
the frequency range of interest. The central region contains the phononic crystal.
To probe the transmission, severals output displacements (longitudinal vibrations)
are detected at different locations in the third region. Transmission spectra are cal-
culated as an average of their Fourier transforms. As an example, Fig. 7a show the
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Fig. 7 (a) Time response of displacement detected at some position after the phononic crystal. (b)
Calculated transmission power spectrum along the Γ X direction of the irreducible Brillouin zone
of the square lattice of steel cylinders in water. A strong attenuation in transmission extending from
700 to 1000 m/s in reduced frequency is obtained.

time evolution of bulk waves received at a spatial position located in the third re-
gion. The Fast Fourier transform of the time signal gives the transmission spectrum
of wave propagation through the finite size phononic crystal structure.

In addition, the FDTD method allows to visualize the spatial profiles of the dis-
placement amplitudes in the structure at a precise frequency. Indeed, displacement
amplitudes averaged over one period of oscillation give the displacement fields of
the mode. Fig. 8, shows a bended waveguide in steel/water structure for a frequency
inside the complete band gap. We can notice the high confinement of the acoustic
field inside the defect waveguide.
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Fig. 8 Calculated longitudinal displacement amplitude averaged over one period of oscillation in
bended waveguide.

7 Conclusion

In this chapter, we have presented an overview of the different computational prob-
lems that are encountered wen studying wave propagation in phononic crystals. We
have outlined the characteristics, and pros and cons of four dominant methods: the
MST method (and its improvement, LMS), the PWE method (and the extended
PWE method for complex band structures), the FDTD method, and the FEM. As a
final useful comment for the reader, we may summarize the usage of these methods
as follows.

• The layer multiple scattering (LMS) method is the method of choice for both in-
finite periodic and finite phononic crystals composed of non-overlapping spheres
or cylinders in a uniform background, provided all materials are isotropic. Its
usage for surface or plate problems is possible but much more involved, and its
usage for arbitrary anisotropic scatterers is presently out of reach. Sainidou et al.
propose a free LMS code [9].

• The plane wave expansion (PWE) method is very popular for band structure
computations because it is general purpose (arbitrary scatterers and background,
anisotropy, piezoelectricity). However, it has slow convergence properties (the
number of Fourier harmonics that have to be included can make the computation
rather slow). To the authors’ opinion, the finite element method (FEM) is to be
preferred over classical PWE in most cases. The extended PWE was introduced
recently and enables the computation of complex band structures and the consid-
eration of losses without sacrificing the general purpose character of the original
PWE method. No free or commercial phononic PWE codes are available to the
authors’ knowledge.

• The finite-difference time-domain (FDTD) method is very popular because it
allows to solve the wave equation directly in space and time, thus mimicking
real experiments. It is a general purpose method, though the consideration of
anisotropy and piezoelectricity is not trivial in the general case. Convergence
can be very slow, especially for resonant structures with high quality factors
(Q-values). No free or commercial phononic FDTD codes are available to the
authors’ knowledge.

• The finite element method (FEM) is a general purpose method that solves all
drawbacks of the PWE method. It allows the consideration of various boundary
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conditions (e.g., solid-fluid phononic crystals), the computation of band struc-
tures (it is especially efficient for thin plate problems because of the reduced
size of the 3D mesh in this case), and the study of finite phononic crystals.
FEM is more often used for time-harmonic or band structure problems. How-
ever, it can also be employed in the time-domain, much as the FDTD method,
though this property has not been really exploited so far in the litterature. Com-
sol Multiphysics R©, a commercial FEM software, has recently become increas-
ingly popular because of its ease of use (the obvious drawback being its “black-
box” character). Many free or even open-source softwares can be employed
as well, and one of the authors (VL) has for instance been using FreeFem++
(http://www.freefem.org/ff++/) with success.
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