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Abstract— This paper presents the development of a new
visual servoing control law using global information image. It
consists in the use of the wavelet spatial coefficients as the
visual signal to design visual controller. More precisely, we
introduce the concept of multiple resolution interaction matrix
that links the time-variation of wavelet coefficients to the robot
spatial velocity and the associated task function controller.
The proposed controller was successfully validated using a 6
degrees-of-freedom 3PPSR parallel kinematic manipulator in
an eye-to-hand configuration. Experimental results show the
accuracy, efficiency and show good behavior of such features.

I. INTRODUCTION

Nowadays, wavelet transformation is one of the most pop-
ular mathematical tools for the time-frequency representa-
tion. It is applicable to several domains such as, edge/corners
detection, filtering, pattern recognition, economic data, data
compression, compressed sensing and temperature analy-
sis [1]. The wavelet transform can be considered as a
complement to the Fourier transform. The main difference
consists of that the wavelet transform represents the signal
(respectively image) in both time (respectively space) and
frequency domains, whereas the standard Fourier transform
is only described in the frequency domain.

This paper deals with a new and an original application
of the multiresolution wavelet transform (MWT), it concerns
the robot motion control, more precisely designing of a
vision-based controller known as visual servoing (VS) [2],
[3]. The latter is introduced in order to increase the adaptivity
of robot systems [2]. A vision-based controller uses visual
information (features) such as geometrical data (e.g., image
points, lines, circles, etc.) acquired with one or several
cameras to minimize an error e(t) between a set of current
measurements s(t) and desired ones s∗.

Also, in order to enhance further the flexibility and the
accuracy of the robot, it is necessary to overcome one of the
main visual servoing drawbacks, the visual tracking process.
The latter implies features extraction and matching over time.
To do this, new visual servoing approaches have been intro-
duced in the literature which show that the design of a vision-
based control law can totally remove the visual tracking
process [4]. Thereby, original methods were proposed using
different pure image signal: photometry [5], [6] gradient
[7], entropy [8] and Fourier transform [9]. Not only do
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these methods allow one to completely overcome the image
processing process, but they demonstrate more accuracy and
robustness thanks to the redundancy of the information used
to design the controller.

Unlike the previous cited methods, our approach originally
uses the results returned by a MWT to build all of the
6 DOF control law elements. Actually, the half-resolution
image resulting from the MWT is used as visual signal
instead of the whole image. Additionally, In opposite to
photometric approach we derive the spatial derivative wavelet
coefficients involved in computing a so-called multiple res-
olution interaction matrix that links the time-variation of
derivative wavelet coefficients to the robot spatial velocity
from the detail wavelet coefficients. Certainly, one the main
advantages of our method (e.g., comparing to the photometric
approach) lies especially on the automatic filtering of the low
and high frequencies in the image generally corresponding
to the image noise. This is somehow equivalent to amounts
to selecting automatically a set of noiseless and redundant
visual signal for a more accurate and stable visual controller.

The proposed controller was tested on a 6 DOF robotic
platform consisting of a 3PPSR parallel robot. The exper-
imental validations were conducted in nominal conditions
and using different coefficients resolution in order to define
the optimal ones which improve the controller behaviors:
convergence, robustness, and accuracy.

The manuscript is organized as follows: Section II reviews
the basics of the MWT as visual signal. In Section III
details the methodology followed to design the proposed
6 DOF MWT-based visual servoing controller, while the
experimental results are discussed in Section IV.

II. WAVELETS MULTIPLE RESOLUTION AS
VISUAL SIGNAL

A. Definition

The wavelet transform was introduced to analyze a signal
simultaneously in both time and frequency domains [10].
Note that until twenty first century, only the Fourier trans-
form was used to decompose reversibly a signal without any
loss of information. Fourier transform provides a frequency
analysis, but does not allow the temporal location of sharp
changes of the signal. The enormous work done in the 1980s
to formalize the wavelets, allowed building several frames
in which a time-frequency representation of a signal became
possible.

In this paper, we are interested in the frame of the
MWT decomposition of an image. Consequently, for a better
understanding of the controller design, it is appropriate to



remember the basics of the wavelet transform and more
precisely MWT.

Consider a 2D signal F(x,y) (F ∈ L2(R2)) and a wavelet
function defined by G(x,y) (G ∈ L2(R2)). The general
wavelet transform is defined by the following inner product〈

F(x,y),G(x,y)
〉
=

∫ +∞

−∞

∫ +∞

−∞

F(x,y) G(x,y) dxdy (1)

The MWT for its part uses two functions: scaling and
mother wavelet. Furthermore, this paper uses the Daubechies
[11] pair of the fourth order (db4) available in MATLAB.
Usually, those functions are used in their frequency state
represented in list of numerical parameters. More precisely,
the pair of functions db4 used in this paper are
• Scaling function

(
φ
)

is represented as low pass filter
ldb4
(

fx,ξl
)

in frequency domain with the following
numerical parameters in MATLAB

ξl = {−0.01,0.03,0.03,−0.18,−0.02,0.63,0.71,0.23}

while, for modelling the control law in the section III we
need to compute the first derivative ∂ldb4

∂ fx

(
fx,ξ

′

l

)
values of

ldb4
(

fx,ξl
)
, which are built with the following numerical

parameters

ξ
′

l = {0,−0.09,−0.03,0.32,−0.34,−1.22,−0.02,0}

• Mother wavelet
(
ψ
)

is represented as high pass filter
hdb4

(
fx,ξh

)
in frequency domain with the numerical

parameters in MATLAB

ξh = {−0.2,0.7,−0.63,−0.02,0.18,0.03,−0.03,−0.01}

whereas the first derivative ∂hdb4

∂ fx

(
fx,ξ

′

h

)
values of

hdb4
(

fx,ξh
)

as for scaling function are

ξ
′

h = {0.45,−0.60,0.27,0.08,−0.07,−0.02,0.01,−0.1}

Moreover, the pair of filters is applied to the image based
on the inner product (1). The wavelet functions associated to
G(x,y) in (1) in the MWT are the result of 4 combinations

Γ
0(x,y) =

(
∆ ◦ φ(x)

)
◦
(

∆ ◦ φ(y)
)

(2)

Γ
H(x,y) =

(
∆ ◦ φ(x)

)
◦
(

∆ ◦ ψ(y)
)

(3)

Γ
V (x,y) =

(
∆ ◦ ψ(x)

)
◦
(

∆ ◦ φ(y)
)

(4)

Γ
D(x,y) =

(
∆ ◦ ψ(x)

)
◦
(

∆ ◦ ψ(y)
)

(5)

where ∆ is the decimating operator taking one pixel out of
two, and ◦ is the composition of functions.

In fact, the inner product (1) between the image I(2 j+1) at
resolution 2 j+1 with (2), yields

I(2 j) =
〈

I(2 j+1) , Γ
0
2 j(x,y)

〉
(6)

where, the result I(2 j) is the new image at half resolution
(Fig. 1(b.1)) and used as measurement s in the controller.

In contrast, the inner product (1) between I(2 j+1) and the
wavelet functions (3) to (5)

dk
(2 j) =

〈
I(2 j+1) , Γ

k
2 j(x,y)

〉
, ∀k = H,V,D (7)

give the details coefficients
(
dk
(2 j)

)
(k=H,V,D)

(Fig. 1(b.(2-4))),
where H is horizontal orientation (Fig. 1(b.2)), V is verti-
cal orientation (Fig. 1(b.3)), and D is diagonal orientation
(Fig. 1(b.4)).

(a) (b)

Fig. 1. (a) the original image I(2 j+1), (b) the MWT decomposition, (b.1)
the new thresholded (for a better visualization) image at a half resolution
I(2 j), (b.2), (b.3) and (b.4) the horizontal (dH

(2 j)
), vertical (dV

(2 j)
) and diagonal

(dD
(2 j)

) thresholded wavelet coefficients, respectively.

B. Modeling

In order to estimate the motion between two images, the
optical flow is generally used. Based on the assumption of
brightness constancy [12], it is possible to write the optical
flow constraint equation (OFCE) for small movement of the
whole image I as

∇I .p+ ∂I
∂t

= 0 (8)

where .p =
( .x, .y

)> is the velocity of a point p =
(
x,y
)> in

the image, and ∇I is the spatial image gradient of I.
Following several mathematical manipulations explained

in [13], (8) can be written based on the MWT as〈
I(2 j+1),

∂ΓH

∂x

〉 .x+
〈

I(2 j+1),
∂ΓV

∂y

〉 .y+ ∂

∂t

〈
I(2 j+1),Γ

0
〉
= 0 (9)

In order to simplify (9), we introduce the following
notations 1

gH
(2 j) ,

〈
I(2 j+1),

∂ΓH

∂x

〉
(10)

gV
(2 j) ,

〈
I(2 j+1),

∂ΓV

∂y

〉
(11)

where gH
(2 j)

and gV
(2 j)

are computed based on the first deriva-
tive filters shown in Fig. 3. Hence, replacing the parts of (9)
by (6), (10) and (11) yields

∀p = (x,y), gH
(x,y)

.x + gV
(x,y)

.y +
∂

∂t
I(x,y) = 0 (12)

Choosing s = I(2 j), the letter writes (for each point p =
(x,y)) [

gH
(x,y) gV

(x,y)

] .p +
.s(x,y) = 0 (13)

1with a slight breach for simplicity sake.



Using the 2D point interaction matrix L2D [3]

L2D =

−1
z

0
x
z

xy −(1+ x2) y

0
−1
z

y
z
−(1+ y2) −xy −x

 (14)

linking the image point velocity .p to cvc ∈ se(3) the velocity
of the camera in the camera frame.

.p = L2D
cvc (15)

we finally get
.s = −

[
gH
(2 j) gV

(2 j)

]
L2D︸ ︷︷ ︸

Lw

cvc (16)

where Lw
(
Lw ∈Rk×6

)
will be named the interaction matrix

associated to the multiresolution wavelet transform coeffi-
cients.

III. CONTROL

A. Eye-to-Hand Robot Control

From (16) and the visual servoing formalism [3], the
exponential convergence and stable control based on the
proposed approach is written as follows

cvc = −λ L̂+
w
(
s− s∗

)
(17)

where λ is a positive gain, s = I(2 j) and s∗ = I∗
(2 j)

are the

current and desired visual signals, respectively, and L̂+
w is an

estimate of the pseudo-inverse of Lw which is computed at
the desired configuration. This control is trivially Lyapunov
stable if LwL̂+

w is definite positive.
Moreover, to ensure a stable and smooth convergence,

we use the Levenberg-Marquardt optimization method [14].
Actually, this optimization method allows the combination of
gradient descent optimization for a distant pose and Gauss-
Newton optimization for an approachable pose. The choice
of Levenberg-Marquardt leads us to write the velocity in the
camera’s frame R c as

cvc = −λ

(
µ I6×6 + L̂w

>
L̂w

)−1
L̂w

+
(I2 j − I∗2 j) (18)

where µ is constant positive scalar, and I6×6 identity matrix.
In an eye-to-hand configuration of the system the robot

velocity .q writes as
.q = −b K−1

e
bVc

cvc (19)

where bK−1
e is the inverse kinematic Jacobian matrix of the

robot, and bVc is the transformation matrix associated to the
velocity change frame from the robot base frame R b to the
camera one R c. The latter is constructed as

bVc =

[
bRc

[
btc
]
∧

bRc

0 bRc

]
(20)

where bRc is the 3×3 rotation matrix from Rc to Rb, btc is
the 3× 1 associated translation vector, and [·]∧ is the skew
symmetric matrix associated with the vector cross-product.

Robot-λ

I(2j+1)I(2j)

I*
(2j+1) I*

(2j)

cvce

s

s* bVc

Lw
+

gH
( 2j )

gv
( 2j )

(μII6×6+Lw
TLw)-1^ ^

^

TI 

TI 

TgH 

TgV 

Fig. 2. Closed loop visual servoing using the half-resolution (2 j) wavelet
as visual signal. TI, TgH and TgV are explained in Fig. 3.

B. MWT Control Approach

The control loop (see Fig. 2) used to servo the SE(3)
configurations of 3PPSR parallel robot with the camera is
based on two main novel MWT parts. First, the approxima-
tion wavelet coefficients I(2 j) resulting from the top path
of Fig. 3, in order to construct the visual signal of the
controller s. Those approximation coefficients I(2 j) are the
only computed for each iteration of the control loop in order
to reduce the computation time. Second, the details wavelet
coefficients gH

(2 j)
and gV

(2 j)
involved in the construction of the

interaction matrix associated to MWT shown in the two bot-
tom path of Fig. 3. This interaction matrix is computed once
in the initialization of the algorithm, and in the reference
configuration of the robot.

I( 2(j+1) )

I( 2j )

gH
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gV
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I(2( j+1 ))

I(2( j ))

Original signal (image)
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gH
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Fig. 3. Diagram representing the algorithm used to compute the derivative
multiresolution wavelet coefficients.

IV. EXPERIMENTAL VALIDATION

The proposed approach was validated using the experi-
mental set-up described below using different scenarios and
various scenes. In each test, the 6 DOF of our robot are con-
trolled. The error e and the camera velocity v evolution (in
each DOF), and the cost-function value C (r) over iterations
are plotted and analyzed.

A. Experimental Setup

The proposed controller was tested and validated on our
lab experimental set-up. It consists of an eye-to-hand cam-
era/robot system (Fig. 4) including
• a 6 DOF parallel robotic structure: 3PPSR robot Space-

FAB SF-3000 BS from Micos2. The latter is charac-
terized with the following features: translation range

2http://www.pimicos.com
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Fig. 4. Global view on the 6 DOF experimental platform.

(tx, ty, tz)>max = (50, 100, 12.7)> (mm) and rotation range
(rx,ry,rz)

>
max = (10, 10, 10)> (◦), a linear resolution

of 0.2µm (repeatability of ±0.5µm) and an angular
resolution of 0.0005◦ (repeatability of ±0.0011◦);

• a Firewire monochrome CCD camera is attached on
top of the robot platform. The camera frame rate is 25
frames-per-second (fps) for a resolution of 640 × 480
pixels;

• two computers were used: a 3.2GHz i5 core Intel
CPU with a Linux distribution which is dedicated to
computer vision and control and a 2.33GHz Xeon Intel
CPU with a Windows distribution is used for the robot
inner control (inner PID loop, static and differential
kinematic models, etc.). The computers communicate
using asynchronously a TCP/IP protocol.

B. Results

1) Test 1: For this experiment, a planar object (i.e.,
photography of Bernard BLIER) was used (Fig. 5). The
initial Cartesian error between the desired image I∗ and the
current image I, was ∆rinit = (12mm, 12mm, 5mm, 7.5◦,
7◦, 5.5◦). Note that the desired pose is chosen such that
the photography and the camera planes are almost parallel.
Also, the experimental conditions are optimal (stable lighting
source, acceptable calibration parameters (i.e., camera intrin-
sic parameters matrix and eye-to-hand matrix

(cVb
)

6×6), and
without significant external disturbances (e.g., occlusions,
vibrations, etc.).

Fig. 5(a) and (b) show the desired and the current images,
respectively, while Fig. 5(c) and (d) the corresponding half
resolution wavelet. Finally, Fig. 5(e) shows the image dif-
ference between the desired and the current image at t = 0,
i.e., Idi f f =

(I−I∗)+255
2 , whereas Fig. 5(f) represents the final

image difference demonstrating convergence of the controller
towards the desired position.

Fig. 6(a) presents the Cartesian error decay ∆ri in each
DOF as well as the decrease of the norm of the error
Fig. 6(b). Thereby, it can be underlined that the different
components converge, simultaneously, to their respective
desired values. This demonstrates the good properties of the
controller regarding the evolution of the norm of the error
with a satisfying exponential decrease. The final Cartesian
error, computed using high resolution robot encoders sup-
plied by the robot software, was estimated to be ∆rfinal =
(0.071mm, 0.067mm, 0.164mm, 0.099◦, 0.054◦, 0.051◦).

(b)

(f)(e)

(a)

1cm

1cm

(d)(c)

1cm

1cm

Fig. 5. [Test 1]: image snapshots acquired during a 3D positioning task in
nominal conditions: (a) reference image I∗, (b) current image I, (c) and (d)
the multiple resolution wavelets results corresponding to the reference and
current positions for half resolution, respectively, (e) initial image difference
Idi f f , and (f) final Idi f f illustrating that the controller converges accurately
towards the reference position.

The translation (vx,vy,vz)> and the rotation (ωx,ωy,ωz)>

velocities in each DOF versus number of iterations (iteration
= 0.12 second) are plotted in Fig. 6(c) and (d), respectively.
Fig. 6(e) depicts the robot trajectory during the positioning
task recorded and expressed in the desired frame. It can be
underlined that after a slight deviation, the robot converges
to the desired position in an almost straight-line. However,
it is important to remember that the control is done on the
image; this does not generate exponential convergence of
the Cartesian error unlike the 3D visual servoing methods.
The convergence domain of the controller is illustrated by
Fig. 6(f) showing a perfect convex shape presenting a global
minimum without any local minima of the cost-function.

2) Test 2: This experimental scenario was carried out
by adding an external disturbances. To do that, the refer-
ence image was taken under nominal conditions and during
the positioning task, the current images were acquired by
adding external object (i.e., token) on the scene simulating
significant partial occlusions Fig. 7). An image sequence was
captured during the positioning task (Fig. 7) which shows
the perfect convergence of the controller as can be seen in
Fig. 7(d).

The initial Cartesian error was ∆rinit = (12mm, 12mm,
5mm, 7.5◦, 7◦, 5.5◦). Despite the unfavorable conditions,
the robot converges smoothly toward the desired position,
this almost unsurprisingly when analyzing the cost-function
C (r) that has a perfect convex shape with a well-defined
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Fig. 6. [Test 1]: (a) Cartesian error ∆ri in each DOF, (b) decay of the
norm of the error ‖e‖, (c) translation velocities vt (in mm/s), (d) rotation
velocities vω (rad/s), (e) 3D robot trajectory and (f) wavelet coefficients
cost-function C (r) (case of nominal conditions).

(b)

(d)(c)

(a)

1cm 1cm

1cm1cm

Fig. 7. [Test 2]: image sequence captured during the positioning task
in order to judge the sensitivity of the controller under lighting changes.
(a) desired image I∗ acquired in normal illumination, (b) current image I
captured under sensitive change of the illumination, (c) initial Idi f f and (d)
final Idi f f showing that the controller reaches the desired position, although
Idi f f is not completely gray, this is due to the token add in the scene.

global minimum (Fig. 8 (f)). The Cartesian error in each
DOF ∆ri as well as the norm of the error ‖r‖ are displayed
in Fig. 8 (a) and (b). It can be highlighted that the Cartesian
error remains very low despite the occlusion i.e., ∆r f inal =
(0.213mm, 0.110mm, 0.513mm, 0.188◦, 0.245◦, 0.161◦).

The computed velocities and robot trajectory are still very
interesting and quite similar to the those of the case of
nominal conditions (i.e., Test 1) despite the introduction of
a significant dissimilarity between the current and desired
images Fig. 7 (a) and (b).
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Fig. 8. [Test 2]: (a) Cartesian error ∆ri in each DOF, (b) decay of the
norm of the error ‖e‖, (c) translation velocities vt (in mm/s), (d) rotation
velocities vω (rad/s), (e) 3D robot trajectory and (f) wavelet coefficients
cost-function C (r) (case of occlusion).
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Fig. 9. [Test 3]: Snapshots captured during the positioning task performed
using 3D scene. (a-b) desired and current images, respectively, (c) initial
Idi f f and (d) final Idi f f .

3) Test 3: The objective of this supplementary experiment
is to assess the performance of our controller wrt a 3D
scene. Thus, the 2D scene used in the first experiments was
replaced by a complex and less textured 3D scene (i.e., a
key ring as a cannon). Note that the 3D depths of the scene
were neither reconstructed nor estimated (only the interaction
matrix that assumes a constant depth Z∗ computed at the
desired position). Despite that, the controller remains robust
to depth variations as can be shown in Fig. 9.

Fig. 10(f) shows the computed cost-function C (r) in the
case of 3D scene illustrating again a perfect convex shape.
This allows a convergence to the desired position without



much difficulty as can be shown in the Cartesian error decay
in each DOF as well as in the norm of the error (Fig. 10(a-
b)). The final Cartesian error for this test was estimated to be
∆r f inal = (0.110mm, 0.224mm, 0.128mm, 0.282◦, 0.120◦,
0.290◦).

The robot joint translation and rotation velocities are plot-
ted in Fig. 10(c-d) depicting a smooth convergence to zero.
The robot trajectory is reported in Fig. 10(e) demonstrating
a behavior comparable to those obtained in the 2D scenes.
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Fig. 10. [Test 3]: (a) Cartesian error ∆ri in each DOF, (b) decay of the
norm of the error ‖e‖, (c) translation velocities vt (in mm/s), (d) rotation
velocities vω (rad/s), (e) 3D robot trajectory and (f) wavelet coefficients
cost-function C (r) (case of 3D scene).

4) Test 4: The objective of this experiment is to compare
our method to the photometric one [5] (an example is
provided in ViSP library [15]). TABLE I presents the final
Cartesian error for both WMT-based visual servoing and
photometric-based visual servoing acquired during a 6 DOF
positioning task under the same conditions of use (current
position, lighting source, calibration parameters, etc.). Thus,
two comparison tests was achieved: 1) nominal conditions
and 2) under partial occlusions. The obtained results demon-
strate that the MWT VS is almost similar to the photometry
VS (i.e., ||e||WMT = 0.23 and ||e||photometry = 0.22) while
it presents a better behavior under partial occlusions (i.e.,
||e||WMT = 0.6 and ||e||photometry = 0.84).

V. CONCLUSION

In this paper, it was demonstrated for the first time that it
is possible to design an efficient 6 DOF visual servoing using
the wavelet coefficients as visual signal. The originality of
our approach is due to the direct use of the wavelets coeffi-
cients for the design of a multi-resolution interaction matrix.
It links directly the time-variation of wavelet coefficients to

TABLE I
NUMERICAL VALUES (WMT vs PHOTOMETRY) IN NOMINAL

CONDITIONS (NC) AND OCCLUSION (OCC)
(
4Ti (MM) AND 4Ri (◦)

)
4Tx 4Ty 4Tz 4Rx 4Ry 4Rz

initial error 5.000 5.000 3.000 4.000 3.000 3.000
WMT (nc) 0.006 0.018 0.026 0.192 0.128 0.032
photom. (nc) 0.011 0.009 0.031 0.178 0.098 0.085
WMT (occ) 0.017 0.097 0.452 0.304 0.207 0.107
photom. (occ) 0.086 0.035 0.461 0.410 0.120 0.562

the robot spatial velocity and the associated task function
controller.

The proposed controller was tested experimentally using
a 6DOF parallel robotic structure equipped with a CCD
camera which was mounted in an eye-to-hand configuration.
The obtained results have demonstrated the efficiency of
the developed controller in terms of accuracy (some tens of
micrometers and few tenths of millidegree in the translation
and rotation Cartesian space, respectively), convergence, and
robustness (the controller has kept on working under partial
occlusion).

In future work, we aim to investigate the use of the
developed controller on other image modalities as medical
images i.e., optical coherence tomography. Even farther,
the use of wavelet transform on the designing of the con-
troller naturally leads to the investigation of a hybrid visual
servoing-compressed sensing control scheme.
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