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Abstract. This paper deals with multimodal imaging in the surgical
robotics context. On the first hand, it addresses numerical registration
of a preoperative image obtained by fluorescence with an intraoperative
image grabbed by a conventional white-light endoscope. This registration
involves displacement and rotation in the image plane as well as a scale
factor. On the second hand, a method is developped to visually servo
the endoscope to the preoperative imaging location. Both methods are
original and dually based on the use of mutual information between a pair
of fluorescence and white-light images and of a modified Nelder-Mead
simplex algorithm. Numerical registration is validated on real images
whereas visual servoing is validated experimentally in two set-ups: a
planar microrobotic platform and a 6DOF parallel robot.

1 Introduction

This work is grounded into robot assisted laser phonosurgery (RALP). The cur-
rent gold standard procedure for the vocal folds surgery is certainly suspension
microlaryngoscopy (Fig. 1(a)) which requires direct visualization of the larynx
and the trachea as proposed in [9]. This system is widely deployed in hospitals
but it features many drawbacks related to patient and staff safety and com-
fort. Therefore, alternative endoscopic approaches are under investigation: the
extended use of the HARP (Highly Articulated Robotic Probe) highly flexible
robot, designed for conventional surgery [6] or the use of an endoscopic laser
micro-manipulator [16] (Fig. 1(b)). In all aforementioned cases, cancer diagnosis
can be performed thanks to fluorescence imaging [15], (a few) days before the
surgical intervention. The latter is usually performed under white-light condi-
tions because fluorescence may require longer exposure time than real time can
allow. Therefore, during a surgical intervention the fluorescence diagnosis image
must be registered to the real-time white light images grabbed by the endoscopic
system in order to define the incision path of the laser ablation or resection. Reg-
istration can be done either numerically or by physically servoing the endoscope
to the place where the preoperative fluorescence image was grabbed.

In this paper, our aim is to control a robot based on direct visual servoing,
i.e. using image information coming from white light and fluorescence sensors.



Several visual servoing approaches based on the use of features (line, Region of
interest (ROI)) [2] or the image global information (gradient [11], photometry [3]
or mutual information [5]) can be used. Nevertherless, the use of mutual infor-
mation (MI) in visual servoing problems has proved to be especially effective in
the case of multimodal and less contrasted images [4]. In fact, these control tech-
niques assume that the kinematic model of the robot and the camera intrinsic
parameters are at least partially known, but would fail if the system parameters
were fully unknown. In practice, the initial position cannot be very distant from
the desired position to ensure convergence. To enlarge the stability domain, [12]
proposed to use the Simplex method [13] instead of the usual gradient-like meth-
ods (which require at least a rough calibration of the camera and a computation
of the camera/robot transformation). However, the work in [12] relies on the
extraction from the image of geometrical visual features.

Furthermore, in the surgical robotics context, it is preferable to free our-
selves from any calibration procedure (camera, robot or robot/camera system)
for several reasons:

1. Calibration procedures are often difficult to perform, especially by non-
specialist operators i.e., clinicians.

2. Surgeons entering in the operating room are perfectly sterilized to avoid
any risk of contamination, and then it is highly recommended to limit the
manipulation of the different devices inside the operating room.

For these reasons, we opted for uncalibrated and model-free multimodal regis-
tration and visual servoing schemes using mutual information as a global visual
feature and a Simplex as optimization approach. Thereby, it is not necessary to
compute the interaction matrix (Jacobian image); the kinematic model of the
robot may be totally unknown, without any constraint in the initial position of
the robot with respect to its desired position. A preliminary version of this work
was presented in [19] in the case of planar positioning and is extended in this
paper to positioning in the 3D space.

This paper is structured as follows: Section 2 explains the medical applica-
tion of the proposed approach. Section 3 gives the basic background on mutual
information. Section 4 presents a modified Simplex method. Section 5 describes
multimodal registration and multimodal visual servoing. Finally, Sec. 6 deals
with the validation results.

2 Medical Application

The vocal folds are situated at the center and across the larynx and form a
V-shaped structure. They are used to create the phonation by modulating the
air flow being expelled from the lungs through quasi-periodic vibrations. They
can be affected by benign lesions, such as cysts or nodules (for instance, when
they are highly stressed, e.g. when singing) or, in the worst case, cancer tumors
(especially for smokers). These lesions change the configuration of the folds and
thereby the patient’s voice. Nowadays, medical tools can be used to suppress



this trouble and recover the original voice in particular for cyst and nodules.
Appeared in 1960, phonosurgery – the surgery of the vocal folds – can be di-
vided into laryngoplastic, laryngeal injection, renovation of the larynx and pho-
nomicrosurgery. Specifically, laser phonomicrosurgery consists of a straight rigid
laryngoscope, a stereoscopic microscope, a laser source, and a controlled 2DOF
device to orient the laser beam [8], as shown in Fig. 1(a). Nevertheless, the cur-
rent system requires extreme skill from the clinician. Specifically, high dexterity
is required because both the laser source is located out of the patient, 400 mm
away from the vocal folds. This distance increases the risk of inaccuracy when
the laser cutting process is running. Moreover, the uncomfortable position of
the patient’s neck in a straight position all along the operation can be trau-
matic. The drawbacks of the conventional procedure are taken into account in

Fig. 1. Global view of the microphonosurgery system: (a) the current laser microphono-
surgery system and (b) the targeted final system.

the new set-up developed within the European project µRALP, which consists
on embedding all the elements (i.e., cameras, laser and guided mirror) inside an
endoscope Fig. 1(b). More precisely, the endoscope is composed of white light,
high speed camera imaging the laser evolution with 3D feedback to the clinician.
Additionnally, a low framerate, high sensitivity fluorescence imaging system is
to be used preoperatively to detect cancerous lesions.

The global approach is based on the use of 2 degrees of freedom (DOF) to
guide the laser along the trajectory drawn by the surgeon on a preoperative flu-
orescence image. However, since the preoperative image is not necessarily taken
by the same instrument on the same location, this approach requires the pre-
operative fluorescence image (where the surgeon decides the trajectory) and the
white light image (where the control of the robot is developed) to be registered.
This can be done in two ways: registration or servoing. Registration deals with
the estimation of the transformation between both images, which can then be
used to morph the fluorescence image onto the real-time endoscopic image flow



(for instance, as an augmented reality). Visual servoing deals with bringing the
endoscope back to the place where the fluorescence image was grabbed and sta-
bilizing it in that configuration, which amounts to a physical registration and
should turn useful in many other applications, such as surgery in the stomach
to compensate for physiological motions.

(a) (b)

Fig. 2. Vocal folds endoscopic images: (a) white light endoscopic image (b) fluorescence
endoscopic image [17].

3 Mutual Information and Registration

In the literature, multimodal image registration has been widely discussed. Zi-
tova et al. [18] classified registration techniques for medical applications into two
main categories: area-based and features-based methods. In these cases, the reg-
istration process follows mainly four steps: feature detection, feature matching,
transformation estimation, and image resampling. As previously stated, our ap-
proach is based on mutual information rather than geometrical visual features.
Therefore, the most critical steps (feature detection and matching) of a conven-
tional registration method are removed. Instead, from the joint and marginal
entropy of two images, it is possible to compute their similarities. This means
that the higher the mutual information is, the better the images are aligned [4].

3.1 Mutual Information in the Image

Mutual information is based on the measure of information, commonly called
entropy in 1D signal. By extension, the entropy expression in an image I is given
by

H(I) = −
NI∑
i=0

pI(i)log2(pI(i)) (1)

where H(I) represents the marginal entropy, also called Shannon entropy of
an image I; i ∈ [0, NI ] (with NI = 255) defines a possible gray value of an



image pixel; and pI is the probability distribution function, also called marginal
probability of i. This can be estimated using the normalized histogram of I.

Moreover, the entropy between two images I1 and I2 is known as joint entropy
H(I1, I2). It is defined as the joint variability of both images

H(I1, I2) = −
NI1∑
i=0

NI2∑
j=0

pI1I2(i, j)log2(pI1I2(i, j)) (2)

where i and j are the pixel intensities of the two images I1 and I2 respectively;
and pI1I2(i, j) is the joint probability for each pixel value. The joint probability
is accessible by computing the (NI1 + 1)× (NI2 + 1)× (Nbin + 1) joint histogram
which is built with two axes defining the bin-size representation of the image
gray levels and an axis defining the number of occurrences between I1 and I2.

From (1) and (2), the mutual information contained in I1 and I2 is defined
as

MI(I1, I2) = H(I1) + H(I2)−H(I1, I2) (3)

and can be expressed using the marginal probability pI and joint probability
pI1I2(i, j), by replacing (1) and (2) in (3) with some mathematical manipulations

MI(I1, I2) =
∑
i,j

pI1,I2(i, j)log
( prI1I2(i, j)

pI1(i)pI2(j)

)
(4)

This cost-function has to be maximized if I1 and I2 are requested to “look like
each other”.

In practice, the cost-function computed using (4) is not very smooth. This cre-
ates local maxima, hence complicating the convergence optimization process [4].
To reduce the joint histogram space as well as the irregularities in the mutual
information, and thereby local maxima (at least for the less significant ones),
Dawson et al. [7] proposed to use the in-Parzen windowing formulation when
computing the mutual information:

Ib1(k) = I1(k) Nc

rmax
and Ib2(k) = I2(k) Nc

tmax
(5)

where tmax = rmax = 255 and Nc are the new bin-size of the joint histogram
and Ib1, Ib2 are the new gray level value of I1 and I2, respectively.

In addition to re-sampling of the joint histogram, it is advisable to introduce
a filtering method based on B-splines interpolation in order to further smooth
the mutual information cost-function. As far as multimodal images are concern,
the abrupt change in the cost-function creating local maxima are flattened in
order to reduce again these irregularities. In practice, we opted for a third-order
interpolation ψ, which presents a good balance between smoothing quality and



time computation. Thereby, both marginal and joint probabilities become

pIb1Ib2(i, j) =
1

Nk

∑
k

ψ (i− Ib1(k))ψ
(
j − Ib2(k)

)
(6)

pIb1(i) =
1

Nk

∑
k

ψ (i− Ib1(k, x)) (7)

pIb2(j) =
1

Nk

∑
k

ψ (j − Ib2(k)) (8)

with Nk is the number of pixels in the new images Ib1 and Ib2 and ψ is the used
B-spline function.

4 Simplex-based Registration

This section deals with the method for solving the mutual information maxi-
mization problem. However, before describing the chosen optimization approach
among the many existing ones [10] to solve this problem, it is necessary to know
the exact shape of the cost-function in the case of bimodal images (fluorescence
vs. white light) of the vocal cords.

In practice, rather than maximizing mutual information, we minimize the
cost-function

f(r) = −MI[Ib1(r), Ib2] (9)

In the general case, because the mutual information depends on a Euclidean
displacement (i.e. in SE(3)) between both image viewpoints, the problem to
solve is

r̂ = arg min
r∈SE(3)

f(r) (10)

where r is the camera pose with respect to the world reference frame, attached
to the fluorescence image.

4.1 Cost-function Shape

Figure 3 shows the computed cost-function in nominal conditions (i.e., the high
definition images shown in Fig. 8). It has a global convex shape but still has
many irregularities. Consequently, derivative based methods such as gradient
descent could not necessarily guarantee convergence. Thereby, an unconstrained
optimization technique was chosen to overcome this problem, i.e., a modified
Simplex algorithm.

4.2 Modified Simplex Algorithm

The Nelder-Mead Simplex algorithm [13] roughly works as follows. A Simplex
shape S defined by vertices r1 to rk+1 with k = dim(6) is iteratively updated
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Fig. 3. MI cost-function in nominal conditions (representation of -MI).
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Fig. 4. Example of the Simplex steps: (A) reflection, (B) expansion, (C) contraction,
and (D) shrinkage.

until convergence using four operators: reflection, contraction, expansion, and
shrinkage (see Fig. 4), defined on a linear space.

In order to apply this algorithm in the non linear Euclidean space, we repre-
sent any rigid displacement r ∈ SE(3) as

r =

(
t

uθ

)
such that [r]

def
=

(
[u]∧ t
01×3 0

)
def
= logmT (11)

where logm is the matrix logarithm and T is the 4 × 4 homogeneous matrix
representation of r.

Thus, the usual four steps of the Simplex S can be used:

reflection : rR = (1− α)g + αrW (12)

where rR is the reflection vertex, α is the reflection coefficient and g is the
centroid between rG and rB .

expansion : rE = (1− γ)g + γrR (13)



where rE is the expansion vertex and γ is the expansion coefficient, and

contraction : rC = (1− β)g + βrW (14)

where rC is the contraction vertex, and β is the contraction coefficient.

shrinkage : r′G = (rG + rB)/2
r′W = (rW + rB)/2

(15)

where the vertices are updated as: rG = r′G and rW = r′W .
Finally, the algorithm ends when val(S) ≤ ε where ε is a predefined eligible

small distance, val(S) is defined as

val(S) = max
(
dist(rW , rB), dist(rW , rG), dist(rG, rB)

)
(16)

and dist is the distance between two vertices. By convention, the vertices are
ordered as

f(r1) ≤ f(r2) ≤ · · · ≤ f(rk+1) (17)

where r1 is the best vertex and rk+1 is the worst vertex.
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Re-orderQ
rW,rGQandQrBQsuchQasQQ

f(rW) < f(rG) < f(rW)

Q
ExtractQvectorQrSQ
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Fig. 5. Modified Simplex Algorithm.

The minimization of the cost-function using the Simplex algorithm is shown
in Fig. 5. In our case, the Simplex was modified, by introducing the quasi-
gradient convergence instead of reflection stage method [14], in order to improve
the convergence direction of f (without getting trapped in local minima) when



the controller approaches the desired position. This combination of an uncon-
strained and non-linear method with a quasi-gradient technique allows a higher
rate, faster and smooth convergence speed. This returns to combine the advan-
tages of a Simplex and gradient-based optimization methods.

Therefore, (12) is replaced with

rR = rB − αQ (18)

where Q is the quasi-gradient vector based on the diagonal elements of the
vertices matrix [14].

5 Registration vs. Visual Servoing

5.1 Image Transformation

First, the considered registration is defined as a rigid transformation between
two images. Let us assume the transformation r̂ ∈ SE(3) = R(3) × SO(3)
between the white light image Ib1 and the fluorescence image Ib2. Thereby, this
transformation can be estimated by minimizing the value of MI(Ib1, Ib2):

r̂ = argmin−MI[Ib1(r), Ib2] | r ∈ SE(3) (19)

where r is a possible rigid transformation.
The process allowing to carry out this registration is operating as follows:

acquisition of both white light image Ib1 and fluorescence image Ib2 then com-
puting MI(Ib1, Ib2). The obtained transformation r̂ from the first optimization
is then applied to synthesize a new image Ib1

(
r
)

from the image Ib1. These steps
are repeated until the predefined stop criterion is reached.

5.2 Visual Servoing

Let us assume that we have the cost-function shown in Fig. 3, then our objective
is to find the global minimum

r̂ = arg min
r∈SE(3)

−MI [Ib1(r), Ib2] (20)

A first way to move the robot so that the current (smoothed) image Ib1
superimpose onto the desired fluorescence (smoothed) image Ib2 is to use the
look-than-move approach: let the Simplex method converge, then apply r̂−1 to
the robot and start again (Fig. 7). However, this requires a very fine tuning of
the Simplex algorithm. The chosen approach allows interlacing the Simplex loop
and the vision-based control loop. At each iteration n, the Simplex provides rnB,
the best vertex so far, which is associated to the best transformation 0Tn =

e[r
n
B], with [rnB] =

(
[unθn]∧ tn

0 0

)
, from the initial to the current pose thanks



to the exponential mapping. Thus, applying directly the Simplex would require
displacing the robot by

n−1Tn =
(
0Tn−1

)−1 0Tn (21)

where 0Tn−1 = e

[un−1θn−1]∧ tn−1
0 0


This displacement will not be applied to the complete transformation n−1Tn

found, because that may have the robot to take too large motion. Instead, we
extract the screw (∆t,uθ)> associated to n−1Tn and convert it to a damped
velocity over the sample period Ts which is v =

(
λ.∆t

)
/Ts and ω =

(
λ.u∆θ

)
/Ts.

Applying this velocity to the robot requires to update the Simplex vertex rnB
according to the current (estimated) transformation (Fig. 6):

(
rnB
)update ⇔ 0Tn

update
=
(
0Tn−1

)−1
e

[ω]∧ v
0 0

Ts

(22)

1
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Fig. 6. Possible evolution of the Simplex.

6 Real-World Validation

6.1 Planar Positioning

Numerical Registration
The proposed numerical registration method is validated using two vocal folds
images: real fluorescence and white light. These images taken from [1] were
acquired in two different points of view with known pose as shown in Fig. 8. It
can be highlighted that r̂ between Ib1 and Ib2 includes four parameters (x, y,
θ and zoom). To be more realistic in our validation tests, we added a circular
trajectory (i.e., virtual incision mark done by a surgeon), to be tracked by the
surgical laser spot, in the fluorescence image delimiting the tumor (Fig. 8). Then
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Fig. 8. (a) fluorescence image Ib2 and (b) white light image Ib1.

Fig. 9. Numerical registration results: (a) shows Ib1 integrated in Ib2, and (b) a zoom
in the region of interest.

by analyzing Fig. 9(a), can be underlined the continuity of the combination
(Ib1 + Ib2), which relates to the high accuracy of the registration method. This
accuracy is clearly visible on the zoom in the incision mark (Fig. 9(b)). For this
example, the numerical values are summarized in Table 1.



Table 1. Numerical values of r̂, ẑ (1pix = 0.088mm).

DOF real pose obtained pose errors

x (mm) -8.000 -7.767 0.233

y (mm) -12.000 -12,059 0.059

θ (deg) 12.000 12.500 0.500

z 1.09 1.089 0.010

Visual Servoing
For ethical reasons, we have not yet performed trials in a clinical set-up. There-
fore, we validated the method on two benchmarks. The first one is a 3 DOF
(x, y, θ) microrobotic cell (Fig. 10).

Camera

Vocal folds 

photography

Ⲑ stage

x stage y stage

P1

P2

R1

R: revolute 

P: prismatic

Fig. 10. Global view on the 3DOF experimental platform.

Firstly, the MI-based visual servoing is validated on monomodal images in
aim to verify the validity of our controller. Figure 11(A) represents an exam-
ple of white light images registration in visual servoing mode. More precisely,
Fig. 11(A-a) and (A-b) represent the initial and desired images, respectively. In
the same way, Fig. 11(A-c) and (A-d) show the initial and final error Ib1 - Ib2.
It can be noticed that the final position of the positioning platform matches
perfectly with the desired position indicating good accuracy of our method.

Figure 11(C) shows the evolution of the velocities vx, vy and ωz in the differ-
ent DOF versus number of iterations. It can be underlined that the developed
controller converges with accuracy in fifty iterations (each iteration takes about
0.5 second). Also, the speed varies in the iteration 40 because the Simplex after
initialization found a new best minimum.

Secondly, vocal folds multimodal images are also used to test the proposed
controller. In this scenario, the desired image is in fluorescence mode (prere-
corded image) and the current images are in white light mode as it would be in



the surgical context. Figure 11(B-a) and (B-b) show the initial image Ib1 and
the desired image Ib2, respectively. Figure 11(B-c) and (B-d) illustrate the error
(Ib1 - Ib2) during the visual servoing process. As shown in this figure, the con-
troller converges also to the desired position with a good accuracy. Note that
the image (Ib1 - Ib2) is not completely gray (if two pixels are exactly the same,
it is assigned the gray value of 128 for a better visualization of (Ib1 − Ib2), this
is due to the fact that both images are acquired from two different modalities,
then the difference will never be zero (respectively 128 in our case).

In the same manner, Fig. 11(D) shows the evolution of the velocities vx, vy
and ωz with respect number of iterations. It can be also underlined that the
controller converges with the accuracy to the desired position despite the large
difference between Ib1 and Ib2.

(a) (b)

(c) (d)

Ib1 Ib2

Ib1 - Ib2 Ib1 - Ib2

(A)
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(c) (d)
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Fig. 11. Image snapshots acquired during the SE(2) positioning: (A) white light vs.
white light images, (B) white light vs. fluorescence images. Velocities vx, vy and ωz (in
µm/s,mrad/s) vs. iterations in the case of: (C) white light vs. white light image (D)
fluorescence vs. white light image.

Additional validation tests were performed to assess the repeatability and
behavior (convergence and robustness) of the controller. Therefore, for each



test, the experimental conditions (lighting conditions, initial position and im-
age quality) were deliberately altered. Table 2 gives the results of a sample of
these experiments.

Table 2. Repeatability test for visual servoing (x, y, error in mm, θ in ◦ and t in
seconds).

N◦ DOF des. pos. ini. pos. error t

x 5.37 2.47 -0.33
1 y 2.94 0.66 0.37 25.2

θ -2.61 -8.43 2.51

x 4.02 -0.66 0.37
2 y -5.57 -5.05 1.45 36.5

θ 2.47 -5.05 2.41

x 6.05 3.14 0.16
3 y 1.47 0.21 0.88 49.2

θ -14.59 -24.19 0.64

x 4.09 2.1 0.17
4 y 2.12 0.44 0.4 36.3

θ 14.56 6.63 1.15

x 3 0.31 0.55
5 y 2.5 0.19 0.53 57.3

θ -4.81 14.53 0.83

6.2 3D Positioning

Numerical Registration
This numerical registration was tested in the same condition as in the planar
numerical registration experiment. However, in this case the transformation be-
tween Ib1 and Ib2 is r̂ ∈ SE(3). As in the previous experiment, we use the
fluorescence image (Fig. 12(a)) vs. white light (Fig. 12(a)) image, with circular
trajectory of the laser spot draw by the surgeon in both images. The initial
Cartesian error between the desired image Ib1 and the current image Ib2, was r
= (30 mm, 30mm, 40mm, 4◦, 10◦, 5◦).

Again in this experiment we can see overlapping between the reference and
the transformed image in the combined image Fig. 13(c). The resulting image is
the sum between a region of current image (Fig. 13(a)) and the transformed one
with the returned registration values (Fig. 13(b)) to show the continuity of the
vocal fold shape. Besides, the real final error is δr = (0.22mm, 1.29mm, 9.5mm,
0.29◦, 0.86◦, 1.02◦), with a computation time of 6.564 seconds.

Visual Servoing
The previous experiment on the visual servoing was extended to the 6 DOF



(a) (b)

Fig. 12. (a) fluorescence image Ib2 and (b) white light image Ib1.

+ =

(c)(a) (b)

Fig. 13. Numerical registration results: (a) shows a sample region of Ib1, (b) shows a
sample region of Ib2 after applying the numerical registration transformation, and (c)
the combination of the images (a)+(b).

robot platform with an eye-to-hand configuration as shown in the Fig. 14(left).
The test consists in the validation of our controller without any information of
the setup as an interaction matrix or calibration parameters.
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Fig. 14. Global view on the 6 DOF experimental platform.

The approach consists of 3D positioning of the robot based on desired image
Fig. 15(a) (planer image (i.e., photography of vocal fold)) from current image
Fig. 15(b) chosen arbitrary at the workspace of the robot. To do so, the robot



is placed at an initial position r = (-6mm, 6mm, 75mm, -1◦ , -1◦, -1◦) and
must reach the desired position r∗ = (6mm, -6mm, 74mm, -4◦, 2◦, 1◦). While,
the Fig. 15(c) presents the initial image difference (Ib1 − Ib2) and Fig. 15(d)
the final image difference when the controller reaches the desired position. The
positioning errors in each DOF are computed using the robot encoders. The
final error obtained is δr = (1.22mm, 0.352mm,0.320mm, 1.230◦, 1.123◦, 0.623◦).
By analyzing this numerical value, it can be underlined the convergence of the
proposed method.

(a) (b)

(c) (d)

Ib1 Ib2

Ib1 - Ib2 Ib1 - Ib2

Fig. 15. Image sequence captured during the positioning task. (a) desired image Ib1,
(b) current image Ib2, (c) initial difference Ib1 − Ib2 and (d) final difference Ib1 − Ib2

showing that the controller reaches the desired position.

In Fig. 16(a)-(b) illustrate the velocities v evolution sends to the robot during
the positioning task relative to the number of iterations (each iteration takes
0.5 seconds). Furthermore, the mutual information values evolution decay is
presented in Fig. 16(c) with respect to the number of iterations.

7 Conclusion

In this paper, a novel metric visual servoing-based on mutual information has
been presented. Unlike the traditional methods, the developed approach was
based only on the use of a modified Simplex optimization. It has been shown
that the designed controller works even in the presence of many local minima in
the mutual information cost-function. Beside this, the controller has shown good
behavior in terms of repeatability and convergence. Also, we have validated the
controller in SE(3) using a 6 DOF robot.
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Fig. 16. (a) translation velocities v (in mm/s), (b) rotation velocities ω (in rad/s), (c)
mutual information values evolution.

Future work will be devoted to optimize the computation time to reach the
video rate and improve the velocity control trajectories.
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