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Abstract— This paper deals with the development of a new
6 degrees-of-freedom (DOF) vision-based controller for robot-
assisted medical applications. The main objective is to use
visual information extracted from Ultrasounds (US) images to
control an US probe held by a robot. Instead of the conventional
use of visual features e.g., geometric features (points, lines,
moments, etc.) in the visual control law design, the described
method uses the shearlet coefficients. More precisely, the
time-variation of the coarsest level of shearlet decomposition
coefficients are linked to the US probe (respectively to the
robot) spatial velocity and then related to the task-function
control law. The proposed control law was experimentally
tested and validated using a realistic abdominal phantom.
The obtained results demonstrated promising performances in
terms of accuracy, repeatability, robustness and convergence
behavior.

I. INTRODUCTION

2D and 3D US imaging devices, also known as echogra-
phy systems, are widely used for non-invasive observations
of inner organs i.e., diagnosis. Also, real-time US images
can be used as visual feedback for guiding non/mini-invasive
surgical procedures. Unfortunately, echography examina-
tion implies high demands on the surgeon since hand-
eye-coordination becomes very mastery. Therefore, several
robotic systems were developed to hold the US probe allow-
ing thus remote examination of a patient. These systems are
mainly based on master-slave robotic architectures allowing
the clinician to tele-operate the probe motions [1]. Since few
years ago, different solutions based on the visual servoing
framework [2] were proposed to control the robot probe
holder directly from information extracted from the US im-
ages. For example, in [3] several autonomous control modes
based on US image-based visual servoing were developed
to provide different kinds of assistance during robotic US
examination. The objectives of visual servoing during an
echography examination can be summarized by: 1) maintain-
ing visibility of an organ [4], 2) automatic positioning of the
probe in such a way to retrieve a pre-operative image [5] and
3) automatic compensation of physiologic patient motion in
such a way to actively stabilize the US image on a moving
organ [9].

The efficiency of a visual servoing approach is strongly
depended on the choice of the appropriate visual features.
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These features can be points [4], lines [6], moments [5],
etc. The success of these approaches depends highly on the
ability to detect, match and track, in the US images, the
visual features over time. In the literature, these techniques
are referred to visual tracking. To overcome these limita-
tions, original visual servoing approaches have been intro-
duced which show that the design of an image-based visual
controller can totally remove the visual tracking process [7],
[8]. Recently, in [9], the authors have proposed an alternative
6 DOF visual servoing scheme by taking as visual inputs
directly the intensity of the US image pixels. This method
has proven its reliability in terms of convergence behavior
robustness and accuracy thanks to the redundancy of the
information used as inputs to the controller.

This paper addresses another kind of featureless vi-
sual servoing undressed so far: the use of shearlet coef-
ficients for control. Shearlet is a recent mathematics tool
for signal (respectively image) representation introduced in
2005 [10] which can be considered as a natural extension
of wavelet [11]. It was proven that shearlet are more appro-
priate to represent anisotropic image features such as edges
comparing to the wavelet. From this, several applications
using shearlet representation have emerged: image inpaint-
ing [12], denoising and speckle filtering on US images [13].

The main scientific contribution of our work is the design
of a visual servoing approach that uses shearlet coefficients
instead of pure photometric information to control the
6 DOF of a robotized US probe. One of the advantages
using shearlet coefficients in the design of the control law is
to obtain a set of noiseless and redundant visual signal for a
more robust and accurate visual servoing. The latter was ex-
perimentally tested and validated using a 6 DOF US robotic
system holder and a realist abdominal phantom. The vali-
dation tests were conducted under different conditions i.e.,
nominal and unfavorable. The obtained results were more
than satisfactory especially in terms of convergence (smooth
domain), robustness (robust to the unfavorable conditions),
repeatability and accuracy (average error of 0.19mm and
0.23◦ in translation and rotation axes, respectively).

In the remainder of this paper, Section II reviews the
general basics of the shearlet representation of an image. The
derived visual servoing controller is detailed in Section III
while its experimental validation using a 6 DOF US robotic
system holder and an abdominal phantom is discussed in
Section IV.

II. SHEARLET TRANSFORM

The shearlet image representation used to design the
proposed US-based visual controller constitutes an important



mathematical tool that may allow development of promis-
ing new visual servoing approaches. Thereby, for a better
understanding of the controller design methodology, it is
obvious to introduce some basics of the shearlet trans-
form, more precisely the cone-based shearlet system. As
mentioned in [14], the shearlet theory provides an efficient
mathematical tool for image sparse representation including
geometry and multiscale analysis. It can be considered as
an extension of the wavelet transform, by increasing their
directional sensitivity, to be more adapted for anisotropic
image objects (e.g., edges, key-points, etc.).

Indeed, shearlet coefficients construction can be summa-
rized by the reposition of three operators: dilatation DAα

,
shearing DSβ

and translation Tt , applied on a generating
waveform function φ (also called mother shearlet function).
We invite the reader to refer to [14] for more details.

Firstly, an operator DM is needed to compute the dilatation
and the shearing function.

DMφ(x) = |det(M)|−
1
2 φ(M−1x) M ∈ GLd(R) (1)

with x ∈ R2, GLd(R) the group of d-dimensional invertible
matrices, det(M) the determinant of the matrix M.

To obtain the dilatation function DAα
we use this operator

DM with the parameter M as a parabolic scaling matrix given
by

Aα =

(
α 0
0
√

α

)
α ∈ R+∗ (2)

Also, to obtain the shearing function DSβ
, we use the

operator DM with the parameter M as

Sβ =

(
1 β

0 1

)
β ∈ R (3)

where β is the slope that parametrizes the orientation of the
generating function.

Finally, the translation function Tt ∈ L2(R2) is applied
using

Ttφ(x) = φ(x− t) (x, t) ∈ (R2)2 (4)

From this, the shearlet system SH(φ) associated to φ ∈
L2(R2) is given by

SH(φ) =
{

φ(α,β,t) = TtDAα
DSβ

φ, α ∈ R, β ∈ R, t ∈ R2
}

(5)
By replacing (2), (3) and (4) in (5), we get

φ(α,β,t)(x) = α
− 3

4 φ

(
A−1

α S−1
β
(x− t)

)
= α

−3
4 φ

(
1
α

−β

α

0 1√
2

) (
x− t

)
(6)

Moreover, according to [14] shearlet decomposition is
possible if and only if φ satisfies the following admissible
condition∫

R2

|φ̂(ξ1,ξ2)|2

ξ2
1

dξ1dξ2 < ∞ (ξ1,ξ2) ∈ R2 (7)

Thereby, the mother shearlet function φ ∈ L2(R2) is de-
fined such that

φ̂(ξ) = φ̂(ξ1,ξ2)

= φ̂1(ξ1)φ̂2

(
ξ2

ξ1

)
(8)

where, φ̂ is the Fourier transformation of φ, φ1 is a wavelet
function and φ2 is a bump-like function. Then, the shearlet
transform of the image I ∈ L2(R2) is

I→ SHφI(α,β, t) =< I,φα,β,t > (9)

Fig. 1. Representation of a frequency plane tiled by the shearlet system.
The horizontal cone is represented in blue.

As shown in Fig.1, the direction ξ1 is naturally favored to
the direction ξ2. To tackle this problem, the frequency plane
is divided into two cones: the vertical one corresponds to
‖ ξ2

ξ1
‖< 1 and ‖ξ1‖> 1, and the horizontal one corresponds

to ‖ ξ1
ξ2
‖< 1 and ‖ξ2‖> 1. Concerning the low-frequency, it

is filtered by a square centered in the origin (‖ξ1‖< 1 and
‖ξ2‖> 1).

Fig. 2. Shearlet coefficients (level l = 1...5) computed from the Lena
photography (a). (b) the horizontal coefficients H SH(φ) and (c) the vertical
ones V SH(φ).

Figure 2 shows the representation of the shearlet co-
efficients of a 128 × 128 pixels image (e.g., Lena pho-
tography). These coefficients correspond to the different
levels l = 1, . . .5 (l = 1 corresponds to the highest resolution
coefficients and l = 5 the lowest ones). Each level also
contains a certain number of subimages, depending on the
number of the chosen shearing directions.



III. SHEARLET-BASED VISUAL SERVOING

A. Basics of Visual Servoing

According to [2], the aim of a visual servoing is to control
the motion of a robot in order to allow a set of visual
signal s (s ∈ Rk) defining a robot pose r(t) ∈ SE(3)

(
i.e.,

s = s
(
r(t)
))

to reach a set of desired signal s∗ (s∗ ∈Rk) by
minimizing a visual error given by

e = s
(
r(t)
)
− s∗ (10)

The variation of s is linked to the velocity screw vector
v = (vx vy vz ωx ωy ωz)

T of the visual sensor frame
by .s = Lsv where Ls ∈ Rk×6 is the interaction matrix.

By taking into account (10), we obtain the variation of
the visual error e due to the visual sensor velocity such as.e = Lsv−

.s∗. In order to obtain an exponential decrease of
this visual error, the following classical control law is usually
employed [2]

v =−λL̂s
+
(
s(t)− s∗

)
(11)

where λ is a positive gain and L̂s
+

is the Moore-Penrose
pseudo-inverse of an estimation of the interaction matrix. In
this study we choose to fix L̂s = Ls

∗ to be the interaction
matrix Ls

∗ obtained at the desired position of the visual
sensor as it is often done.

B. Control Law using Shearlet Coefficients

In this work, we propose to use the k shearlet coefficients
of the coarsest level l = 5 (in the right of (Fig. 2 (b)) and
in the bottom of (Fig. 2 (c)) as the set of visual features s
for the image I, such as

s =< I,φα,β,t >(l=5) α = 1, β = [−1,0,1] (12)

Since an analytical formulation of the interaction matrix
related to the shearlet coefficients is difficult to derive, at this
stage of development, we propose to numerically compute
the constant interaction matrix Ls

∗ used in the control law
(11) thanks to an off-line initial robotic procedure that we
performed at the desired location of the probe. The principle
consists in applying successively and independently small
relative displacements corresponding to 3 translations ∆x,
∆y, ∆z and 3 rotations ∆θx, ∆θy, ∆θz along and around
each axis of the Cartesian frame attached to the robot end-
effector (as depicted in Fig. 7). The measured visual feature
differences (scalar values) ∆s j

∆x, ∆s j
∆y, ∆s j

∆z, ∆s j
∆θx

, ∆ js∆θy ,
∆s j

∆θz
induced by these motions for each visual feature

component j allow then to computed the jth row of the
interaction matrix Ls

∗ as follow

L∗j =
(

∆s j
∆x

∆x

∆s j
∆y

∆y
∆s j

∆z

∆z

∆s j
∆θx

∆θx

∆s j
∆θy

∆θy

∆s j
∆θz

∆θz

)
(13)

Finally, the whole interaction matrix is obtained by stack-
ing all the rows L∗j related to each visual feature component
Ls
∗ =

[
L∗1, . . . ,L

∗
k

]
and the control law (11) is applied with

this numerically estimated constant interaction matrix Ls
∗.

C. Convergence domain

In order to judge the effectiveness of the proposed con-
troller in term of convergence domain, we have computed the
cost-function shape when varying the different robot DOF
using the following relationship

C(s) =
(
((s− s∗)>(s− s∗))/Npix

) 1
2

(14)

where, Npix is the number of pixel in the initial image. As
it can be seen in Fig. 3, the cost-function C has an almost
perfect convex shape where the global minimum is clearly
identified.
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Fig. 3. (a) the shearlet-based visual servoing cost-function for x and y
translation and (b) for the rotations around x, y and z axis.

IV. GROUND-TRUTH VALIDATION

To validate the proposed methods, we develop an auto-
matic 6 DOF positioning task by controlling the 2D US
robot holder motion. This scenario was performed in both
simulation and experimental modes. The obtained results are
presented and discussed below.

A. Simulation Results

Before the proposed approach can be validated on the
experimental work-flow, it was tested using a developed C++
simulator which was very appropriate to validate the theo-
retical developments in different conditions of use without
any risk of damaging the US probe. The simulator, miming a
2D US probe and an abdomen phantom, was implemented
using the: Open-source Visual Servoing Platform (ViSP)1,
Visualization ToolKit library (VTK)2 and Shearlab library3

(available in MatLab version and implemented by ourselves
in C++). An example of a US volume as well as a 2D US
slice are shown in Fig. 4. This US volume is composed by
335 parallel 2D images of size 250 × 250 with a pixel size
of 0.6mm × 0.6mm and interval of 0.3mm between each
image (captured with a real 3D US Probe).

The test consists of performing a 6 DOF automatic
positioning task using the shearlet-based visual controller.
To do that, the positioning task consists of reaching a desired
position r∗ ∈ SE(3) (i.e., desired image) from an arbitrary
initial position r∈ SE(3) (i.e., an initial image). At each US
image acquisition, the shearlet coefficients are computed,
more precisely the first 96 coarsest coefficients. The spatial

1www.irisa.fr/lagadic/visp
2www.vtk.org
3www.shearlab.org



(a) (b)

Fig. 4. (a) 3D US volume provided by the developed simulator and (b)
an extracted 2D US slice.

velocities computed by the controller (11) are applied to
the virtual probe with a gain λ = 0.5 in order to reach
the desired position. Figure 5 depicts an image sequence
acquired during the positioning task: Fig. 5(a)-(b) show
the initial and desired images, respectively, and Fig. 5(c)
represents the initial image difference that is observed for
an initial error of ∆einit (mm, deg) = (9, × , 5, 2, 2, 5) while
Fig. 5(d) shows the image difference at the last recorded
iteration, which shows the convergence of the control law.

Idi f f =
(I− I∗)+255

2
(15)

The pose error obtained at the convergence using high res-
olution robot encoders supplied by the simulation software,
was measured to be ∆e f inal (mm, deg) =

(
0.1, × , 0.2,

0.02, 0.18, 0.08
)
. Figure 6 (left) shows the pose error decay

for each DOF when Figure 6 (right) illustrates the velocities
sent to the robot DOFs. After about thirty seconds, we can
see that the system has converged smoothly.

Fig. 5. Image sequence captured during the positioning task: (a) the initial
image I(r0), (b) the desired image I(r∗), (c) the difference Idi f f between
the initial and the desired image and (d) the difference between the final
and the desired images.

B. Experimental Results [nominal conditions]

The proposed controller was tested and validated in exper-
imental conditions using a realist testbench (Fig. 7) equipped
with
• a 6 DOF anthropomorphic robotic arm of type of Adept

Viper s850;
• a 2-5MHz 2D-US transducer (C60, Sonosite 180+) with

a depth of 12cm providing 480 × 640 pixels US images
with a pixel size of 0.35 × 0.36mm2;
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Fig. 6. Positioning task [simulation case]: (left) pose error decay in each
DOF (et for translations and er for rotations) and (right) velocity evolution
in each DOF (vt and vr respectively for the translational and rotational
components of the robot control velocity screw)

• a 6 axes force sensor ATI Gamma SI-65-5;
• a 3-GHz PC running under a Linux distribution in

which were implemented the developed approaches in
C++ and the control communication with the robot;

• an abdominal phantom of type of AB-41900-030 Kyoto
Kagaku-ABDFAN.

Fig. 7. Photography of the experimental set-up.

The objective of this experiment is to reproduce the
simulation tests on a realist testbench closer to a clinical
use of the US imaging system. For validation purpose,
the US probe attached to the 6 DOF Viper robot is posi-
tioned to a reference location (preoperative image) where
the desired shearlet components were measured and the
related interaction matrix was numerically estimated, then
without moving the phantom, we position randomly the
probe at a new location which is considered as the initial
position (intraoperative image). The preoperative image can
be considered as a desired image acquired few days earlier
and the intraoperative one captured during another exami-
nation. Thereby, the objective of our approach is to retrieve
automatically and accurately the preoperative image during
a second examination.

Furthermore, the y-translation corresponds to the contact
direction between the US probe and the phantom. Indeed,
it is advisable to be careful (low motion) along the y axis
because of the risk of damaging the probe and/or phantom.
To tackle this problem, a force control is used to control
this y-translation instead of the visual controller (for more
details, please refer to [9]) to maintain a desired contact



(a) (b)

(c) (d)

Fig. 8. Image sequence captured during a positioning task: (a) the initial
image I(r0), (b) the desired image I(r∗), (c) the difference between the
initial and the desired image and (d) the difference between the final and
the desired images Idi f f .
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Fig. 9. Positioning task [experimental case, nominal conditions]: (left)
pose error decay in each DOF and (right) velocity evolution in each DOF.

force of 2N while the others 5 DOF are controlled by our
shearlet-based visual servoing approach.

Figure 8 represents the case where the initial pose error
between the initial US image I(r0) and the desired US image
I(r∗) was measured to be ∆einit (mm, deg) = (7, ×, 8, 2,2,
2). The final positioning error (Fig. 9 (left)), computed using
the high resolution robot encoders supplied by the robot
software, was measured to be ∆e f inal (mm, deg) = (0.16, ×,
0.09, 0.09, 0.22, 0.07) demonstrating a good accuracy and
convergence behavior.

The positioning task was repeated several times using
different initial positions (in order to avoid biased results). It
was experimentally demonstrated that in each test the con-
troller reaches successfully the desired position. TABLE I
summarizes some samples of positioning tasks performed
by the proposed controller. Note that the y-translation is not
taken into account since this axis was controlled by force
control.

C. Experimental Results [unfavorable conditions]

In order to judge the robustness of the shearlet-based
visual servoing, another experimental test was performed.
During this test, the reference US image (Fig. 10(b)) was
acquired in unfavorable conditions. Indeed, we learn the
shearlet coefficients on the desired image blurred with a
Gaussian filter of 31 pixels size. During the task, the current

TABLE I
ROBUSTNESS STUDY OF THE CONTROLLER (4Ti (MM), 4Ri (DEG), e0

AND e f REPRESENT THE INITIAL AND FINAL ERROR RESPECTIVELY.)

e f and e0 4Tx 4Ty 4Tz 4Rx 4Ry 4Rz

e0 1 × 2 5 5 5
e f 0,41 × 0,09 0,06 0,13 0,14
e0 10 × 5 5 5 5
e f 0,3 × 0,26 0,37 0,5 0,21
e0 7 × 8 2 2 2
e f 0,16 × 0,09 0,09 0,22 0,07
e0 8 × 5 2 2 5
e f 0,41 × 0,11 0,11 0,3 0,85
e0 4 × 5 5 5 5
e f 0,3 × 0,06 0,1 0,22 0,08
e0 2 × 4 5 5 4
e f 0,09 × 0,02 0,03 0,35 0,31

MEAN(e) 0,28 × 0,10 0,13 0,29 0,28
STD (e) 0,13 × 0,08 0,12 0,13 0,29

US images were captured in nominal conditions (Fig. 10(a)).
The initial pose error is ∆einit (mm, deg) = (9, ×, 3, 3, 1,
4).

Figure 10 depicts some US images captured during the
positioning task process. More precisely, Fig. 10(a) and (b)
show the initial image and the desired image (in poor qual-
ity) when Fig. 10(c) illustrates the difference between the
initial and desired image Idi f f and Fig. 10(d) the difference
between the final and the desired image demonstrating the
accurate convergence of the controller towards the desired
position.

The positioning error decay in each DOF and the evo-
lution of the spatial velocity over the time are reported in
Fig. 11(left) and (right). As can be underlined, the controller
converges exponentially and smoothly to the desired position
with a good accuracy. The obtained final error was measured
to be ∆e f inal (mm, deg) = (0.229, ×, 0.353, 0.59, 0.56,
0.19) very close to the ones obtained in the case of nominal
conditions demonstrating the robustness of our method w.r.t.

Fig. 10. Some snapshots captured during the positioning task [unfavorable
conditions]: (a) the initial image I(r0), (b) the desired image I(r∗), (c) the
difference Idi f f between the initial image and the desired image and (d)
the difference between the final and the desired images.
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Fig. 11. Positioning task [experimental case, unfavorable conditions]:
(left) pose error decay in each DOF, and (right) velocity evolution sent to
the robot DOFs.
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Fig. 12. (left) shows the decrease of the norm of the visual error in the
case of nominal conditions, and (right) illustrates the evolution of the norm
of the visual error in the case of unfavorable conditions.

blurred images. Furthermore, Fig. 12 (left) and (right) depict
the decrease of the norm of the visual error ‖e‖ given by eq.
(14) in nominal and unfavorable conditions, respectively.

D. Towards Tracking using Shearlet-based Visual Servoing

The developed controller was also used to achieve track-
ing tasks. The latter consists in automatically moving the
US probe to follow phantom motions. To do this, we use the
same controller by considering the desired image as being
the initial one. Therefore the robotic system aims to auto-
matically stabilize the US images through the compensation
of the target external motions. The objective of this task is
to compensate the physiological motions (e.g., breathing and
heartbeat) during an US-based examination. For this exper-
iment, we manually move the phantom along the 6 DOF
with an amplitude of ∆A (mm, deg) = (20, 2, 2, 3, 17, 3).
As can be shown in Fig. 13 and in the video accompanying
this paper, our shearlet-based controller is able to efficiency
compensate the applied external movements.
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Fig. 13. Evolution of the error in the Shearlet domain with and without
tracking.

V. CONCLUSION & FUTURE WORKS

In this paper was presented a new 6 DOF US image-based
visual servoing paradigm. Instead of using conventional
visual information in the design of the control lax, our
method makes use of the shearlet transform coefficients.
This implied that the interaction matrix links directly the
US images shearlet coarsest coefficients time-variation to the

robot motion. The method was validated in both simulations
and experiments using a 2D US probe attached to a 6 DOF
anthropomorphic robotic arm. The obtained results in the
cases of automatic probe positioning and phantom motion
compensation demonstrated the efficiency of the proposed
controller in terms of accuracy (average final positioning
error of 0.19mm and 0.23◦ in the translation and rotation,
respectively), repeatability, robustness and convergence be-
havior.

Further work will be undertaken to improve the developed
controller by providing an analytical formulation of the
interaction matrix avoiding therefore the need of its off-line
numerical estimation. We will also consider the problem of
US images acquisition time and quality. This can be tackled
by considering the Compressed Sensing techniques well-
adapted for medical images e.g., US, CT-scan, MRI, etc.
The compressed sensing technique can also be taken into
account during shearlet-based visual servoing.
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