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Abstract— Prognostics and Health Management (PHM) 

techniques for Proton Exchange Membrane Fuel Cell (PEMFC) 

systems are of great importance for increasing their reliability and 

sustainability. PEMFC systems suffer from relatively poor long-

term performance and durability, and prediction and prognosis 

can give early indications about when components should be fixed 

or replaced. Prognostics modelling needs to take account of a 

number of phenomena, including degradation mechanisms that are 

not easily measured. A number of works are currently 

investigating PHM in fuel cell systems, as well as the problem of 

estimating Remaining Useful Lifetime (RUL). Any reduction in the 

volume of data required for making predictions is clearly 

advantageous.  In this work, a univariate prognostic approach 

based on signal processing, namely Discrete Wavelet Transform 

(DWT) is proposed. The proposed approach aims at achieving an 

online prognostic for PEMFC systems. DWT is first introduced, 

and then the predictions are built using the power signals of two 

different PEMFC stacks in two different scenarios, namely static 

and dynamic operating conditions. Results show that the method is 

reliable for online prediction of power, with prediction errors less 

than 3%. 

 

Index Terms— fuel cell prognostics, data-driven models, discrete 

wavelet transform, RUL prediction. 

 

I. INTRODUCTION 
 

n recent years PEMFCs have been seen as an 

environmentally friendly technology because of their clean 

chemical reactions (they use hydrogen to produce electricity, 

heat and water), and their efficiency. They can replace internal 

combustion engines in vehicles [1][2]. Fuel cells (FCs) have the 

potential to provide heat and electricity not only for vehicles, but 

also for buildings, including houses.  Unfortunately, in 

comparison to other technologies, they have low reliability and 

a short lifespan [3] [4]. 

The reliability of the PEMFC stack is improving over time, 

but like any device involving chemical, physical, and 

mechanical processes, the lifetime of PEMFCs may be 

shortened by a number of direct and indirect factors such as the 

deterioration of materials, imperfect cell/stack design and 

assembly, inadequate operating conditions, and impurities and 

contaminants in incoming gases. Although a loss of 

performance over time is unavoidable, the rate of degradation 

can be minimized through the use of effective diagnostic and 

prognostic tools that encapsulate an understanding of how and 

why degradation and failures occur. Diagnostic [5]-[7] and 

prognostic methodologies for assessing the state of health of a 

fuel cell and predicting its remaining lifetime need to be 

designed and implemented, to bring about an improvement in 

system performance.  

Fuel cell system prognostics involve building a reliable model 

that is able to predict how the representative parameters for 

degradation and ageing of the FC will change, and that can 

estimate Remaining Useful Lifetime (RUL). Prognostics have 

several objectives: besides the aim of avoiding degradation and 

even catastrophic failures, there are the aims of extending FC 

lifetime and availability, optimizing service, minimizing risk 

and reducing costs.  Approaches to prognosis can be separated 

into three broad groups: Model-based [8]-[12], data-driven [13]-

[21] and hybrid approach [22]. 

Since fuel cell systems are complex, non-linear, multi-physics 

(fluidic, thermal, mechanical, and electro-chemical) and multi-

scale (time, space) systems, with strong interaction between 

parameters belonging to different subsystems, it is difficult to 

develop complete, precise models of operation, degradation and 

ageing. For this reason, data-driven prognostics would appear 

easier to implement, since they do not require an a priori deep 

understanding of all the ageing mechanisms affecting the stack. 

Javed et al. [23] have pointed out that data-driven approaches 

for estimating the RUL of a FC system can themselves be 

classified into two groups. The first group corresponds to 

univariate-degradation-based models and the second group 

corresponds to direct RUL prediction models. 

Silva et al. [17] developed a data-driven approach that they 

called an Adaptive Neuro-Fuzzy Inference System (ANFIS), for 

PEMFC stack temperature prognostics, using data collected on 

the PEMFC stack.  

In another work, Morando et al. [24] applied a data-driven 

approach, Echo State Network (ESN), for PEMFC stack 

prognostics.  

In one recent paper [25] the authors developed an approach 

based on a particle filtering for estimating the RUL of PEMFC 

under two operating conditions: steady state and dynamic.  

Finally, Javed et al [26] presented an approach for PEMFC 

stack prognostics using a constraint-based Summation-Wavelet 

Extreme Learning Machine.  

 The data-driven methods developed in the literature have two 

major problems. First, they all need a large amount of data for 

the learning phase (exogenous and past data). Second, they all 

need to be trained (learning from examples) to make predictions, 

which means that if new data become available (new examples), 

the models need to be rebuilt.  

To help overcome these problems, in this paper we propose a 

new data-driven prognosis approach for PEMFC. The model is 

univariate: unlike multivariate approaches [26] that need 

exogenous data, our method does not take exogenous data into 

account, and predictions can be made using only past 

observations of the power signal (univariate time series), 

meaning that fewer data and acquisition devices are required. 

The model uses the past values of this signal up to a defined 

time t and predicts new values up to a certain time t+h; thus, the 

process of degradation is predicted and an online prognosis can 

be made. The proposed approach is mainly based on Wavelet 
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Transform (WT), which has been widely used for fuel cell 

monitoring [27]-[32], as well as many other applications [33]-

[35].  

 The advantage of WT, specifically of Discrete Wavelet 

Transform (DWT), is its ability to represent a given time series 

(or signal) with a small number of coefficients (the 

approximation coefficients), and consequently only a small 

quantity of data can be sufficient for performing a prediction.   

The proposed approach consists of considering the output signal 

of a PEMFC and decomposing a segment of 168 hours (one 

week) using DWT. The power signals considered in this article 

represent the data from two long-duration ageing tests of 1000 

hours, and therefore they include the processes of degradation 

that will be considered in the present work.  

After decomposition, a set of approximations coefficients (see 

section II) can be obtained and can represent the original signal 

with a smaller number of observations (168 hours represented 

by 21 hours). Predictions are made on this new set using 

mathematical regression models: Auto-Regressive Integrated 

Moving Average ‘ARIMA’ and polynomial regression. The 

prediction horizon is set to 21 hours. Once the prediction is 

made, inverse DWT is applied to create the approximation 

signal of 168 hours using the obtained prediction (see section 

II). These 168 hours represent the prediction of degradation, and 

will be compared with the actual signal in terms of the mean 

square error. Thereafter, this operation is repeated for the next 5 

weeks in order to complete the online prognosis. The quantity 

of delivered power (with constant current) is an indicator of the 

RUL, since the performance of the considered PEMFC ceases 

to be satisfactory once the power drops by about 5.5% from the 

initial value (this value is given here as an example, and may be 

adapted according to the constraints of the application). 

The novelty of the proposed approach is that unlike the 

approaches developed in the literature, it is a univariate model 

without a training part; that is, the model does not learn the 

relationship between the observations by training (as black box 

systems do, for example), but only by attributing a suitable 

analytical model. Moreover, a long-term prediction (168 hours) 

can be achieved by predicting only 21 hours using DWT and 

inverse DWT.  

This paper is organized as follows: In section II the 

description of the wavelet transform and the model description 

are given and in section III the collection of experimental data 

is described. The analysis of results and discussion are detailed 

in section IV, and finally section V is a general conclusion of 

the present work. 

 

II.  PEMFC prognostics method: the 
mathematical framework 

 
Discrete Wavelet Transform (DWT) is an effective method 

for non-stationary signal filtering and processing. DWT has 

been used in a variety of fields including medicine, energy 

management, image processing and computer vision. The 

greatest advantage of DWT is localization in both time and 

frequency [36]. However, signals used for prognostics (voltage, 

power, etc…) are also non-stationary, and so DWT would 

appear to be a suitable method for analyzing these signals too.  

A. Discrete wavelet transform  

Discrete Wavelet Transform (DWT) is a method commonly 

used in signal processing. Given a time series (or a signal) Y (t), 

DWT allows an analysis of Y (t) in different scales over time.  

A wavelet φ is an oscillating, well-localized function having a 

finite vanishing moment [36]-[38]. 

Using a function φ, with another wavelet ω, an orthogonal 

basis of L2 (the set of signals with finite energy) can be 

constructed (in this case, φ is termed the mother wavelet and ω 

the father wavelet). 

Using these two functions, the wavelet basis is defined by:  

 
𝑊𝐵 = {𝜑𝑗,𝑘(𝑡) = 𝜑(2−𝑗𝑡 − 𝑘), 𝜔𝑗,𝑘(𝑡) = 𝜔(2−𝑗𝑡 − 𝑘) , 𝑗, 𝑘 ∈ ℤ}            (1)  

 

where k is the translation parameter (in time), j is the scale (an 

integer indicating how the wavelet is stretched or compressed; 

see Fig. 1). 

The projection of the signal Y over the basis WB is called the 

discrete wavelet transform.  

Choosing scale j, the DWT of Y can be written as follows:  

 

𝑌(𝑡) = ∑ 2−
𝑗

2𝑘∈ℤ 𝑐𝑗(𝑘)𝜑(2−𝑗𝑡 − 𝑘) + ∑ ∑ 2−
𝑗

2𝑘∈ℤ
𝑗
𝑖=1 𝑑𝑖(𝑘)𝜔(2−𝑗𝑡 − 𝑘)    (2)  

 

 
 

Fig. 1. Translation and scaling of the wavelet transform 

 

The first series cj(k)  is known as the approximation 

coefficients and can represent the trend of Y, while di(k) are 

known as the detail coefficients. Let C be the set of the 

approximation coefficients cj(k). 

Equation (2) includes two operations: a down sampling (data 

divided by 2) and a convolution over the whole time interval 

[39]. These characteristics are similar to a high pass and low 

pass filtering. Therefore, the wavelets (φ and ω) can be linked 

to low and high pass filters respectively [40].  

For each level j, the length of the original signal is divided by 

2 as a result of the down sampling, and therefore the length of 

the approximation coefficients is equal to the length of the 

original signal divided by 2j .  

The DWT consists of two steps: analysis (or decompositions) 

where the detail and approximation coefficients are obtained by 

the filtering processes, and synthesis (or reconstruction) where 

the coefficient sets can be represented by signals having the 

same length of the original signal Y, and are obtained by a up 

sampling and a convolution [40]. The process can be illustrated 

as shown in Fig. 2.  

Inverse Discrete Wavelet Transform (IDWT) allows a 

reconstruction of the original signal using the set of 

approximation and detail coefficients, by an inverted operation 

of DWT.  

It should be noted that the obtained signal A (signal 

constructed using the approximation coefficients) has the same 

shape as Y: in other words, it can describe the trend of Y,  

scale (j)

scale (j) scale (j)

translation (k)translation (k)

translation (k)



 
 

Fig. 2. The approximation coefficients and approximation signal obtained by DWT for a given time series. 
 

 

 

without noises, and has the same length as Y. 

B.  Proposed PEMFC prognostic approach 

 
The two fuel cell stacks considered in this study are from the 

same manufacturer and have the same initial characteristics. The 

first stack, FCd, was operated under dynamic current testing 

conditions, while the second stack, FCs, was operated in 

stationary regime under more or less nominal conditions. Both 

stacks were operated 24 hours a day over about 1000 hours. 

The predictions were made using the power signals of both 

stacks FCd and FCs. The power was calculated using the 

formula: 

 

𝑃(𝑡) = 𝑈(𝑡). 𝑈(𝑡)                                                                          (3)                                                                                                                            

 

where U and I are respectively the given voltage and current of 

the stack.  

The voltage and the current are functions of time; therefore, 

the power P is also a function of time and can be considered as 

a signal or time series. P (t) is the observation at time t.   

As we saw above, by applying the DWT of level j, the original 

signal of length L can be divided into j + 1  sets: the set of 

approximation coefficients of length L/2j  and j sets of detail 

coefficients.  

It is important to note the difference between the 

approximation coefficients set C and the approximation signal 

(A). The signal A is constructed by using the set C and has a 

length of 2j × l where l is the length of the set C, and this is 

obtained by the up sampling operation in the DWT (see Fig. 3). 

The process that gives rise to the fuel cell RUL prediction can 

be summarized as follows: 

The first step is to construct the prediction model, with the 

first week (168 hours) being taken as a learning window.  

 

 
 

Fig. 3. The approximation coefficients and approximation signal obtained by 

DWT for a given time series. 

 

The second step is to use this window to perform the 

prediction for the following week (the following 168 hours). 

Since in real time the data (or observations) are updated 

dynamically as the process unfolds, the prediction model uses 

the second available week (168 hours) to predict the third week 

(168 hours) and so on, up to 5 weeks.  

In order to perform the RUL prediction, four prediction 

models were used. This allows us to compare the prediction 

results (first and the second models) and to show the impact of 

the wavelet transform on the two considered models (the third 

and the fourth models):  

 1) First model: A polynomial regression model uses the 168 

power signal observations to predict the next 168 hours. 

2) Second model: An Auto-Regressive Integrated Moving 

Average (ARIMA) model functions in the same way as the first 

model. The ARIMA model, or, more precisely, ARIMA (p,d,q) 

[41][42] is formulated as follows: 
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𝑦𝑡 = 𝑐 + 𝛼1𝑦𝑡−1 + 𝛼2𝑦𝑡−2 + ⋯ + 𝛼𝑝𝑦𝑡−𝑝 + 𝜃1𝑢𝑡−1 +

𝜃2𝑢𝑡−2 + ⋯ + 𝜃𝑞𝑢𝑡−𝑞 + 𝑢𝑡                                                     (4)      

                               

where yt  is a univariate time series, p is the autoregressive 

polynomial order, q is the moving average order, α1, α2, … , αp 

and θ1, θ2, … , θq  are the parameters (or coefficients) of the 

model, ut is a white noise.  

It should be noted that d  in ARIMA(p,d,q) is the 

differentiation order when the time series is not stationary.  

3) Third model: A 3-level DWT using the ‘db3’ 

(Daubechie’s 3) wavelet (these choices are detailed in section 

IV) is applied on the learning window; thus, the length l of the 

approximation is l=168/23=21. 

 A new polynomial regression model is constructed using 

these 21 observations, and the model predicts only the next 21 

points. Thus, a new set of approximation coefficients D is 

obtained. D is formed by the old set C plus the 21 prediction 

points. Thus the length of D is equal to 42.  

The approximation signal A is now constructed using the set 

D. The length of A is 42 × 23 = 336, which shows that 168 

hours are predicted using a prediction of only 21 points. Fig. 4 

illustrates this procedure: it shows a set D that contains the set 

C of Fig. 3. We have the prediction of 21 points, and the 

reconstruction of the approximation signal A from the set D. 

4) Fourth model: An ARIMA model is used to model the set 

C used in the third model; the set D is obtained by adding the 

prediction of 21 points to the set C. The prediction also uses an 

ARIMA model, and is compared with the prediction by the 

polynomial regression of the third model.  

 

III. Experimental data 
 

As part of the CNRS CO-CONPAC project [43], durability 

tests are currently being carried out on two similar 600W 5-cell  

 

 

 

 
 

Fig. 4. The approximation coefficients, the set D of predicted coefficients and 
approximation signal obtained by DWT for a given time series. 

 

stacks (PEMFCs are assembled at the FCLAB and comprise 

commercial membranes, diffusion layers and machined flow 

distribution plates), each cell having an active surface of 100 

cm². The first stack FCd is operated under dynamic current 

operating conditions (ripple current at 5 kHz superimposed on a 

constant current – peak-to-peak value of 10% of constant 

current). A second fuel cell stack FCs is operated in stationary 

regime at more or less nominal conditions over 1000 hours; this 

second test acts as a reference for the first test. A series of 

observations are carried out once a week (around every 160 

hours) according to the same protocol each time: a polarization 

curve test, and global historic curves and Electrochemical 

Impedance Spectroscopy (EIS) measurements. 

Relationships between ripple current and fuel cell performance, 

such as power loss and degradation, are investigated.  

The nominal current density of the fuel cells is 0.70 A/cm². 

Their maximal current density is 1 A/cm². The test bench (Fig. 

5) is adapted for PEM fuel cells with a power of up to 1 kW.  

 

 

Fig. 5: View of the 1 kW FC test bench. 
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(c) The approximation signal A using the set D



 

A number of physical parameters involved in the stack can be 

controlled and measured in order to create the fuel cells' precise 

operating conditions as accurately as possible: 

- stack temperature, gas flows (from 0 to 100 l/min for air; 

and from 0 to 30 l/min for H2), fluid hygrometry rates 

(from 0 to 100%RH), air dew point temperature can be 

imposed; 

- inlet and outlet flows, pressures (from 0 to 2 bars), 

temperatures (gas temperature from 20°C to 80°C), 

single cell voltages, stack voltage, current (from 0 to 

300 A) can be monitored using a home-made interface 

developed with Labview™. 

Two independent boilers upstream of the stack provide gas 

humidification. Air and hydrogen go through their respective 

boilers before reaching the stack. The air boiler is heated in order 

to obtain the relative humidity desired, while the hydrogen 

boiler remains at room temperature. The temperature of the cell 

is controlled by a water-cooling system (with a cooling flow that 

can be set from 0 to 10L/min and a cooling temperature from 

20°C to 80°C). 

The current supplied by the battery is controlled by a TDI 

Dynaload-type active load. For the tests with high frequency 

ripple current, the load is driven by a low generator frequency. 

In normal operation, without current disturbance, the charge is 

conventionally driven from the management interface Labview. 

A.  Description of the tests carried out 

 
Two long-term tests, each of 1000 hours, were carried out 

(Fig. 6 and Fig. 7). 

1. The ageing test was performed under dynamic 

condition       

The FC stack durability test consists in operating an FC stack 

with identical characteristics under dynamic current loads and 

with the time target of 1000 hours. A ripple current of 70A with 

7A oscillations at a frequency of 5 kHz was imposed on the FC 

in order to simulate the global operation effect of the high 

frequency power converter connected to the output of the FC 

stack. A complete characterization of the FC was performed 

every week (around 160 hours) in this order: polarization curve 

followed by electrochemical impedance spectroscopy (EIS) (the 

values are the same as for the second test). The characterizations 

were done at hours: 0, 35, 182, 343, 515, 666, 830, and 1016. 

2. The reference ageing test was performed on the second 

fuel cell stack (FCs). The durability experiment consists in 

operating the FC stack over 1000 hours in stationary conditions 

(a current of 70A is imposed). A complete characterization of 

the FC was performed every week. The duration of the tests was 

adapted to create the best fit with the first experiment. First, an 

electrochemical impedance spectroscopy (EIS) was performed 

only at 70A (0.70 A/cm²), in order to evaluate the state of the 

FC before it could be modified by the polarization curve. 

Second, a polarization curve was performed: the stack and cells 

voltages were measured under a current ramp from 0 A/cm² to 

1 A/cm² of 1000s. In order to keep stoichiometric factors 

constant, the air and hydrogen flows were reduced to a current 

of 20A. An electrochemical impedance spectroscopy (EIS) was 

then performed, with measures made in the following order: 70 

A (0.70 A/cm²), 45 A (0.45 A/cm²) and 20 A (0.20 A/cm²). 

Between each measure, a stabilization period of 15 minutes 

ensured the stability of the parameters. The characterizations 

were done at hours: 0, 48, 185, 348, 151, 658, 823, and 991. 

 

Fig. 6: 1st long-term test (FCd): 1000 h with high-frequency current oscillations 

 

 

Fig. 7: 2nd long-term test (FCs): 1000 h without current oscillations 

 

 

 

New MEA after test on 

FCs 

iFC (current density) 

 

iFC (current density) 

 

t=1000 h 

 

0.7 

 
0.14 

 

0.7 

 

t=1000 h 

 

Ageing at Inom=70A (0.7 A/cm2) 

and triangular current ripples (± 

10% of Inom at 5 hKz) 
 

Ageing at Inom=70A (0.7 A/cm2)  
 



 

B.  Results / Ageing curves 

 
 Temporal curves of the voltage were analyzed in order to 

estimate the degradation rate. An illustration is given in Fig. 

8, which depicts the voltage drop and the corresponding 

approximation using a least squares method. R² (a coefficient 

of determination between 0 and 1 that reflects how well the 

regression fits the data - the closer it is to 1, the better the fit) 

is higher for the second test, as a result of the absence of 

oscillations and discontinuities as the cells’ voltage changes 

over time. 
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Fig. 8: Comparison of cell average voltage (Red : FCd with current 

oscillations ; Blue : FCs without current oscillations) 

A similar analysis (estimation of the degradation rate) was 

performed using polarization curves (see Fig. 9 for an 

illustration). In the two experiments, we can see that the fifth 

cell presents a higher degradation rate; this is due to its 

position in the stack.  

The experiment was run for around 1000 hours under 

stationary conditions, and the average stack voltage decay 

rate was shown to be 153 μV/h per stack and 29.6 μV/h per 

cell. However, the voltage decay rate observed in dynamic 

conditions is slightly higher (less than 1% of average voltage) 

at 172 μV/h per stack and 33.4 μV/h per cell. 

In order to implement the proposed approach, a control 

system was installed based on an Autobox™ (Dspace) using 

MATLAB/SIMULINK, enabling a direct connection 

between the model and the system.   
 

IV. Results and discussion 
 

The prediction results corresponding to the different 

proposed models are presented in Fig. 10 and Fig.11.  

Tables (I) and (II) show how the degradations (estimated 

using the mean values) progressed over time. These 

degradations are measured with respect to the initial values of 

the considered power signals.  

The online degradation predictions are made as follows: 

The first week (168 hours) is used to construct and learn the 

models. The predictions are performed over the following 

week (the second week). In other words, the prediction 

horizon is 168 hours. 

The models are updated using the new available data for 

the second week, and the predictions are made over the third 

week; and so on, up to five weeks.  

The model simulations and predictions were done using 

MATLAB software 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 9: Comparison of cell average voltage (polarization curves at I=70 A) 

FCd FCs 

Average voltage of cell FCd 
(polarization @ 70 A) Average voltage of cell FCs (polarization at 70 A) 

Average voltage of cell FCs (70 A without current oscillations 
HF) 

Average voltage of cell FCd (70 A with current oscillations HF) 



  

  

  

  
Fig. 10 Prediction results of the power signal for FCs (steady state conditions) applying 

the first, second third and fourth models in (a), (b), (c) and (d) respectively. The red and 
the blue lines represent respectively the prediction and the actual signal.  

Fig. 11 Prediction results of the power signal for FCd (dynamic conditions) applying 

the first, second third and fourth models in (a), (b), (c) and (d) respectively. The red 
and the blue lines represent respectively the prediction and the actual signal 
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A list of existing programmed MATLAB functions can be 

found in the econometric and wavelet toolboxes, to be used for 

time series modelling, prediction and decompositions.  

Results are analyzed in the following two paragraphs. The 

models are compared to show how DWT was able to improve 

the predictions.  
TABLE  I 

THE MEAN VALUES OF THE ACTUAL AND THE PREDICTED 

POWERS OVER THE 5 WEEKS FOR THE POWER SIGNAL OF STACK 

FCs (STEADY STATE CONDITIONS) 

 Mean 

of 
actual 

power 

signal 
for 

FCs 

Mean of 

predicted 
power 

signal for 

FCs : first 
model 

Mean of 

predicted 
power 

signal for 

FCs: second 
model 

Mean of 

predicted 
power 

signal for 

FCs : 
third 

model 

Mean of 

predicted 
power 

signal for 

FCs 
:fourth 

model 

Week 2 232.1 231.7 231.8 232.4 232.4 
Week 3 230.1 230.7 230.2 230.7 230.7 
Week 4 228.8 228.1 228.5 228.4 228.8 
Week 5 227.4 226.7 227.8 227.3 228.2 
Week 6 226.4 224.9 226.5 225.3 226.2 

 

In the first paragraph, models 1 and 3 (without DWT) are 

compared with models 2 and 4, where the DWT is used (see 

section II), for the first and second stacks FCs and FCd. In the 

second paragraph, the results for FCs and FCd are compared. 

 
TABLE  II 

THE MEAN VALUES OF THE ACTUAL AND THE PREDICTED 

POWERS OVER THE 5 WEEKS FOR THE POWER SIGNAL OF STACK 

FCd (DYNAMIC CONDITIONS) 

 Mean 
of 

actual 

power 
signal 

for 

FCd 

Mean of 
predicted 

power 

signal for 
FCd: first 

model 

Mean of 
predicted 

power 

signal for 
FCd: 

second 

model 

Mean of 
predicted 

power 

signal for 
FC : third 

model 

Mean of 
predicted 

power 

signal for 
FCd: 

fourth 

model 

Week 2 227.0 224.1 225.7 225.9 226.0 
Week 3 224.1 223.9 223.9 223.7 223.7 
Week 4 225.1 221.3 223.8 224.1 224.0 
Week 5 223.7 222.2 225.2 223.0 225.1 
Week 6 222.5 221.7 223.9 221.9 224.2 

 

A. Analysis of the results: comparison of the models 

 
In order to compare the prediction results, the first and 

second models are compared with the third and fourth models 

respectively.  

Regarding the first model (regression without DWT), a 

polynomial of degree 1 was attributed to the learning window: 

this polynomial fits the data better than higher polynomial 

degrees. For the DWT part in the third model, a 3-level 

decomposition and construction and the Daubechie’s 3 wavelet 

(db3) were used for both the decomposition and the 

reconstruction operations. These choices are justified as 

follows:  

Since the division of 168 hours (learning part) by 23 gives 

21 hours, this is the nearest obtained value to 24 hours (one day), 

so a general trend of the power during one day can be observed.  

The mother wavelet is db3. Sym3 would give the same results, 

since db3 and sym3 have exactly the same filter coefficients 

[36]. Table (III) gives values of the mean square error defined 

by equation (5) between the approximation and the original 

signal, for the same level of decomposition using different 

mother wavelets: Morlet, Coif (Coiflet), Meyer, Sym (Symlet), 

and Db (Daubechie’s). The numbers in the wavelets Coif2, 3, 4 

and 5, Sym 2, 3, 4 and 5 and Db2, 3, 4, and 5 correspond to the 

numbers of terms of the corresponding wavelet [40]. The values 

in table III represent the errors (obtained using equation (5)) 

between the signal of approximation (reconstructed using the 

approximation coefficients) and the original signal. These 

values are provided in order to help finding the best wavelet to 

perform the algorithm. The wavelet that gives the smallest error, 

is the then chosen.  

 

𝐸 =
1

𝑁
∑ (𝑃(𝑡) − 𝑎𝑡)2𝑁

𝑖=1                                                    (5) 

 

where N is the length of the approximation signal of level 3,  𝑎𝑡 

is the tth approximation signal and 𝑃(𝑡) is the actual power. 
 

TABLE III 

COMPARISON OF THE MEAN SQUARE ERRORS USING DIFFERENT 

MOTHER WAVELETS 

  

FCd 

 

FCs 

Db2 (or sym2) 0.1402 0.1228 
Db3(or sym3) 0.1156 0.0936 
Db4(or sym4) 0.1235 0.1131 
Db5(or sym5) 0.1315 0.1130 

Coif2 0.1252 0.0983 
Coif3 0.1357 0.116 

Coif4 0.1184 0.1067 

Coif5 0.1327 0.1091 

Dmey 0.1273 0.1024 

 
The chosen wavelet is the one gives the smallest error for the 

approximation signal, which is db3.  

In Fig. 10(a) and 10(c), it can be seen that for the third model, 

the predictions are closer to the actual observations. Although 

they do not have exactly the same variations of the original 

signals, their behavior can nevertheless correspond: for much of 

the time they can approximate the mean value of the signals, and 

occasionally be very similar to them (see table I), which can 

provide solid indications about processes of degradation. 

Table (IV) shows the prediction errors.  

The error used in this study is the relative error having the 

formulations:  

𝑅𝑀𝑆𝐸(𝑒) = √∑ (𝑃(𝑡)−�̂�(𝑡))
2

 𝑛
𝑡=1   

𝑛
                                                (6)                                                                                                                                                                                                               

and  

max(𝑒) =

𝑚𝑎𝑥 |
𝑃(𝑡)−�̂�(𝑡)

𝑃(𝑡)
|                                                                             (7)             

 

where �̂�(𝑡) is the prediction of P at time t. 

Tables IV to VI show that the predictions made using the third 

model have the fewest errors.  

Regarding the comparison between the second and the fourth 

models:  

The ARIMA models that best fit the observations are 

ARIMA(5,1,0), ARIMA(5,0,1) and ARIMA(5,0,0). The model 



updates its coefficients when new actual values of a new week 

are made available. 
 

TABLE IV 

 COMPARISON OF PREDICTION ERRORS (UNIT W) BETWEEN 

DIFFERENT METHODS FOR SIGNALS IN STEADY STATE 

CONDITIONS 

 RMSE of 

predicted 
power signal 

for FCs : 

first model 

RMSE of 

predicted 
power signal 

for FCs: 

second 
model 

RMSE of 

predicted 
power signal 

for FCs : 

third model 

RMSE of 

predicted 
power signal 

for FCs: 

fourth model 

Week 2 0.7 0.6 0.5 0.5 
Week 3 0.8 0.8 0.8 0.4 
Week 4 0.8 0.6 0.7 0.6 
Week 5 0.9 1.1 0.7 0.7 
Week 6 1.9 1.1 1.6 1.1 

 

As shown in Fig. 10(b) and 10(d), DWT can improve the 

prediction for the ARIMA models. Table (I) shows that the 

predictions can also approximate the mean of the actual 

observations, and in table (IV) the comparison of errors proves 

again that DWT improves the quality of prediction. The 

comparisons of models for the stack FCd (dynamic conditions) 

can be seen in Fig.11, and in tables (II) and (VI).  

For Fig.11 (a), the polynomial regression fails to capture the 

general behaviors of the degradations obtained by the first 

model. However, Fig. 11(c) shows the improvement obtained 

when DWT is added to the polynomial regression (third model); 

here the polynomial is of degree 2.  It can clearly be seen that 

with DWT the model captures the process of degradation. 

Tables (I) and (IV) give numerically the impact of DWT in 

reducing the prediction errors. 

Here too, the impact of DWT is demonstrated.  The situation 

for Fig. 11(b) (second model) and Fig. 11(d) (fourth model) is 

similar: DWT is seen to improve the prediction with the ARIMA 

model.  

Finally, as shown in tables (I) to (VI),the errors obtained by 

the ARIMA-DWT model are less than the regression-DWT, 

showing thus that this is the best model (among the four models 

considered in this paper)  to implement a prognostic strategy for 

a fuel cell. 

 
TABLE V 

COMPARISON OF PREDICTION ERRORS (UNIT W) BETWEEN 

DIFFERENT METHODS FOR SIGNALS IN DYNAMIC CONDITION 

 RMSE of 
predicted 

power 

signal for 
FCd : first 

model 

RMSE of 
predicted 

power signal 

for FCd: 
second model 

RMSE of 
predicted 

power signal 

for FCd : 
third model 

RMSE of 
predicted 

power signal 

for FCd: 
fourth model 

Week 2 3.0 1.5 1.4 1.3 
Week 3 1.5 1.5 1.6 1.6 
Week 4 3.8 1.5 1.2 1.2 
Week 5 1.7 1.8 1.3 1.8 
Week 6 1.6 2.1 1.3 1.9 

 

B. Analysis of the results: comparison of the stacks 

 

The main difference between stacks FCs and FCd is that 

stack FCd is subjected to dynamic operating conditions (see 

section II) that affect the prediction results.  

Let us now look at Fig. 10(d) and 11(d). In the case of stack 

FCs, the model shows more stability in approximating the 

observations. But this is to be expected, since the trend of the 

voltage signal of FCd (see Fig. 8) drops linearly and no ripple 

variations are added to this stack; while the trend of the voltage 

for FCs is variable, since dynamic ripples are added to the stack.  
 

TABLE VI 

COMPARISON OF MAXIMUM PREDICTION ERRORS (AMONG 

FIVE WEEKS, YSING EQUATION (7)) BETWEEN DIFFERENT 

METHODS FOR SIGNALS IN STEADY STATE AND DYNAMIC 

CONDITIONS  

 Regression 

with DWT 

Regression 

without 

DWT 

ARIMA 

with 

DWT 

ARIMA 

without 

DWT 

Power signal 

of A 
  2. 36 % 2.57 % 1.69 % 1.75 % 

Power signal 
of B 

2.40 % 2. 81 % 1.97% 2.03% 

 

Nevertheless, the predictions can be considered as 

acceptable for both stacks, according to the small percentage 

errors given in table (VI).  

 

C.  RUL Estimation:  

 
Since the best prediction results are obtained using the fourth 

model, the RUL is estimated according to this model. A 

flowchart of the algorithm represented by the fourth model can 

be found in Fig. 12. In this work the RUL is defined as the time 

(in hours) until power drops by 5.5% in relation to its initial 

value. 

 

 
Fig. 12 A flowchart of the fourth model. 

 

Fig.13 (a) shows the results for stack FCs. As the initial value 

of the power is about 236 W, the actual RUL is about 811 hours, 

corresponding to a drop of 5.5% to ~223 W (end of the fifth 

week). Using model 4, the predicted (or estimated) RUL for the 

same stack is 893 hours (beginning of the sixth week), which 

represents a difference of ~82 hours between the estimation and 

the actual RUL.  

As for the stack FCd, the results are presented in Fig. 13(b). 

The initial value of the power is also about 236 W and after a 

drop of 5.5% it is therefore about 223 W, indicating an actual 

RUL of about 400 hours (the third week). The RUL estimated 

using the fourth model was found to be 469 hours (also in the 

third week). 



We conclude that model 4 can give a quite robust estimation 

of the RUL, close to the real figure, for both stacks under 

different operating conditions, static and dynamic.  

 

D. Discussions  

 

The obtained results are very promising. A number of strong 

points of the proposed method can be summarized as follows:  

• Its rapid execution time for both the learning and the 

prediction parts (an estimation of the order of seconds) 

makes it superior to other data-driven algorithm, that is to 

say artificial neural network algorithms that have a high 

time cost. 

• It has no training part and thus does not include any black 

box systems that are often difficult to adapt to any change 

in data. Instead, it uses analytical equations. 

 

 

 
 

Fig. 13 (a) RUL prediction of the stack FCs using the fourth model, and (b) 

RUL prediction of the stack FCd using the fourth model. The red line 

correspond to the prediction and the blue line corresponds to the actual signal 
 

 

• The model requires fewer data (only 168 observations) for 

learning, and no exogenous data are needed to perform the 

prediction for both stacks. A reduced reliance on 

measurement devices, means reduced instrumentation cost 

and reduced testing time. 
• It provides a close approximation of the actual observations, 

as shown in table (VI) (no more than 2.81% error). 

Moreover, it is clear that, even under dynamic operations, 

the predictions include variations that are similar to the 

actual variations (Fig. 11(d)). 

• The model is able to estimate RUL, since the power 

decrease has direct impact on the RUL. In the case of the 

stacks considered in this work, the RUL is estimated as the 

time until the power drops by 5.5%.  

The proposed model could nevertheless be improved by adding 

some degradation factors such as the use of materials and the 

occurrence of drying and flooding faults in the fuel cell: these 

two faults occur successively inside the fuel cell and have 

negative impact on the performance of the cell [44], leading to 

drops in the power signals, indicating a loss of fuel cell 

efficiency. 

V. Conclusion 
 

An approach based on DWT for estimating the RUL for a 

stack of PEMFCs is presented in this paper. The novelty of the 

presented techniques is the use of DWT for estimating the RUL, 

and the use of univariate models without training. The main 

advantage, in comparison to similar works on this topic, is the 

time series domain analysis that uses past information from a 

univariate time series (the power signal). Its reliance on 

measurement devices and on data are therefore reduced. This 

approach can be used for general cases, since the mathematical 

models do not take into account the variations that are to be 

found in exogenous data, under different operating conditions. 

It can be coded easily in any computer language, and thus easily 

implemented in real life applications. 

The proposed method was simulated in 

MATLAB/SIMULINK, and compared with other models; 

the results showed that with DWT, the prediction is more 

accurate and faster.  

It may be interesting to compare the DWT with other filters, 

such as unscented particle filters and adaptive neuro-fuzzy 

inference systems that have also been used for estimating RUL 

in electrochemical batteries.  
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