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ANALYTICAL PREDICTION OF DAMAGE IN THE COMPOSITE 

PART OF A TYPE-3 HYDROGEN STORAGE VESSEL

A. Ghouaoula,1 A. Hocine,1* D. Chapelle,2 F. Karaachira,3 and M. L. Boubakar2 
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The damage behavior of a type-3 hydrogen storage vessel is modeled. The vessel consists of a metal envelop, 
called liner, coated with a filament winding. The model proposed allows simulating the mechanical response of 
the structure to a quasi-static loading. The model is based on a meso-macro approach and takes into account 
the damage behavior of the composite and the elastoplastic deformation of the liner. The results obtained are 
compared with experimental data. Finally, the effect of stacking sequence of filament layers on the damage 
level in the composite is investigated. 

Introduction

Hydrogen is considered as the most promising fuel to solve environmental and energy problems. Fueling vehicles with 
hydrogen is the core of hydrogen economy and becomes a very interesting topic all over the world. It is not only for protecting 
the atmosphere from polluting by the emission of toxic gases from conventional vehicles, but also for developing a renewable 
source of energy [1]. But its storage under highly safe conditions remains an important issue for the introduction of hydrogen 
in our community, especially for mobile applications as fuel-cell-powered vehicles [2, 3].

Four ways of hydrogen storage are known: (a) in the liquid state, which allows its higher volumetric and gravimetric 
density, but requires liquefaction of hydrogen gas and an efficiently insulated vessel to reduce its evaporation; (b) in hydrogen 
storage materials [2], whose main drawback is a smaller gravimetric density compared with that in the case other methods at 
an identical efficiency; (c) in carbon nanotubes — probably a technology at early development stages; (d) as a compressed 
gas [4]. The choice of storage type is based on the considerations of high safety, an easy use in terms of energy, density, and 
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dynamics criteria. The hydrogen storage vessel of a fuel-cell-powered vehicle (FCV) should contain 5 kg of hydrogen to be a 
competitive solution for a 500-km autonomy.

The classification of types of hydrogen pressure storage tanks can be described as follows. Type 1 presents an all-
metal cylinder, Type 2 is a load-bearing metal liner hoop-wrapped with a resin-impregnated continuous filament, Type 3 is a 
non-load-bearing metal liner wrapped in two directions with a resin-impregnated continuous filament, and Type 4 is a non-
load-bearing nonmetal liner wrapped in two directions with a resin-impregnated continuous filament. The fiber is generally a 
carbon one, although, for some peculiar applications, manufacturers may use several layers of glass fiber to reduce costs [5].

The design of a high-pressure hydrogen storage vessel deals with the physical and mechanical properties of materials 
with regard to its geometry. Before performing a structural optimization, an analysis of behavior of the vessel under an internal 
pressure is required in order to get a reliable and economical design of composite laminates [6, 7].

The identification of the influence of winding patterns, mechanical properties, and damage mechanisms on the failure 
behavior of filament-wound pipes requires many experiments, considering various types of loading, such as tension or com-
pression [8, 9] and internal pressure load with different ratios of applied hoop-to-axial stress [10, 11]. 

Various phenomena have to be mentioned when the damage of a composite is discussed: the transverse cracking of 
resin, debonding between the fibers and resin, delamination between layers, and fiber breakage. In fact, during the service life 
of a composite, different damages are going to happen successively and eventually to compete until the final rupture of the 
material. Lafarie-Frenot et al. [12, 13] studied the cracking of resin in carbon/epoxy composites and quantified the effects of 
loading amplitude, stacking sequence, and the width of specimens on the development of cracks. They showed that the final 
density of cracks was strongly associated with the stacking sequence and loading. Joseph and Perreux [14] studied the effect 
of frequency on the life and damage of filament-wound pipes with [+55, –55]n laminates under biaxial loading, but this method 
may be easily generalized to another stackings of type [+θ, –θ]n. It was shown that the frequency effect was mainly due to the 
interaction of creep and fatigue, and the damage development was strongly dependent on the stress ratio. Farines [15] presented 
an experimental analysis dedicated to the determination of the remaining potential of a tubular composite structure, enabling 
one to suggest the fatigue design rules. 

In the work presented by Hocine at al. [16], an analytical model dedicated to the design of a hydrogen storage vessel 
is proposes and validated. To do this, six prototypes of tank were manufactured and tested at different pressures. The model 
allows assessing the mechanical response of the structure. A failure criterion was introduced in order to explore the final static 
strength of the composite. A following step in this direction could be the account of the damaged composite part, which would 
make it possible to improve the accuracy of the analytical model.

This work aims to present an evolution of the model and a comparison with experimental results for different stack-
ing sequences.

Mathematical formulation

Let us consider a storage vessel of type 3 consisting of an aluminum liner and a multilayered composite made of a 
polymer resin reinforced with long fibers (see Fig. 1a). The general stress–strain relationship for each kth constituent is given by
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where z , θ , and r  are cylindrical coordinates.
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In the particular case of axisymmetric loading, the local equilibrium equation for a kth constituent takes the form

	 d
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with the radius r of the cylindrical vessel varying in the interval r r ra0 £ £ , where r0  and ra are its inner and outer radii, 
respectively.

The corresponding strain–displacement relationships are
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The composite material considered is composed of an organic resin reinforced with long fibers. With respect to the 
local cylindrical coordinates system (see Fig. 1b), the fourth-order compliance tensor of composite Sc is reduced to the form 
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Fig. 1. Composite cylindrical vessel and the stress state in it [16] (a) and the reference and local 
coordinate systems of the cylindrical vessel (b).
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where Eij are Young’s moduli and ν ij are the Poisson ratios; the 1 and 2, 3 axis are pointed in the longitudinal and transverse 
directions of the fiber, respectively.

The damage considered in this work is related to the cracking of resin in the direction parallel to fibers. This type of 
cracking is assumed to change the compliance tensor. In this context, three damage parameters DI , DII , and DIII  are defined, 
and they characterize the lower transverse modulus E22  and the shear moduli G12  and G23. 

The damage is introduced by adding the damage contribution tensor H  to the compliance tensor of composite Sc  
[5, 11, 14]. Then, the damaged compliance tensor Sc  of a layer takes the form [5] 

	 S S Hc c= + 	
with

	 H

H

H

H

=

( )

( )

(

0 0 0 0 0 0
0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0

22

44

66

σ ε

σ ε

σ ε

,

,

, ))



























. 	

The three components H22 , H44 , and H66 of the damage contribution tensor  H can be expressed in terms of the 
three damage parameters to  DI , DII , and DIII   and the components S22 ,  S44 , and S66   of the compliance tensor of compos-
ite Sc :
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The only important nonzero components of H  are H22 and H66 ( H44 has no influence on the present analysis), 
and the effect of damage on the elastic compliance can be described by using the only damage variableD E EI = ∆ 2 2 ,  which 
means a reduction in the transverse Young’s modulus [5]. Therefore, the parameters DII  and DIII  both depend on the only in-
ternal variable DI :
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In the present analysis, only the difference in behavior between the transverse stress and the compression is taken into 
account. The coefficients H44  and H66 are assumed to be independent of stress and strain state. The components of the 
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compliance tensor of the damaged composite can be expressed in terms of the internal variable DI  and the sign of the hoop 
stress:
	 S S H S Dc c= + ( ), , ,I σ 2 	

where the damage contribution tensor H  is given by
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If σ2 < 0  (crack closure), then h = 0;  otherwise h =1.
The parameter DI can be calculated from the equation (Appendix A)
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where Y is the driving force of damage and Yc is the damage threshold.
Considering the liner as an anisotropic elastic material, the fourth-order compliance tensor Se

L  is taken in the form
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Assuming an elastoplastic behavior for the liner, the incremental total strain tensor dε is linked to the incremental 
Cauchy true stress tensor dσ  as
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where Se
L  and Sp

L  represent the elastic and plastic fourth-order compliance tensors, respectively. The components of Sp
L  are 

given in [16].
Inserting the expressions of radial and hoop stresses derived from Eq. (1) into Eq. (2) and using Eq. (3), the following 

differential equation is obtained:
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Fig. 2. Analytical (1, 2) and experimental [11] (3) hoop stresses σθ  as functions of axial ε z  (1) and 
hoop εθ  (2, 3) strains in a pressurized composite tube made of a [±55]3 glass/epoxy laminate.
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Fig. 3. Analytical (——) and experimental (■) hoop stresses σθ  as functions of axial ε z  (1) and 
hoop εθ  (2) strains in a metallic vessel reinforced with a [±55]3 carbon/epoxy composite.
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The solution of Eq. (4) depends on the value of β ( ) .k kN= ( )
1

At β ( )k =1 ,
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D k( ) , E k( ) ,  γ 0 , and ε0  being the constants of integration. The superscript k takes values from the interval [ , ]1 w , where 
w n nL C= + +1 . The constants of integration are calculated by using the boundary conditions given in the appendix B.

A type-3 hydrogen storage tank was submitted to a 40-MPa internal pressure to keep the behavior of the liner purely 
elastoplastic. The internal radius of the liner was 33 mm, thickness 2 mm, Young’s modulus 72 GPa, shear modulus 28.8 GPa, 
and Poisson ratio 0.25. The thickness of each composite layer was 0.27 mm. The mechanical properties of the glass/epoxy 
(carbon/epoxy) composite were as follows: Ex = 55 (141.6) GPa, Ey = 21 (10.7) GPa. Gxy = 8.267 (3.88) GPa, and νxy = 0.268 
(0.268). The solutions were obtained by using the MATLAB numerical code.

Comparison results and validation

1. Composite pipe under internal pressure. Figure 2 presents the analytical and experimental [11] stress–strain curves 
for a composite glass/epoxy tube made of a [±55]3 laminate and loaded with internal pressure. Both the results points to a loss 
of stiffness. The pressurized composite pipe showed a circumferential swelling and an axial shrinkage, which did not occur 
for other schemes of filament winding.

2. Type-3 vessel under internal pressure with an end effect. Figure 3 shows the hoop stress as a function of hoop and 
axial strains found in experiments and calculated analytically for a metallic vessel reinforced with a [±55]3 carbon/epoxy 
composite. The plot shows that the agreement between the results from modeling and experiments is rather good.

Figure 4 displays stress–strain curves for the cylindrical part of metallic vessels reinforced by filament windings. Six 
different stacking sequences of carbon/epoxy layers were investigated: [±50]3 Seq1, [±50]2 + [90]2 Seq2, [±55]3 Seq3, [±55]2 
+ [90]2 Seq4, [±60]3 Seq5, and [±60]2 + [90]2 Seq6 in order to assess the effect of winding angle on the damage behavior of 
the composite. 

The 90° winding modified the stress/strain distribution across the thickness and decreased the loss of rigidity. In addition, 
the hoop layer led to a nearly elastic behavior of the vessel. The minimum strains were obtained with the 60° winding angle.

Conclusions

In this work, an analytical model destined for the design of aluminum hydrogen storage vessels wrapped with filament 
windings is presented and validated. The model is based on a meso-macro approach, which allows one to predict the response 
of the cylindrical part of a hydrogen storage tank, including the damage behavior of the composite and the elastoplastic defor-
mation of the aluminum liner. In order to clarify the influence of winding patterns on the damage behavior of filament-wound 
vessels, different stacking sequences of the multilayer composite were investigated. 

It was found that, for the stacking sequence [±55]3, the consideration of damage behavior of the composite improved 
the results of the model, and their agreement with experiments was good. The minimum strains ensured the 60° winding angle.

The reinforcement of the cylindrical part of a vessel by the circumferential winding modified the stress/strain distribu-
tion, the response of the vessel became closer to an elastic one, and the loss of its stiffness diminished. 



84

REFERENCES

1. Z. Li, Z. Yaping, and S.Yan, “Enhanced storage of hydrogen at the temperature of liquid nitrogen,” Int. J. of Hydrogen 
Energy, 29, 319-322 (2004).

2. R. Janot, M. Latroche, and A. Percheron-Guégan, “Development of a hydrogen absorbing layer in the outer shell of 
high pressure hydrogen tanks,” Mater. Sci. and Eng., B, 123, No. 3, 187-193 (2005).

3. C.-M. Rangel, V.-R. Fernandes, Y. Slavkov, and L. Bozukov, “Integrating hydrogen generation and storage in a novel 
compact electrochemical system based on metal hydrides,” J. of Power Sources, 181, Nos. 2, 1, 382-385 (2008).

4. Nobuhiko Takeichi, Hiroshi Senoh, Tomoyuki Yokota, Hidekazu Tsuruta, Kenjiro Hamada, Hiroyuki T. Takeshita, 
Hideaki Tanaka, Tetsu Kiyobayashi, Toshio Takano, and Nobuhiro Kuriyama, “Hybrid hydrogen storage vessel, a 
novel high pressure hydrogen storage vessel combined with hydrogen storage material,” Int. J. of Hydrogen Energy, 
28, 1121-1129 (2003).

5. D. Chapelle and D. Perreux, “Optimal design of a Type 3 hydrogen vessel: Pt I. Analytic modelling of the cylindrical 
section,” Int. J. of Hydrogen Energy, 31, 627-638 (2006).

6. P. Y. Tabakov and E. B. Summers, “Lay-up optimization of multilayered anisotropic cylinders based on a 3-D elasticity 
solution,” Computers and Structures, 84, 374–84 (2006).

7. J. Y. Kim, R. Hennig, V. T. Huett, P. C. Gibbons, and K. F. Kelton, “Hydrogen absorption in Ti–Zr–Ni quasicrystals 
and 1/1 approximants,” J. of Alloys and Compounds, 404-406, 388–391 (2005).

8. J. Bai, P. Seeleuthner, and P. Bompard, “Mechanical behavior of ±55° filament-wound glass-fiber/epoxy-resin tubes: I. 
Microstructural analysis, mechanical behavior and damage mechanisms of composite tubes under pure tensile loading, 
pure internal pressure and combined loading,” Composites Sci. and Techn., 57, No. 2, 141-153 (1997).

9. A. A. Smerdov, “A computational study in optimum formulations of optimization problems on laminated cylindrical 
shells for buckling I. Shells under axial compression,” Composites Sci. and Techn., 60, No. 11, 2057-2066 (2000).

10. J. Rousseau, D. Perreux, and N. Verdière, “The influence of winding patterns on the damage behaviour of filament-
wound pipes,” Composites Sci. and Techn., 59, No. 9, 1439-1449 (1999).

11. D. Perreux and F. Thiebaud, “Damaged elasto-plastic behaviour of [+θ,−θ] fibre-reinforced composite laminates in 
biaxial loading,” Composites Sci. and Techn., 54, No. 3, 275-285 (1995).

12. M. C. Lafarie-Frenot, C. Henaff-Gardin, and D. Gamby, Matrix cracking induced by cyclic ply stresses in composite 
laminates,” Composites Sci. and Techn., 61, 2327-2336 (2001).

13. D. Gamby, C. Henaff-Gardin, and M. C. Lafarie-Frenot, “Propagation of edge cracking towards the centre of laminated 
composite plates subjected to fatigue loading,” Composite Structures, 56, 183-190 (2002).

14. D. Perreux and E. Joseph, “The effect of frequency on the fatigue performance of filament-wound pipes under biaxial 
loading: experimental results and damage model,” Composites Sci. and Techn., 57, 353-364 (1991).

15. L. Farines, Évaluation du potentiel restant de structures composites verre/époxy soumises à des sollicitations de fatigue. 
Thèse de doctorat. Franche-comté university, Besançon, France. Septembre 2007.

16. A. Hocine, D. Chapelle, L. Boubakar, A. Benamar, and A. Bezazi, “Experimental and analytical of the cylindrical part 
of a metallic vessel reinforced by filament winding submitted to internal pressure,” Int. J. of Pressure Vessels and 
Piping, 86, 649-655 (2009).

Appendix A

The function of loading is taken in the form

	 f Y Y Rd
C

d= − − − £ 0. 		
Then we can write:
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When loading causes damage, 
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The kinetics of damage is determined by the laws of evolution

	   D f
Y

d
d

d
I = −

∂
∂

=λ λ ,      D f
Y

d
d

d
I = −

∂
∂

= λ λ .	

where λd  is the Lagrange multiplier. The expressions can be obtained by using the consistency equation

	 f d = 0 .	
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Appendix B

The continuity condition for the radial displacements is

	 ∀ ∈ −[ ] ( ) = ( )( ) ( ) +( ) ( )k w U r U rk k k k1 1 1, , ext ext .	

The continuity condition for the radial stresses is
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The axial equilibrium condition for the solution with the closed-end effect can be expressed as
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The zero torsion condition is
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Finally, the problem can be reduced to a linear system of the form

	 X A B= ×−1 ,	
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The nonzero entries of the quadratic matrix are calculated the boundary conditions given below for k w∈[ ]1, , where 
w n nL C= + +1 .

Internal pressure condition:
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Displacement continuity condition:
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If β K−1 1¹  and β K ¹1 , then
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Strain continuity condition :
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External pressure condition:
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The axial equilibrium condition:
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If β K ¹1 , then 

	 A C C
r r

n K
K K K

K K

K

K K

2 1 12 13

1 1 1

1+

+ + −

= +( ) ( ) − ( )
+

, ,β
β

β β

	



88

	 A C C
r r

n K n
K K K

K K

K

K K

2 1 12 13

1 1 1

1+ +

+ − + − −

= −( ) ( ) − ( )
−

, ,β
β

β β

	

	 A C C C
r r

n n
K K K K

K K

K

K n

2 1 2 1 11 1 12 13

1 2 2

1 2+ +

+

=

=
= + +( )




( ) − ( )

∑, ,α 	

	 A C C C
r r

n K n
K K K K

K K

K

k n

2 1 16 2 12 13

1 3 3

1
2

3+ +

+

=

=
= + +( ) ( ) − ( )
∑, .α 	

The zero torsion condition:
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If β K ¹1 , then
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The strains are given by:
If β K ¹1 , then
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If β K =1 , then
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