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Abstract—Proton Exchange Membrane Fuel cells (PEMFC)
are one of the most promising fuel cell technologies, which qualify
for variety of applications as power generation source. The Prog-
nostics & Health Management of fuel cell is an emerging field,
which is paving the way for large scale industrial deployment
of PEMFC technology. More precisely, prognostics of PEMFC
become a major area of focus nowadays that enables predicting
the behavior of PEMFC to produce actionable information to
extend its life span. This paper contributes the first application
on data-driven prognostics of PEMFC stack under variable load
for combined heat and power generation (CHP). In brief, an
ensemble structure of Summation Wavelet-Extreme Learning
Machine models is proposed with a new incremental learning
scheme, to achieve long-term predictions on stack state of health
(SOH) and to give confidence for better decisions. The proposed
prognostics model is validated on data from PEMFC stack used
for a ;«CHP application under variable load profile for a complete
year. A thorough comparison on SOH predictions results clearly
shows the significance of proposed prognostics model, which can
predict with few learning data for a long-term prognostics horizon
around 650 hours with high accuracy and low uncertainty.

I. INTRODUCTION

Fuel cell (FC) is an energy system that offer clean and

efficient way to generate electricity. The PEMFCs are consid-
ered the most versatile among available fuel cell technologies
due to the advantages like: low operating temperature, high
energy output and low pollutant emissions [1]. Hence, due to
those advantages, PEMFCs qualify as a promising source for
power generation for stationary, portable, and transportation
applications, Fig. 1. However, FC aging is an unavoidable
process, the optimization of its service and minimization of
its life cycle costs/ risks require continuous monitoring of the
degradation process and accurate prediction of its future behav-
ior to enable timely decisions. In this context, Prognostics and
Health Management (PHM) of FCs is an emerging field, which
aims extending their life span, while reducing exploitation and
maintenance costs. Therefore, paving the way for large scale
industrial deployment of PEMFC technology. More precisely,
PEMFC prognostics becomes a major area of focus nowadays,
as a key task in PHM cycle with future capabilities.
In brief, prognostics uses condition monitoring data (CM) from
PEMFC stack (i.e., assembly of elementary cells) to identify
degradation at early stages, to predict long-term behavior and
to estimate its remaining useful life (RUL). This will enable,
short term, medium term or long term decisions to prolong the
life span of the fuel cell/ stack. Such decisions can be related
to control, maintenance or changing mission profiles.
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Fig. 1. PEM Fuel Cell applications

According to author’s knowledge, few works have been pub-
lished on prognostics of PEMFC on stack level. Those works
can be classified into two main categories, 1) prognostics
under constant load current, and 2) prognostics under variable
loads current. The methods that belong to the first category
are data-driven prognostics approaches, namely: Summation-
Wavelet Extreme Learning Machine [1], Echo state network
(ESN) [2], Adaptive Neuro-Fuzzy Inference System (ANFIS)
[3] and Particle Filtering framework [4]. In the second cat-
egory only one method has been published using a hybrid
prognostics approach on PEMFC for a stationary application
for combined heat and power for small buildings («CHP) Fig.
1, [5]. Unfortunately, no work has been done so far on data-
driven prognostics of PEMFC under variable load. This is due
to quantity and quality CM data from PEMFC stack, which
prevents building data-driven model that are robust enough
to manage the uncertainty of data and modeling phase. Also
data-driven approaches under constant loads are mainly based
on the assumption that stack aging is irreversible degradation,
which limits applicability of those methods for variable load.
To address those issues, this paper presents first application on
data-driven prognostics of PEMFC under variable load current
for uCHP. In brief, a data-driven ensemble of Summation
Wavelet-Extreme Learning Machine models is proposed with
new incremental learning scheme to improve the adaptability
of the model (online), to achieve accurate long-term predic-
tions of PEMFC state of health (SOH) and to give confidence
to predictions. The main contributions of this development are:

e ensemble structure to manage uncertainty;
e incremental learning to improve adaptability;

e application on PEMFC stack under variable load.



The remaining paper is organized as follows. Section II elab-
orates issues related to CM data under constant vs. variable
loads and modeling. It also highlights the importance of incre-
mental learning and uncertainty related tasks for prognostics.
Section III presents the proposed data-driven connectionist
ensemble with incremental learning scheme. Section IV val-
idates our proposition on PEMFC stack under variable loads
for yCHP and compares with hybrid approach [5]. Section V
concludes this work and gives future perspectives.

II. CM DATA, MODELING, UNCERTAINTY: CHALLENGES

The CM data are fundamental to implement a right model
for health assessment, prognostics and to estimate its param-
eters. Such data are collected at regular intervals through
a procedure of monitoring carefully selected parameters of
health condition/ state of the equipment. CM data that can be
continuously measured (or acquired), controlled and econom-
ically possible from PEMFC stack are: aging time (t), stack
voltage (V)), stack power (P), current (A), air/ Hy/ cooling
water temperatures and air compressor speed. Among those
data, stack voltage/ power are considered as useful indicators
to assess the condition of the stack and to predict its degrading
behavior. However, such data are noisy and non-stationary even
under constant current, whereas variable load current poses an
additional challenge for data-driven approaches. Fig. 2 depicts
this issue with a clear example by comparing power drop
signals from two stacks under constant and variable loads. Both
stacks show a totally different aging behavior.
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Fig. 2.  Comparing PEMFC stacks power drop signals

The data-driven methods for prognostics of PEMFC under
constant loads ([1], [2], [3], [4]), are mainly based on the
assumption, that stack aging process is an irreversible degrada-
tion. Therefore, prognostics with those methods is performed
by projecting the stack voltage/ power trend (e.g. see [1]).
Also they did not use current as an input to the prognostics
model, knowing that it will remain constant throughout the
life of PEMFC stack. However, such assumptions limit the
applicability of data-driven methods for PEMFC prognostics
under varying load. Nevertheless, using current as an input to
the prognostics model can enable learning the relation between
inputs and targets [6]. The learned model is further used to
assess the current condition of the PEMFC stack and to predict
its aging behavior with changing current profile.

However, due to limited learning data, measurement noise,
model inaccuracy, etc., a single model is incapable to encounter
uncertainty related to input data and to accurately predict stack
aging over long prediction horizon. As a result, the predicted
response of the model is different from true response and thus

the prognostics is uncertain. The uncertainty in the case of
health assessment and prognostics is called as modeling uncer-
tainty, which can be reduced by improved methods [7]. Finally,
whatever the type of uncertainty, it should be quantified and
propagated to give confidence to predictions, which facilitates
offline/ online decisions to prolong the life span of the stack
(i.e., by control, maintenance or changing mission profiles).
According to above discussions and challenges, following
points are vital for efficient prognostics of PEMFC.

1)  Data are the key source of information that must be
used intelligently to manage uncertainty.

2)  Multidimensional data is essential for prognostics.

3) Operating conditions that correlate degradation,
should be used as inputs.

4)  Prognostics model should be capable of updating its
parameters in real-time when new data are available.

5)  Uncertainty of the prognostics must be quantified and
propagated to give confidence for decisions.

III. PROPOSED DATA-DRIVEN PROGNOSTICS APPROACH

FCs are highly multiphysics (due to electrical, mechanical,
thermal engineering, etc.,), multiscale systems (from pm to
m), and it is not easy to access their internal parameters or
to fully understand their aging process. Therefore, building an
accurate physics based prognostics models can be very hard.
Nevertheless, with the advance of modern sensor, data storage
and processing technologies, the data-driven prognostics mod-
els are becoming popular [8], which can also serve as powerful
tools to ensure safety and availability of degrading PEMFC.
They learn FC/ stack behavior directly from CM data without
detailed physical understanding about the aging process, and
that knowledge is used to predict degradation.

According to discussions on CM data and modeling in previous
section, the framework of PEMFC health assessment and
prognostics can be easily understood by Fig. 3. Therefore,
discussions on data-acquisition and data-processing steps are
left aside. As for prognostics modeling, the data-driven model
learns directly stack aging behavior from selected health in-
dicators, which are stack aging time, current and stack power
drop in our case. The learned model is used at time (%) to
assess current SOH of the PEMFC stack, and to predict the
evolution SOH from ¢ — ¢ + h, where h is the prediction
horizon. This enables timely decisions to prolong its life span
by performing maintenance or changing mission profiles.

On the basis of our previous development for prognostics of
PEMFC [1], and considering the requirements highlighted in
sec. II: for the prognostics modeling step an adaptive ensemble
of Summation Wavelet-Extreme Learning Machine algorithm
(SW-ELM) is proposed with new incremental learning scheme
to predict stack degradation under given variable load profile.
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Fig. 3. From CM data to long-term prediction of PEMFC stack SOH



A. Overview of basic SW-ELM & mathematical perspective

The SW-ELM combines neural network and wavelet theory
for estimation/ predictions problems [9]. Basically, SW-ELM is
one-pass batch learning algorithm for single layer feed forward
network (SLFN), Fig. 4. It has an advantage of improved
parameter initialization to reduce impact of random weights
and bias of input-hidden layer, and an improved structure with
two activation functions in each hidden node to encounter
nonlinear inputs. Also it works on actual scales of the data.
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Fig. 4. Machine learning view of SW-ELM

Let note n and m the numbers of inputs and outputs, N the
number of learning data samples (z;,t;), where i € [1...N],
xr; = [%g%z,---,xm]T € R™ and t;, = [til,tiQ,...,tim]T S
R, and N the number of hidden nodes, each having activation
functions (f; & f2). To minimize the difference between
output o; and target t;, there exist Sy, wy and by such that:

N
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where f is the average output from two different activa-
tion functions @ and 1. wy, = [Wk1, Wk, .-, Wen]T € R is
an input weight vector connecting the k! hidden to input
layer neurons, (wy.x;) is the inner product of weights and
inputs, and by € R is the bias of k" hidden neuron.
Also, Bi = [Br1, Br2, - Brm]T € R™ is the weight vector to
connect k" hidden neuron to output neuron. In matrix form
Eq. 1 can be written as H,y08 = T', where T is target matrix
and H,,4 is hidden layer output matrix expressed as:

Havg (wl,...,wN,xl,...,xN,bl,...,b1\~,) =
(wi.z1 + b1) (wg.z1 +bg)
F0,9) : : )
(w1.xN+b1) (’LUN.CEN+I)N) Nx
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Finally, the least square solution of the linear system Hg,q8 =
T, with minimum norm of output weights g is:

~ ' -1
B=Hl, T = (HavgHavg) HaugT )

where H};vg shows the Moore-Penrose generalized inverse
for the hidden layer output matrix H,,g [10]. The SW-ELM

algorithm can be synthesized as follows (see details in [9]).

Algorithm 1 Brief learning scheme of SW-ELM

Assume: n inputs, m outputs, N hidden nodes
Require: N learning samples, Arcsinh & Morlet functions

. Initialize wavelet parameters (i.e., dilatation & translation).
. Initialize randomly hidden nodes param. (wy, b ) & adjust.
: Obtain hidden layer output matrix Hg,4 using Eq. 2.

: Find the output weight matrix B in Eq. 4.

AW N =

B. Building the SW-ELM ensemble

Predicting behavior of aging PEMFC stack is a complicated
task, since there are various sources of uncertainty that impact
predictions and the error accumulates with increasing predic-
tion horizon. Considering the data-driven framework for prog-
nostics of PEMFC in Fig. 3, at each step the uncertainties get
compounded, that can grow beyond control in the prediction
phase if not managed properly [11]. Therefore, considering
uncertainties either due to data or either due to modeling phase
(sec. II), a single model is not robust to reduce their impact,
which could lead to wrong decisions. In comparison, perform-
ing prognostics with an ensemble of models would be less
likely to be in error than an individual model and appears to be
meaningful [1]. The ensemble approach enables reducing the
uncertainty and gives confidence to the predictions to facilitate
decisions. A narrow confidence indicates better performances
of prognostics in terms of precision and accuracy over wide
confidence which indicates large uncertainty.

The proposed ensemble structure is achieved by combining
small groups of ensembles using SW-ELM. Each individual
SW-ELM model has the same network complexity 5 input-
55 hidden-1 output neuron, but different learning parameters
(algo. 1), see Fig. 5. The parameter constant C' to adjust wy
and b, of each SW-ELM is set to C' = 0.01 (see [9]). The
inputs of each SW-ELM are stack aging time (¢), current (I),
3 regressors of stack power (P;_o, Pi_1, P;). The number of
SW-ELM models in each group is set to 10, and the number
of groups is set to 20. The predicted output (P;4;) from
the ensemble structure is the median value from medians
computed from each group of SW-ELM models. This allows
narrowing confidence of predicted values. To improve the
adaptability of ensemble structure for better predictions and
to manage uncertainty for better decisions, the incremental
learning scheme with artificial data is presented as follows.

C. New incremental learning scheme

To perform long-term prognostics, a common practice is
to project the current condition of equipment up to failure
limit, assuming that predictions follow the degrading trend [1].
This task is usually achieved by an iterative approach, that is
performed by a single model which is tuned to perform one-
step ahead prediction ;4. The predicted value is used as
the regressors of the model to predict the following ones and
the process is repeated until the prediction of Z;, (see [12]).
This process is repeated each time to evolve model parameters
when new measurements are available, till the end of life of
the equipment [1]. The whole procedure can be considered
as incremental learning, because the prognostics models are
re-trained and their parameters are updated according to new
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data new [13]. The iterative approach can be useful for
projection based prognostics methods under constant operating
conditions, however, under variable load the assumption of
degrading trends does not apply. Also with iterative approach
the error will accumulate at each time step, which can result
large uncertainty of prognostics. Therefore, main issues are: 1)
how to do incremental learning without new data?, 2) how to
manage uncertainty of long-term predictions?. To address those
issues, the proposed approach for incremental learning uses
the artificial data (or re-simulated data) from one-step ahead
prediction model to update data record and the prediction
model is retrained with those data Fig. 5. In order to elaborate
the learning procedure of ensemble structure, consider CM
data record from PEMFC stack with measurements from three
health indicators up to time ¢, i.e., stack aging time ¢, current [
and 3 regressors from stack power P. Each SW-ELM model is
trained with those data to perform one-step ahead prediction of
power P,.;. The median prediction value P, for ensemble
structure is stored sequentially in the data record against the
set of inputs at time ¢, which is considered as the artificial
data from prediction to increase the learning frame. The
ensemble structure is retrained with new sample (of artificial
data) to update parameters, prior to the next prediction step.
This procedure is repeated until the end of given current
profile to predict the behavior of PEMFC stack SOH with
changing current loads and to enable timely decisions. The
proposition allows performing incremental learning without
actual measurements and using artificial data from predictions,
thus improving the adaptability of prognostics model and
managing its uncertainty of long-term predictions.

When new measurements from the stack are available, the
complete procedure of proposed incremental learning scheme
is repeated. Note that, due to rapid learning ability of SW-
ELM algorithm, the proposed incremental learning can be
computationally efficient. However, the classical algorithms for
SLEFN, like backpropagation algorithm can be computationally
expensive. Moreover, the computational time can increase with
the complexity of ensemble structure.

IV. EXPERIMENT AND RESULTS DISCUSSION
A. PEMFC stack CM data under unCHP profile

The proposed data-driven ensemble with incremental learn-
ing scheme is applied to prognostics of PEMFC stack of 1 kW
for a uCHP application. PEMFC stack used for the experiment
was composed of 8 cells, with an active area of 220c¢m?2. The
mission profile to operate the stack for yCHP under variable
load current for a complete year (Fig. 6a), was based on the
on-field measurements from a demonstration project for which
Electricite de France (eDF) was partner [14]. The CM data
were collected from a 10 kW test bench at FCLAB Research
Federation (FR CNRS 3539), Fig. 6b. The operating variables
concerning, fluids (1), electrical (2), and thermal flows (3) were
acquired from PEMFC (4) at a frequency of 1 Hz. To recall,
the data from PEMFC stack continuously measured, controlled
and economically possible are: aging time (%), stack power (P)
Fig. 2, current (A) Fig. 7a, stack voltage (V') Fig. 7b, air/ Ha/
cooling water temperatures and air compressor speed.
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B. SOH prediction results

To validate our proposition, during the computer simula-
tions prognostics is initiated around half-life of the PEMFC
stack. As mentioned in sec. III, it is assumed that the future
load demand of pCHP application is known for a complete
year (i.e., for four seasons). Therefore, the current is used as
an input to the prognostics model to adapt variation of the
stack power over increasing prediction horizon. Like a real
situation, prognostics is performed at two different time steps
with different lengths of prediction horizons: 1) prognostics
initiated at 600 hours, where the prediction horizon is 643
hours, 2) prognostics initiated at 800 hours, where the pre-
diction horizon is 443 hours. The results are discussed and a
comparison is given to show improvements. Most importantly,
the proposed approach is compared with the recent works on
hybrid prognostics of PEMFC under variable loads.

1) Without incremental learning: The long-term prediction
results on SOH of PEMFC with SW-ELM ensemble (Fig. 5),
without incremental learning are shown in Fig. 8a,b. Consider
the first case, where predictions are initiated after learning
measurements up to 600 hours. The median predictions from
the ensemble can be seen with a red line. The large uncertainty
of predictions over horizon of 643 hours is shown with a
wide confidence around predictions, which is due to error
accumulation at each step with iterative approach (sec. III).
The median predictions from the ensemble are poor and they
do not track properly behavior of stack (i.e. blue dotted line).
For the second case Fig. 8b, predictions are initiated after
learning measurements up to 800 hours. The median predic-
tions from the ensemble are quite good and they track properly
the actual aging behavior of the stack. Also, the uncertainty
of predictions over the horizon of 443 hours is reduced as
compared to the previous case. This indicates the requirement
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of large frame of learning data for the ensemble model.

2) With incremental learning: The long-term prediction
results on SOH of PEMFC with data-driven ensemble (Fig.
5), with incremental learning are shown in Fig. 8c,d for which
same legend apply as Fig. 8a,b. For clarity of results a zoom
in view of predictions is given in spite of legend.

Like previous results, consider the first case, where predictions
are initiated at 600 hours. Even with the few learning data,
the median predictions from the ensemble follow the stack
aging behavior quite well as compared to results in Fig. 8a.
Moreover, the confidence around predictions is very compact
over the entire horizon of 643 hours, as shown in zoom in
view, which indicates the robustness of the prognostics model
to encounter uncertainty. However, the predictions from 800
hours up to 1000 hours on the power drop signal are not very
accurate, but still better than results in Fig. 8a.

For the second case Fig. 8d, predictions are initiated at 800
hours. The median predictions from the ensemble are quite
accurate as they closely tracks actual aging behavior of the
stack, which is also shown in the zoom in view. The uncertainty
bounds of predictions are very narrow as well, over the entire
horizon of 443 hours, which indicates higher precision and
also the reliability of prognostics model.

3) Comparative analysis: The SOH predictions results
given in Fig. 8 are further evaluated using coefficient of de-
termination metric (R2), for both cases, i.e., without and with
incremental learning. Basically, R2 determines, how accurate
the future outcomes are to be predicted by the learned model.
The comparison of R2 results is given in Fig. 9, for prognostics
at 600, 800 and 1000 hours. The comparison show that, the
proposed incremental learning scheme can give more accurate
prognostics results, when few learning data are available (i.e.,
up to 600 hours). Following that, the R2 accuracies with both



cases (without and with incremental learning) are same for
prognostics at 800 hours and 1000 hours. However, it should
be noted that, at those time steps without incremental learning,
the predictions are less precise as compared to proposed
incremental learning scheme, which is already mentioned in
sec. IV-B.

§ 1

S 0957

=3

3

=

£

;: 09 —o— No incremental learning

o — % Incremental learning

S

S 085 : : : : ; ; ; ; :
600 800 1000

Hour to initiate predictions

Fig. 9. Comparing prediction accuracy using R2.

The results of prognostics accuracy with the proposed data-
driven ensemble with new incremental learning scheme are
further compared with the hybrid approach on prognostics of
PEMEFC under variable load [5].

The R2 results from the hybrid prognostics model are given
shown in Fig. 10. For prognostics at 600 hours and 800 hours,
with proposed approach the accuracy results are R2 = 0.949
and R2 = 0.995 respectively, whereas with hybrid prognostics
at 600 hours and 800 hours, accuracy results are R2 = 0.68
and R2 = 0.73. These results clearly show the significance of
the proposed data-driven ensemble with incremental learning.
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Fig. 10. Evaluating prediction accuracy using R2 [5].

V. CONCLUSION

In this paper a data-driven approach is proposed for prog-
nostics of PEMFC stack for combined heat and power gener-
ation (uCHP). The proposed prognostics model is based on
Summation Wavelet-Extreme Learning Machine (SW-ELM)
ensemble with a new incremental learning scheme for an
online application. The SW-ELM ensemble is applied to
monitoring data from PEMFC stack under known variable
loads, which is the first application from data-drive category
of prognostics approaches. Long-term prognostics on state of
health (SOH) of the PEMFC is performed with few learning
data. The SOH prediction results with proposed data-driven
approach, and its comparison with hybrid prognostics, clearly
show the significance of SW-ELM ensemble model which
predicts with higher accuracy and lower uncertainty over long-
term prognostics horizon. The future developments of this
work concern the application of proposed data-driven ensemble
on prognostics of PEMFC for transportation application.
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