

Modeling, Filtering and Optimization

H. Hui^{1,2}, Y. Yakoubi¹, M. Lenczner^{1,3} S. Cogan¹, A. Meister⁴, M. Favre⁴, R. Couturier⁵ and S. Domas⁵

¹FEMTO-ST (France),
²NPWU (China)
³UTBM (France),
⁴CSEM (Switzerland),
⁵UFC-LIFC (France)

cultivating innovation from basic research to industrial partnership

F E M T O

ш

C H

R

RESEA

Objectives

Functioning modes: Contact mode, Dynamic mode

Requirements in Maths and Software

- Modeling: Two-scale Modelling
- Design: Robust Optimization Based on the Two-Scale Model
- Image Processing for Interferometry: Topographic scan
- Distributed Control: Semi-Decentralized

- Robust Parameter Optimization (SIMBAD Software)
- □ Image Processing for Interferometry
- Semi-Decentralized Distributed Control

Two-Scale Model Principle

Two-Scale Model Discretization

Motion equation in cantilevers at the microscale

$$m^C \partial_{tt}^2 \widetilde{u} + m^C \partial_{tt}^2 \overline{u} + r^C \partial_{y_2 \dots y_2}^4 \widetilde{u}$$

Motion equation in base at the macroscale

$$\rho^B \partial_{tt}^2 \bar{u} + R^B \partial_{x_1 \cdots x_1}^4 \bar{u} + \ell_C r^C (\partial_{y_2 y_2 y_2}^3 \widetilde{u})$$

-1.4

-1.5

p -1.6

-1.8

-1.9

slope=10.14

0.06 0.07

0.05

FEM discretization of \overline{u} in Base

Modal Decomposition of \widetilde{u} in the Cantilevers

$$\widetilde{u}(t, x_1, y_2) \approx \sum_{k=1}^{N} \widetilde{u}_k(t, x_1) \phi_k(y_2) \text{ and } F^C(t, x_1, y_2) \approx \sum_{k=1}^{N} f_k^C(t, x_1) \phi_k(y_2)$$

where $\{\phi_k(y_2)\}_{k=1..N}$ are the cantilever modes

L²-norm

error in a

logarithmic

scale with

respect to cell

size

Verification & AFMALab Software

The One-dimensional Model

Solutions are approximated in the Multi-scale domain with respect to small thickness or large number of cells. This yields a two-scale model for a cantilever array. It is

governing deflections for an infinite number of cantilevers.

In base: $m^B \partial_{tt} u^0 + r^B \partial^4_{x_1...x_1} u^0 = -d^B \partial^3_{y_2...y_2} u^0 + f^B$

In cantilevers: $m^C \partial_{tt} u^0 + r^C \partial^4_{y_2...y_2} u^0 = f^C$

Interface:
$$u^0_{|cantilever} = u^0_{|base}$$
 and $(\partial_{y_2} u^0)_{|cantilever} = 0$

Eigenvalues:
 Statics:
 Decay Rate: 1.24

Logarithm of the L²-norm error with respect to cell size

Exitation: First Eigenfrequency; Displacement (a) Fifth lever end, (b) Base middle, (c) Fourth lever end, (d) Sixth lever end

The Two-Dimensional Model

Global and local view of a Cantilever Array

Model in Base:

$$\rho^B \partial_{tt} u^A + div_{\tilde{x}} (div_{\tilde{x}} (R^B : \nabla_{\tilde{x}} \nabla_{\tilde{x}}^T u^A)) + \ell_C^0 r^C (\partial_{y_2 y_2 y_2}^3 u^A)_{|junction} = f^B d_{tt} u^A + div_{\tilde{x}} (div_{\tilde{x}} (R^B : \nabla_{\tilde{x}} \nabla_{\tilde{x}}^T u^A)) + \ell_C^0 r^C (\partial_{y_2 y_2 y_2}^3 u^A)_{|junction|} = f^B d_{tt} u^A + div_{\tilde{x}} (div_{\tilde{x}} (R^B : \nabla_{\tilde{x}} \nabla_{\tilde{x}}^T u^A)) + \ell_C^0 r^C (\partial_{y_2 y_2 y_2}^3 u^A)_{|junction|} = f^B d_{tt} u^A + div_{\tilde{x}} (div_{\tilde{x}} (R^B : \nabla_{\tilde{x}} \nabla_{\tilde{x}}^T u^A)) + \ell_C^0 r^C (\partial_{y_2 y_2 y_2}^3 u^A)_{|junction|} = f^B d_{tt} u^A + div_{\tilde{x}} (div_{\tilde{x}} (R^B : \nabla_{\tilde{x}} \nabla_{\tilde{x}}^T u^A)) + \ell_C^0 r^C (\partial_{y_2 y_2 y_2}^3 u^A)_{|junction|} = f^B d_{tt} u^A + div_{\tilde{x}} (div_{\tilde{x}} (R^B : \nabla_{\tilde{x}} \nabla_{\tilde{x}}^T u^A)) + \ell_C^0 r^C (\partial_{y_2 y_2 y_2}^3 u^A)_{|junction|} = f^B d_{tt} u^A + div_{\tilde{x}} (div_{\tilde{x}} (R^B : \nabla_{\tilde{x}} \nabla_{\tilde{x}} u^A)) + \ell_C^0 r^C (\partial_{y_2 y_2 y_2 y_2} u^A)_{|junction|} = f^B d_{tt} u^A + div_{\tilde{x}} (div_{\tilde{x}} (R^B : \nabla_{\tilde{x}} \nabla_{\tilde{x}} u^A)) + \ell_C^0 r^C (\partial_{y_2 y_2 y_2 y_2} u^A)_{|junction|} = f^B d_{tt} u^A + div_{\tilde{x}} (div_{\tilde{x}} (R^B : \nabla_{\tilde{x}} \nabla_{\tilde{x}} u^A)) + \ell_C^0 r^C (\partial_{y_2 y_2 y_2 y_2} u^A)_{|junction|} = f^B d_{tt} u^A + div_{\tilde{x}} (div_{\tilde{x}} (R^B : \nabla_{\tilde{x}} \nabla_{\tilde{x}} u^A)) + \ell_C^0 r^C (\partial_{y_2 y_2 y_2 y_2} u^A)_{|junction|} = f^B d_{tt} u^A + div_{\tilde{x}} (div_{\tilde{x}} (R^B : \nabla_{\tilde{x}} \nabla_{\tilde{x}} u^A)) + \ell_C^0 r^C (\partial_{y_2 y_2 y_2 y_2} u^A)_{|junction|} = f^B d_{tt} u^A + div_{\tilde{x}} (dv_{\tilde{x}} u^A) + \ell_C^0 r^C (\partial_{y_2 y_2 y_2 y_2} u^A)_{|junction|} = f^B d_{tt} u^A + dv_{\tilde{x}} (dv_{\tilde{x}} u^A) + \ell_C^0 r^C (\partial_{y_2 y_2 y_2 y_2} u^A)_{|junction|} = f^B d_{tt} u^A + dv_{\tilde{x}} (dv_{\tilde{x}} u^A) + \ell_C^0 r^C (\partial_{y_2 y_2 y_2} u^A)_{|junction|} = f^B d_{tt} u^A + dv_{\tilde{x}} (dv_{\tilde{x}} u^A) + \ell_C^0 r^C (\partial_{y_2 y_2 y_2} u^A)_{|junction|} = f^B d_{tt} u^A + dv_{\tilde{x}} (dv_{\tilde{x}} u^A) + \ell_C^0 r^C (\partial_{y_2 y_2 y_2 y_2} u^A)_{|junction|} = f^B d_{tt} u^A + dv_{\tilde{x}} (dv_{\tilde{x}} u^A) + \ell_C^0 r^C (\partial_{y_2 y_2 y_2 y_2 y_2 u^A}) + \ell_C^0 r^C (\partial_{y_2 y_2 y_2 y_2 u^A}) + \ell_C^0 r^C (\partial_{y_2 y_2 y_2 y_2 y_2 u^A}) + \ell_C^0 r^C (\partial_{y_2 y_2 y_2 y_2 y_2 y_2 u^A$$

MS Model / FEM Eigenfrequency comparison:

Comparison of Eigenvalue density distributions for (a) the FEM and for (b) the MSM

(a) Superimposition of eigenvaluedistributions for the FEM and for the MSM(b) Relative errors

MS Model / FEM Eigenshapes comparison:

'U FC

dMEMS, Besançon – 2- 3 April 2012

- **Two-scale Modelling (AFMALab Software)**
- Robust Parameter Optimization (SIMBAD Software)
- □ Image Processing for Interferometry
- Semi-Decentralized Distributed Control

Sensitivity Analysis: Selection of design variables with the greatest impact Deterministic Design Optimization: Optimization of design variables with constraints Uncertainty quantification: Impact of manufacturing uncertainties

AFM Array Design Variables

Description	Initial value	Bound
Lever length	$200 \mu m$	$[60 \ 400] \mu m$
Lever width	$40 \mu m$	$[40 \ 80] \mu m$
Lever thickness	$0.5 \mu m$	$[0.25 \ 0.70] \mu m$
Young modulus of lever	335Gpa	fixed
Mass density of lever	$3100 kg/m^{3}$	fixed
Tip presence	1 (or 0)	fixed
Base thickness	$30 \mu m$	$[30 \ 60]\mu m$
Base width	$40 \mu m$	$[10 \ 200] \mu m$
Young modulus of Base	169Gpa	fixed
Mass density of Base	$2330 kg/m^{3}$	fixed
Array size in x -direction	$1000 \mu m$	fixed
No. levers in x -direction	10	[2 20]
No. levers in y -direction	1	fixed
Tip base width	$x_2 - 10 \mu m$	dependent
position of tip apex	$x_2/2$	dependent
Array size	$1 \times 1mm^2$	fixed
Array dimension	1 (or 2)	fixed
x-direction pitch	$floor(\frac{x_{11}}{x_{12}\times 50}) \times 50 \mu m$	proportional to $50 \mu m$
y-direction pitch	$floor(\frac{x_{11}}{x_{12}\times 50}+1)\times 50\mu m$	proportional to $50 \mu m$
Longitudinal base width	$40 \mu m$	$[10 \ 200] \mu m$

AFM Array Design objectives and constraints

Description	Equation
Maximum deflection angle at tip end less than $3/180^{*}$ pi	$\frac{3S_2}{2x_1} - \frac{3\pi}{180} \le 0$
Maximum displacement at base must smaller than	$s_3 - 50nm \le 0$
50nm for small array and $80nm$ for large array	or $s_3 - 80nm \le 0$
Minimum gap between two levers larger than $\mathrm{lC}/2$	$\frac{lC}{2} - s_4 \le 0$
Minimum gap percentage	
of each cell greater than 40%	$0.4 - s_5 \le 0$
Number of levers in x -direction more than 2	$2 - s_6 \le 0$
Number of levers in y -direction more than 2	$2 - s_7 \le 0$
Maximum footprint size of	$s_9 - 1 \times 1mm^2 \le 0$
small and large array	or $s_9 - 2 \times 2mm^2 \le 0$

Robust Param. Optimization Toolbox

Mono-objective Design Optimization

Uncertainty Quantification

- **Two-scale Modelling (AFMALab Software)**
- Robust Parameter Optimization (SIMBAD Software)
- □ Image Processing for Interferometry
- Semi-Decentralized Distributed Control

Sciences & technologies Displacement Measurement by Interferometry

- **Two-scale Modelling (AFMALab Software)**
- Robust Parameter Optimization (SIMBAD Software)
- Image Processing for Interferometry
- Semi-Decentralized Distributed Control

Standard State formulation for the H-infini filter of the distributed pb:

H-infinity problem:

$$\min_{\gamma} \max_{w_1, w_2} \frac{||z - \hat{z}||^2}{||w_1||^2 + ||w_2||^2}$$

Standard State formulation for the H-infini filter of the distributed pb:

UFC

Approximation using a Functional Calculus

Cauchy Integral for:

Holomorphic function f in C

$$f(\lambda_0) = \frac{1}{2i\pi} \int_{\mathcal{C}} \frac{f(\lambda)}{\lambda - \lambda_0} \, d\lambda$$

•Function of a matrix A:

$$f(A) = \frac{1}{2i\pi} \int_{\mathcal{C}} f(\lambda) (\lambda I - A)^{-1} d\lambda$$

•Function of an operator Λ :

$$f(\Lambda) = \frac{1}{2i\pi} \int_{\mathcal{C}} f(\lambda) (\lambda I - \Lambda)^{-1} d\lambda$$

utbm

Interre **q**

Application to $P\mathcal{C}^{N*}$ with $\Lambda^{-1} = \partial_{x \cdots x}^4$ after a preliminary preparation of the Riccati equation:

$$\zeta_1 v_1^{\zeta} - \zeta_2 v_2^{\zeta} - \Lambda v_1^{\zeta} = Re\left(-i\zeta' k_R\left(\zeta\right)\right) z,$$

$$\zeta_2 v_1^{\zeta} + \zeta_1 v_2^{\zeta} - \Lambda v_2^{\zeta} = Im\left(-i\zeta' k_R\left(\zeta\right)\right) z.$$

dMEMS, Besançon – 2- 3 April 2012

Conclusions and Perspectives

Conclusions

- Short review of our results for arrays of AFMs
- A two-scale model for the whole array sufficiently light to use in optimization procedures
- Software developed (best validated for 1D arrays)
- An optimization toolbox build and included
- Validated algorithm for interferometry with small number of pixels
- Topographic scan in static regime: recover displacements from 2 measurements and generate images for contact mode
- Dynamic regime: H-infinity filter approximation based on functional calculus

Perspectives (short term)

•Complete implementing the full setup and force spectroscopy in quasi-static regime

- A new design based on our software is planed at CSEM
- Verfiying the H-infinity filter approximation with the observation comes from interferometry measurements
- Implementing the full measurement chain

Question & Remarks

