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Abstract
The amount of completely sequenced chloroplast genomes increases

rapidly every day, leading to the possibility to build large-scale phylogenetic
trees of plant species. Considering a subset of close plant species defined
according to their chloroplasts, the phylogenetic tree that can be inferred
by their core genes is not necessarily well supported, due to the possible
occurrence of “problematic” genes (i.e., homoplasy, incomplete lineage
sorting, horizontal gene transfers, etc.) which may blur the phylogenetic
signal. However, a trustworthy phylogenetic tree can still be obtained
provided such a number of blurring genes is reduced. The problem is
thus to determine the largest subset of core genes that produces the best-
supported tree. To discard problematic genes and due to the overwhelming
number of possible combinations, this article focuses on how to extract the
largest subset of sequences in order to obtain the most supported species
tree. Due to computational complexity, a distributed Binary Particle
Swarm Optimization (BPSO) is proposed in sequential and distributed
fashions. Obtained results from both versions of the BPSO are compared
with those computed using an hybrid approach embedding both genetic
algorithms and statistical tests. The proposal has been applied to different
cases of plant families, leading to encouraging results for these families.

1 Introduction
The multiplication of completely sequenced chloroplast genomes should normally
lead to the ability to infer reliable phylogenetic trees for plant species. This is
due to the existence of trustworthy coding sequence prediction and annotation
software specific to chloroplasts (like DOGMA [15]) and of accurate sequence
alignment tools. Additionally, given a set of biomolecular sequences or characters,
various well-established approaches have been developed in recent years to
deduce their phylogenetic relationship, encompassing methods based on Bayesian
inference or maximum likelihood [14]. Robustness aspects of the produced trees
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can be evaluated too, for instance through bootstrap analyses. In other words,
given a set of close plant species, their core genome (the set of genes in common)
is as large and accurately detected as possible, to hope to be able to finally
obtain a well-supported phylogenetic tree. However, all genes of the core genome
are not necessarily constrained in a similar way, some genes having a larger
ability to evolve than other ones due to their lower importance: such minority
genes tell their own story instead of the species one, blurring so the phylogenetic
information. The link between the robustness and accuracy of the phylogenetic
tree, and the amount of data used for this reconstruction, is not yet completely
understood. More precisely, if we consider a set of species reduced to lists of
gene sequences, we have an obvious dependence between the chosen subset of
sequences and the obtained tree (topology, branch length, and/or robustness).
This dependence is usually regarded by the mean of gene trees merged in a
phylogenetic network. This article investigates the converse approach: it starts
by the union of whole core genes and tries to remove the ones that blear the
phylogenetic signals. More precisely, the objective is to find the largest part of the
genomes that produces a phylogenetic tree as supported as possible, reflecting by
doing so the relationship of the largest part of the sequences under consideration.

Due to an overwhelming number of combinations to investigate, a brute force
approach is a nonsense, which explains why heuristics are considered.

A previous work [1] has proposed the use of an ad hoc Genetic Algorithm
(GA) to solve the problem of finding the largest subset of core genes producing
a phylogenetic tree as supported as possible. However, in some situations, this
algorithm fails to solve the optimization problem due to a low convergence rate.
The proposal of this research work is thus to investigate the application of the
Binary Particle Swarm Optimization (BPSO) to face our optimization challenge,
and to compare it to the GA one. A new algorithm has been proposed and
applied, in a distributed manner using supercomputing facilities, to investigate
the phylogeny of various families of plant species.

This article is indeed an extended and improved version of the work published
in the CIBB proceedings book [4]. New contributions encompass a second version
of the BPSO for phylogenetic studies together with its distributed algorithm. The
two BPSO versions are evaluated on a large number of new group of species. New
experimental results have been thus obtained with this BPSO based approaches
and with the genetic algorithm and further compared.

The remainder of this article is organized as follows. Section 2 gives a general
presentation of the problem, further recalls how to extract the restricted set of
core genes, and next presents various tools for constructing the phylogenetic
tree from the hybrid approach. It ends with a brief description of the BPSO
metaheuristic. Section 3 describes the way the metaheuristic approach is applied
to solve problematic supports in biomolecular based phylogenies, considering the
particular case of Rosales order. The distributed version of BPSO algorithm using
MPI is also discussed. Obtained results and comparisons with GA approaches
are detailed in Section 4. Finally, this paper ends with a conclusion section, in
which the article is summarized and intended future work is outlined.
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2 Presentation of the problem
2.1 General presentation
Let us consider a set of chloroplast genomes that have been annotated using
DOGMA [15]. Following [2, 3], we have then access to the restricted core
genome [2] (genes present everywhere) of these species, whose size is about
one hundred genes when the species are close enough. Sequences are further
aligned using MUSCLE [7] and the RAxML [14] tool infers the corresponding
phylogenetic tree. If the resulting tree is well-supported (i.e., if all bootstrap
values are larger than 95) we can indeed reasonably consider that the phylogeny
of these species is resolved.

In a case where some branches are not well supported, we can wonder
whether a few genes can be incriminated in this lack of support. If so, we
face an optimization problem: find the most supported tree using the largest
subset of core genes. Obviously, a brute force approach investigating all possible
combinations of genes is intractable, as it leads to 2n phylogenetic tree inferences
for a core genome of size n. To solve this optimization problem, we have formerly
proposed in [1] a general pipeline detailed in Figure 1. In this pipeline, the stage
of phylogenetic tree analysis mixes both genetic algorithm with LASSO tests in
order to discover problematic genes. However, deeper experimental investigations
summarized in Table 1 have shown that such a pipeline does not succeed to
predict the phylogeny of some particular plant orders: in 14 groups of species
the pipeline produces a score of bootstrap lower than 95 (the b column). It is
important to understand what the bootstrap value represents before we can get
a good response for what is "good" or "poor" support.

Bootstrapping is a resembling analysis that involves taking columns of char-
acters out of the analysis, rebuilding the tree, and testing if the same nodes are
recovered. This is done through many (100 or 1000, quite often) iterations. If,
for example, you recover the same node through 95 of 100 iterations of taking out
one character and resampling your tree, then you have a good idea that the node
is well supported. If we get low support, this suggests that only few characters
support that node, as removing characters at random from your matrix leads to
a different reconstruction of that node.

We thus wonder whether a binary particle swarm optimization approach can
outperform the GA when finding the largest subset of core genes producing the
most supported phylogenetic tree (GA replaced by the BPSO in the “Phylogenetic
tree analysis” box of Figure 1).

Let us now give the general idea behind particle swarm optimization.

2.2 Binary Particle Swarm Optimization
Particle Swarm Optimization (PSO) is a stochastic optimization technique
developed by Eberhart and Kennedy in 1995 [8]. PSOs have been successfully
applied on various optimization problems like function optimization, artificial
neural network training, and fuzzy system control. In this metaheuristic, particles
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Figure 1: Overview of the proposed pipeline

follow a very simple behavior that is to learn from the success of neighboring
individuals. An emergent behavior enables individual swarm members, particles,
to take benefit from the discoveries, or from previous experiences, of the other
particles that have obtained more accurate solutions. In the case of the standard
binary PSO model [9], the particle position is a vector of N parameters that
can be set as “yes” or “no”, “true” or “false”, “include” or “not include”, etc.
(binary values). A function associates to such kind of vector a score (real number)
according to the optimization problem. The objective is then to define a way
to move the particles in the N dimensional binary search space so that they
produce the optimal binary vector w.r.t. the scoring function.

In more details, each particle i is represented by a binary vector Xi (its
position). Its length N corresponds to the dimension of the search space, that
is, the number of binary parameters to investigate. A 1 in coordinate j of this
vector means that the associated j-th parameter is selected. A swarm of n
particles is then a list of n vectors of positions (X1, X2, . . . , Xn) together with
their associated velocities V = (V1, V2, ..., Vn), which are N -dimensional vectors
of real numbers between 0 and 1. These latter are initially set randomly. At
each iteration, a new velocity vector is computed as follows:

Vi(t+ 1) = wVi(t) + φ1
(
P best

i −Xi

)
+ φ2

(
P best

g −Xi

)
(1)

where w, φ1, and φ2 are weighted parameters setting the level of each three
trends for the particle, which are respectively to continue in its adventurous
direction, to move in the direction of its own best position P best

i , or to follow
the gregarious instinct to the global best known solution P best

g . Both P best
i and

P best
g are computed according to the scoring function.
The new position of the particle is then obtained using the equation below:

Xij(t+ 1) =
{

1 if rij ≤ Sig(Vij(t+ 1)),
0 otherwise,

(2)

where rij is a threshold that depends on both the particle i and the parameter
j, while the Sig function is the sigmoid one [9], that is:

Sig(Vij(t+ 1)) = 1
1 + e−Vij(t+1) (3)
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Group occ c # taxa b Terminus Likelihood Outgroup
Gossypium_group_0 85 84 12 26 1 -84187.03 Theo_cacao
Ericales 674 84 9 67 3 -86819.86 Dauc_carota
Eucalyptus_group_1 83 82 12 48 1 -62898.18 Cory_gummifera
Caryophyllales 75 74 10 52 1 -145296.95 Goss_capitis-viridis
Brassicaceae_group_0 78 77 13 64 1 -101056.76 Cari_papaya
Orobanchaceae 26 25 7 69 1 -19365.69 Olea_maroccana
Eucalyptus_group_2 87 86 11 71 1 -72840.23 Stoc_quadrifida
Malpighiales 422 78 10 96 3 -91014.86 Mill_pinnata
Pinaceae_group_0 76 75 6 80 1 -76813.22 Juni_virginiana
Pinus 80 79 11 80 1 -69688.94 Pice_sitchensis
Bambusoideae 83 81 11 80 3 -60431.89 Oryz_nivara
Chlorophyta_group_0 231 24 8 81 3 -22983.83 Olea_europaea
Marchantiophyta 65 64 5 82 1 -117881.12 Pice_abies
Lamiales_group_0 78 77 8 83 1 -109528.47 Caps_annuum
Rosales 81 80 10 88 1 -108449.4 Glyc_soja
Eucalyptus_group_0 2254 85 11 90 3 -57607.06 Allo_ternata
Prasinophyceae 39 43 4 97 1 -66458.26 Oltm_viridis
Asparagales 32 73 11 98 1 -88067.37 Acor_americanus
Magnoliidae_group_0 326 79 4 98 3 -85319.31 Sacc_SP80-3280
Gossypium_group_1 66 83 11 98 1 -81027.85 Theo_cacao
Triticeae 40 80 10 98 1 -72822.71 Loli_perenne
Corymbia 90 85 5 98 2 -65712.51 Euca_salmonophloia
Moniliformopses 60 59 13 100 1 -187044.23 Prax_clematidea
Magnoliophyta_group_0 31 81 7 100 1 -136306.99 Taxu_mairei
Liliopsida_group_0 31 73 7 100 1 -119953.04 Drim_granadensis
basal_Magnoliophyta 31 83 5 100 1 -117094.87 Ascl_nivea
Araucariales 31 89 5 100 1 -112285.58 Taxu_mairei
Araceae 31 75 6 100 1 -110245.74 Arun_gigantea
Embryophyta_group_0 31 77 4 100 1 -106803.89 Stau_punctulatum
Cupressales 87 78 11 100 2 -101871.03 Podo_totara
Ranunculales 31 71 5 100 1 -100882.34 Cruc_wallichii
Saxifragales 31 84 4 100 1 -100376.12 Aral_undulata
Spermatophyta_group_0 31 79 4 100 1 -94718.95 Mars_crenata
Proteales 31 85 4 100 1 -92357.77 Trig_doichangensis
Poaceae_group_0 31 74 5 100 1 -89665.65 Typh_latifolia
Oleaceae 36 82 6 100 1 -84357.82 Boea_hygrometrica
Arecaceae 31 79 4 100 1 -81649.52 Aegi_geniculata
PACMAD_clade 31 79 9 100 1 -80549.79 Bamb_emeiensis
eudicotyledons_group_0 31 73 4 100 1 -80237.7 Eryc_pusilla
Poeae 31 80 4 100 1 -78164.34 Trit_aestivum
Trebouxiophyceae 31 41 7 100 1 -77826.4 Ostr_tauri
Myrtaceae_group_0 31 80 5 100 1 -76080.59 Oeno_glazioviana
Onagraceae 31 81 5 100 1 -75131.08 Euca_cloeziana
Geraniales 31 33 6 100 1 -73472.77 Ango_floribunda
Ehrhartoideae 31 81 5 100 1 -72192.88 Phyl_henonis
Picea 31 85 4 100 1 -68947.4 Pinu_massoniana
Streptophyta_group_0 31 35 7 100 1 -68373.57 Oedo_cardiacum
Gnetidae 31 53 5 100 1 -61403.83 Cusc_exaltata
Euglenozoa 29 26 4 100 3 -8889.56 Lath_sativus

Table 1: Results of genetic algorithm approach on various families.

Let us now recall how to use a BPSO approach to solve our optimization problem
related to phylogeny [4].

3 Particle Swarm for Phylogenetic Investigations
3.1 BPSO applied to phylogeny
In order to illustrate how to use the BPSO approach, we have considered the
Rosales order, which has already been analyzed in [1] using a hybrid genetic
algorithm and Lasso test approach. The Rosales order is constituted by 9 ingroup
species and 1 outgroup (Mollissima), as described in Table 2. They have been
annotated using DOGMA and their core genome has been computed according
to the method described in [2, 3]. Its size is equal to 82 genes. Unfortunately,
the phylogeny cannot be resolved directly neither by considering all these core
genes nor by considering any of the 82 combinations of 81 core genes.

As some branches are not well supported, we can wonder whether a few
genes can be incriminated in this lack of support, for a large variety of reasons
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Species Accession Seq.length Family Genus
Chiloensis NC_019601 155603 bp Rosaceae Fragaria
Bracteata NC_018766 129788 bp Rosaceae Fragaria
Vesca NC_015206 155691 bp Rosaceae Fragaria
Virginiana NC_019602 155621 bp Rosaceae Fragaria
Kansuensis NC_023956 157736 bp Rosaceae Prunus
Persica NC_014697 157790 bp Rosaceae Prunus
Pyrifolia NC_015996 159922 bp Rosaceae Pyrus
Rupicola NC_016921 156612 bp Rosaceae Pentactina
Indica NC_008359 158484 bp Moraceae Morus
Mollissima NC_014674 160799 bp Fagaceae Castanea

Table 2: Genomes information of Rosales species under consideration

encompassing homoplasy, stochastic errors, undetected paralogy, incomplete
lineage sorting, horizontal gene transfers, or even hybridization. If so, we face
the optimization problem presented previously: find the most supported tree
using the largest subset of core genes.

Genes of the core genome are now supposed to be lexicographically ordered.
Each subset S of the core genome is thus associated with a unique binary word
W of length n: for each i, 1 ≤ i ≤ n, Wi is 1 if the i-th core gene is in S and 0
otherwise. Any n-length binary word W can be associated with its percentage
p of 1’s and the lowest bootstrap b of the phylogenetic tree we obtain when
considering the subset of genes associated to W . Each word W is thus associated
with a fitness score value F = b+p

2 .
In the BPSO context the search space is then {0, 1}N , where N = 82 in

Rosales. Each node of this N -cube is associated with the set of following data:
its subset of core genes, the deduced phylogenetic tree, its lowest bootstrap b
and the percentage p of considered core genes, and, finally, the score b+p

2 . Notice
that two close nodes of the N -cube have two close percentages of core genes. We
thus have to construct two phylogenies based on close sequences, leading with
a high probability to the same topology with close bootstraps. In other words,
the score remains essentially unchanged when moving from a node to one of its
neighbors. It allows to find optimal solutions using approaches like BPSO.

During swarm initialization, the L particles (set to 10 in our experiments) of
a swarm are randomly distributed among all the vertices (binary words) of the
N -cube that have a large percentage of 1’s. The objective is then to move these
particles in the cube so that they will converge to an optimal node.

At each iteration, the particle velocity is updated by taking into account its
own best position and the best one considering the whole particle swarm (both
identified according to the fitness value). It is influenced by constant weight
factors as expressed in Equation (1). In this one, we have set φ1 = c1 · r1 and
φ2 = c2 · r2 where c1 = 1 and c2 = 1, while r1, r2 are random numbers belonging
to [0.1,0.5], and w is the inertia weight that is computed based on the following
formula:

w = wmax −
wmax − wmin

Imax
× I ′cur (4)
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Figure 2: The distributed structure of BPSO algorithm.

where Imax represents the maximum number of iterations (or time step) and
I ′cur is the current iteration. This equation determines the contribution rate of a
particle’s previous velocity and is determined as in [11].

To increase the number of included components in a particle, we reduce
the interval of Equation (1) to [0.1, 0.5]. For instance, if the velocity Vij of an
element is equal to 0.51 and rij = 0.83, then Sig(0.51) = 0.62. So rij > Sig(Vij)
and this leads to 0 in the vector element j of the particle i. By minimizing the
interval, we increase the probability of having rij < Sig(Vij) and consequently
the number of 1s, which means more included elements in the particle (a larger
number of core genes).

Note that a large inertia weight facilitates a global search, while a small
inertia weight tends more to a local investigation [10]. In other words, a larger
value of w facilitates a complete exploration, whereas small values promote
exploitation of areas. This is why Eberhart and Shi [6] suggested to decrease
w over time, typically from 0.9 to 0.4, thereby gradually changing from explo-
ration to exploitation. Finally, each particle position is updated according to
Equation (2).

3.2 Distributed BPSO with MPI
Traditional PSO algorithms are time consuming in sequential mode. The dis-
tributed version shown in Figure 2 has thus been proposed to minimize the
execution time as much as possible. The general idea of the proposed algorithm
is simple: a processor core is employed for each particle in order to compute its
fitness value, while a last core called the master centralizes the obtained results.
In other words, if we have a swarm of ten particles, we use ten cores as workers
and one core as master (or supervisor).

More precisely, the master initializes the particles of the swarm and distributes
them to the workers.When one worker finishes its job, it sends a “terminate”
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signal with the fitness value to the master. This latter waits until all the workers
have finished their jobs. Then, it determines the position of the particle that
has the best fitness value as the global best position and sends this information
to the workers that update their respective particle velocity and position. This
mechanism is repeated until a particle achieves a fitness value larger than or equal
to 95 with a large set of included genes. In the following, two distributed versions
of the BPSO described previously are considered: in version I the equation used
to update the velocity is slightly changed as shown below, and in version II we
use the equations of Section 2.2.

3.2.1 Distributed BPSO Algorithm: Version I

In this version Equation (1), which is used to update the velocity vector, is
replaced by:

Vi(t+ 1) = x · [Vi(t) + C1(P best
i −Xi) + C2(P best

g −Xi)] (5)

where x, C1, and C2 are weighted parameters setting the level of each three trends
for the particle.The default values of these parameters are C1 = c1 · r1 = 2.05,
C2 = c2 · r2 = 2.05, while x which represents the constriction coefficient is
computed according to formula [12, 5]:

x = 2× k
|2− C − (

√
C × (C − 4))|

, (6)

where k is a random value between [0,1] and C = C1 +C2, where C ≥ 4. Accord-
ing to Clerc [5], using a constriction coefficient results in particle convergence
over time.

3.2.2 Distributed BPSO Algorithm: Version II

This version is a distributed approach of the sequential PSO algorithm presented
previously in Section 2.2.

4 Phylogenetic Prediction
4.1 Genetic algorithm evaluation on a large group of plant

species
The proposed pipeline has been tested with the genetic algorithm on various
sets of close plant species. 50 subgroups, including on average from 12 to 15
chloroplasts species, encompassing 356 plant species, and already presented
in this document (c.f. Table 1) have been used with our formerly published
genetic algorithm. Obtained results with details are contained too in Table 1.
Column Occ represents the amount of generated phylogenetic trees from the
corresponding search space for each group. The column c represents the number
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of core genes included within each group. The # taxa column is the amount
of species corresponding to the considered group. b is the lowest value from
bootstrap analysis. The Terminus column contains the termination stage for
each subgroup, namely: the systematic (1), random (2), or optimization (3)
stage using genetic algorithm and/or Lasso test. These stages, which have been
proposed in [1], correspond to the systematic deletion of 0 or 1 gene (N + 1
computations for N core genes), random suppression of core genes (ranging from
2 to 5 genes), and the so-called genetic algorithm on binary word populations
improved by the use of a statistical test. Finally, the Likelihood column stores
the likelihood value of the best phylogenetic tree (i.e., according to the lowest
bootstrap value b). A large occurrence value in this table means that the
associated p-value and/or subgroup has its computation terminated in either
penultimate or last pipeline stage. An occurrence of 31 is frequent due to the
fact that 32 MPI threads (one master plus 31 slaves) have been launched on our
supercomputing facility.

Notice that the groups in Table 1 can be divided in four parts:

• Groups of species stopped in systematic stage with weak bootstrap values.
This is due to the fact that an upper time limit has been set for each group
and/or subgroups, while each computed tree in these remarkable groups
needed a lot of times for computations.

• Subgroups terminated during systematic stage with desired bootstrap
value.

• Groups or subgroups terminated in random stage with desired bootstrap
value.

• Finally, groups or subgroups terminated with optimization stages.

A majority of subgroups has its phylogeny satisfactorily resolved, as can be
seen on all obtained trees which can be downloadable at http://meso.univ-
fcomte.fr/peg/phylo. However, some problematic subgroups still remain to
be investigated, which explains why the distributed BPSO is considered in the
next section.

4.2 First experiments on Rosales order
In a first collection of experiments, we have implemented the proposed BPSO
algorithm on a supercomputing facility. Investigated species are the ones listed
in Table 2. 10 swarms having a variable number of particles have been launched
10 times, with c1 = 1, c2 = 1, and w linearly decreasing from 0.9 to 0.4. Obtained
results are summarized in Table 3 that contains, for each 10 runs of each 10
swarms: the number of removed genes and the minimum bootstrap of the best
tree. Remark that some bootstraps are not so far from the intended ones (larger
than 95), whereas the number of removed genes are in average larger than what
is desired.
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Figure 3: Average fitness of Rosales
order

Table 3: Best tree in each swarm
Removed

Swarm genes F b

1 4 75.5 73
2 6 75.5 76
3 20 75 88
4 52 59.5 89
5 3 75.5 72
6 19 77.5 92
7 47 63.5 92
8 9 73.5 74
9 10 72.5 73
10 13 76.5 84

Seven topologies have been obtained after either convergence or maxIter
iterations. Only 3 of them have occurred a representative number of times,
namely the Topologies 0, 2, and 4, which are depicted in Figure 4 (see details in
Table 4).

Topology Swarms b p F Occurrences
0 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 92 63 77.5 568
1 1, 2, 3, 4, 5, 6, 10 63 45 54 11
2 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 76 67 71.5 55
3 8, 1, 2, 3, 4 56 41 48.5 5
4 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 89 30 59.5 65
5 1, 3, 4, 5, 6, 9 71 33 52 9
6 5, 6 25 45 35 2

Table 4: Best topologies obtained from the generated trees, b is the lowest
bootstrap of the best tree having this topology,= p is the number of considered
genes to obtain this tree.

These three topologies are almost well supported, except in a few branches.
We can notice that the differences in these topologies are based on the sister
relationship of two species named Fragaria vesca and Fragaria bracteata, and
of the relation between Pentactina rupicola and Pyrus pyrifolia. Due to its
larger score and number of occurrences, we tend to select Topology 0 as the best
representative of the Rosale phylogeny.

To further validate this choice, CONSEL [13] software has been used on per
site likelihoods of each best tree obtained using the RAxML [14]. The CONSEL
computes the p-values of various well-known statistical tests, like the so-called
approximately unbiased (au), Kishino-Hasegawa (kh), Shimodaira-Hasegawa (sh),
and Weighted Shimodaira-Hasegawa (wsh) tests. Obtained results are provided
in Table 5, they confirm the selection of Topology 0 as the tree reflecting the
best the Rosales phylogeny.

After having verified that BPSO can be used to resolve phylogenetic issues
thanks to the Rosales order, we now intend to deeply compare the genetic
algorithm versus the swarm particle optimization. In order to do so, a large col-
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(a) T opology0 (b) T opology4

(c) T opology2

Figure 4: The best obtained topologies for Rosales order

Rank item obs au np bp pp kh sh wkh wsh
1 0 -1.4 0.774 0.436 0.433 0.768 0.728 0.89 0.672 0.907
2 4 1.4 0.267 0.255 0.249 0.194 0.272 0.525 0.272 0.439
3 2 3 0.364 0.312 0.317 0.037 0.328 0.389 0.328 0.383

Table 5: The CONSEL results regarding best trees

lection of group of plant species have been selected, on which we have successively
launched the genetic algorithm and the BPSO one in distributed mode.

4.3 Comparison between distributed version of GA and
the two distributed versions of BPSO

12 groups of plant genomes have been extracted from the 49 ones used in the GA
evaluation. More precisely, seven “difficult” groups have been selected from those
that have reached the third stage in genetic algorithm method (no resolution of
phylogeny during systematic and random modes). Conversely, five “easy” groups
have been added in the pool of experiments, for the sake of comparison: in these
groups, the phylogeny has been resolved during the systematic mode. They have
been applied on our two swarm versions, and results have been compared to the
genetic algorithm ones. We have successively tested 10 and 15 particles (with
each of the two algorithms), on the supercomputer facilities.

Comparisons are provided in Tables 6 and 7. In these tables, Topo. column
stands for the number of topologies, NbTrees is the total number of obtained
trees using 10 swarms, b is the minimum bootstrap value of selected w, 100− p
is the number of missing genes in w and Occ. is the number of occurrences of
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Table 6: Groups from BPSO Version 1.
Group Topo. NbTrees b |c| 100− p′ Occ. Swarms Particles
Pinus 3 508 98 79 32 462 1,2,3,4,5,6,7,8,9,10 10
Pinus 3 530 94 79 11 129 1,2,3,4,5,6,7,8,9,10 15
Picea 1 100 100 85 42 100 1,2,3,4,5,6,7,8,9,10 10
Picea 1 428 100 85 13 428 1,2,3,4,5,6,7,8,9,10 15

Magnoliidae 3 750 100 79 20 613 1,2,3,4,5,6,7,8,9,10 10
Magnoliidae 3 845 100 79 19 707 1,2,3,4,5,6,7,8,9,10 15
Ericales 30 344 53 84 26 185 1,2,3,4,5,6,7,8,9,10 10
Ericales 34 555 54 84 5 363 1,2,3,4,5,6,7,8,9,10 15

Bambusoideae 8 496 72 94 37 456 1,2,3,4,5,6,7,8,9,10 10
Bambusoideae 11 694 69 94 18 621 1,2,3,4,5,6,7,8,9,10 15
Eucalyptus 16 828 86 83 7 632 1,2,3,4,5,6,7,8,9,10 10
Eucalyptus 20 1073 86 80 4 845 1,2,3,4,5,6,7,8,9,10 15
Malpighiales 34 327 65 78 35 233 1,2,3,4,5,6,7,8,9,10 10
Malpighiales 38 483 69 78 40 326 1,2,3,4,5,6,7,8,9,10 15
Chlorophyta 25 191 70 24 11 109 1,2,3,4,5,6,7,8,9,10 10
Chlorophyta 29 94 68 24 11 1 1,2,3,4,5,6,7,8,9,10 15
Euglenozoa 3 450 100 26 7 292 1,2,3,4,5,6,7,8,9,10 10
Euglenozoa 3 520 100 26 4 491 1,2,3,4,5,6,7,8,9,10 15

Ehrhartoideae 2 23 100 81 0 23 1,2,3,4,5,6,7,8,9,10 10
Ehrhartoideae 3 455 100 81 0 451 1,2,3,4,5,6,7,8,9,10 15

Trebouxiophyceae 3 409 100 41 2 405 1,2,3,4,5,6,7,8,9,10 10
Trebouxiophyceae 3 415 100 41 8 354 1,2,3,4,5,6,7,8,9,10 15

Poeae 1 971 100 80 9 971 1,2,3,4,5,6,7,8,9,10 10
Poeae 1 1399 100 80 20 1399 1,2,3,4,5,6,7,8,9,10 15

Table 7: Groups from BPSO Version 2.
Group Topo. NbTrees b |c| 100− p′ Occ. Swarms Particles
Pinus 3 615 98 79 14 275 1,2,3,4,5,6,7,8,9,10 10
Pinus 3 628 100 79 12 558 1,2,3,4,5,6,7,8,9,10 15
Picea 1 635 100 85 14 635 1,2,3,4,5,6,7,8,9,10 10
Picea 1 821 100 85 15 821 1,2,3,4,5,6,7,8,9,10 15

Magnoliidae 3 494 100 79 16 73 1,2,3,4,5,6,7,8,9,10 10
Magnoliidae 3 535 100 79 42 384 1,2,3,4,5,6,7,8,9,10 10
Bambusoideae 6 952 84 81 23 94 1,2,3,4,5,6,7,8,9,10 10
Bambusoideae 9 1450 82 81 18 113 1,2,3,4,5,6,7,8,9,10 15
Eucalyptus 17 972 88 80 18 618 1,2,3,4,5,6,7,8,9,10 10
Eucalyptus 23 1439 92 80 10 843 1,2,3,4,5,6,7,8,9,10 15
Chlorophyta 25 529 71 24 6 397 1,2,3,4,5,6,7,8,9,10 10
Chlorophyta 46 1500 82 24 11 397 1,2,3,4,5,6,7,8,9,10 10
Ericales 30 97 51 84 11 56 1,2,3,4,5,6,7,8,9,10 10
Ericales 34 1257 52 84 7 800 1,2,3,4,5,6,7,8,9,10 15

Malpighiales 35 725 72 79 25 445 1,2,3,4,5,6,7,8,9,10 10
Malpighiales 86 1464 84 79 45 359 1,2,3,4,5,6,7,8,9,10 15
Euglenozoa 3 197 100 26 1 165 1,2,3,4,5,6,7,8,9,10 10
Euglenozoa 3 450 100 26 10 393 1,2,3,4,5,6,7,8,9,10 15

Ehrhartoideae 1 24 100 81 10 24 1,2,3,4,5,6,7,8,9,10 10
Ehrhartoideae 1 20 100 81 9 20 1,2,3,4,5,6,7,8,9,10 15

Trebouxiophyceae 3 319 100 41 1 313 1,2,3,4,5,6,7,8,9,10 10
Trebouxiophyceae 3 818 100 41 2 81 1,2,3,4,5,6,7,8,9,10 15

Poeae 1 991 100 80 22 991 1,2,3,4,5,6,7,8,9,10 15
Poeae 1 1490 100 80 26 1490 1,2,3,4,5,6,7,8,9,10 15

PSO Ver.I PSO Ver.II
Group 10 15 10 15 GA
Ericales 53 54 51 52 67
Bambusoideae 72 69 84 82 80
Pinus 98 94 98 100 80
Chlorophyta 70 68 71 82 81
Eucalyptus 86 86 88 92 90
Malpighiales 65 69 72 84 96
Magnoliidae 100 100 100 100 98
Ehrhartoideae 100 100 100 100 100
Euglenozoa 100 100 100 100 100
Picea 94 100 100 100 100
Poeae 80 80 100 100 100
Trebouxiophyceae 100 100 100 100 100

Table 8: PSO vs GA.

the best obtained topology from 10 swarms. As can be seen in these tables, the
two versions of BPSO did not provide the same kind of results:

• In the case of Chlorophyta, Pinus, and Bambusoideae, the second version
of the BPSO has outperformed the first one, as the minimum bootstrap b
of the best tree is finally larger for at least one swarm.

• In the Ericales case, the first version has produced the best result.

We can also remark that Malpighiales has better b in GA than the two
versions of PSO. For easy to solve subgroups, Pinus data set has got maximum
bootstrap b larger than what has been obtained using the genetic algorithm,
while Picea and Trebouxiophyceae have got the same values of b than in genetic
algorithm. More comparison results between GA and both versions of PSOs are
provided in Figure 5.

According to this figure, we can conclude that the two approaches lead to
quite equivalent bootstrap values in most data sets, while on particular subgroups
obtained results are complementary. In particular, PSO often produces better
bootstraps that GA (see Magnoliidae or on Bambusoideae), but with a larger
number of removed genes. Finally, using 15 particles instead of 10 does not
improve so much the obtained results (see Figure 5 and Table 8).
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(a) PSO with 15 particles vs. GA (b) PSO with 10 particles vs. GA

Figure 5: PSO with 10 and 15 particles vs. GA.

5 Conclusion
This article has presented an original method to produce a well supported and
large-scale phylogenetic tree of chloroplast species where various optimization
algorithms are applied to highlight the relationships among given gene sequences.

More precisely, this method first discovers and removes blurring genes in
the set of core genes by applying a bootstrap analysis for each tree produced
from a subset of core genes. It then continues with integrating a discrete PSO
method to provide the largest subset of sequences. Two distributed versions
of this PSO-based optimization step have been developed in order to reduce
the computation time and memory used. Finally, a per site analysis by the
CONSEL is applied: a dedicated topological process analyses all the output
trees and might use a per site analysis in order to extract the most relevant
ones. Our proposed pipeline has been applied to various families of plant species.
More than 65% of phylogenetic trees produced by this pipeline have presented
bootstrap values larger than 95.
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