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Abstract

Condition monitoring aims at ensuring system safety which is a fundamen-
tal requirement for industrial applications and that has become an inescapable
social demand. This objective is attained by instrumenting the system and de-
veloping data analytics methods such as statistical models able to turn data
into relevant knowledge. One difficulty is to be able to correctly estimate the
parameters of those methods based on time-series data. This paper suggests
the use of the Weighted Distribution Theory together with the Expectation-
Maximization algorithm to improve parameter estimation in statistical models
with latent variables with an application to health monotonic under uncertainty.
The improvement of estimates is made possible by incorporating uncertain and
possibly noisy prior knowledge on latent variables in a sound manner. The la-
tent variables are exploited to build a degradation model of dynamical system
represented as a sequence of discrete states. Examples on Gaussian Mixture
Models, Hidden Markov Models (HMM) with discrete and continuous outputs
are presented on both simulated data and benchmarks using the turbofan engine
datasets. A focus on the application of a discrete HMM to health monitoring
under uncertainty allows to emphasize the interest of the proposed approach
in presence of different operating conditions and fault modes. It is shown that
the proposed model depicts high robustness in presence of noisy and uncertain
prior.

Keywords: Time-series, noisy and uncertain labels, weighted distribution
theory, health monitoring, CMAPSS datasets

1. Introduction

The statistical representation of multi-dimensional time-series originating
from a dynamical system consists in finding a concise and meaningful mathe-
matical model that can be easily interpreted and used to undertand the behav-
ior of the system. It is an important problem encountered in a wide range of
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real applications such as localization and mapping for mobile robot exploring
an unknown environment [44, 43], structural health monitoring under different
loading conditions [1, 49, 40], forecasting and prognostics of various systems
[53, 47, 19, 24] or human motion analysis [39, 20]. The context of real-world
applications generally involves temporal processes subject to uncertainty which
is generally managed either by the theory of belief functions, set-membership
approaches or probability theory [23, 48, 4, 5].

This paper is focused on the management of uncertainty in statistical models
of time-series originating from in-situ monitoring of the health state of industrial
equipements. The monitoring is ensured by sensors that continuously record
data (observations) based on which the current and future degradation levels
of the system has to be infered for detection (or diagnostics) and prognostics
purposes [52].

The literature on data-driven Prognostics and Health Monitoring (PHM)
is mainly focused on supervised or unsupervised models [51, 28, 24, 41]: For
training, the degradation level (or state) is either known precisely or hidden
and, during testing, the current and future levels are infered from sensor data.
In situations where the degradation level can be represented as a sequence of
discrete states, statistical models with discrete latent variables have been widely
used. Hidden Markov Model (HMM) [34, 45] represents one of those models.
HMMs have indeed been widely exploited for PHM [26, 9, 15, 30, 24, 35] where
it is assumed that the degradation of the equipment follows a doubly stochastic
process: One for the dynamics of the hidden states and one to account for the
distribution of the observations.

Generally, the generative form of HMM is used: One model is built for each
possible degradation level, and, during monitoring, a similarity-based approach
is applied to find the likeliest model, that is then used to infer the current state
(detection and diagnostics) and the future trends (forecasting and prognostics).
We propose an alternative in using HMM for PHM by considering discrimina-
tive learning where the parameters are estimated with the aim to improve the
classification into degradation levels.

Compared to classical generative approaches for HMM-based PHM, and
more generally to latent model-based PHM, the proposed approach is based
on the idea that sensor data related to different degradation levels have to be
put together in a training dataset. Each level is then assigned a soft label : It
allows one to use uncertain or noisy labels [10] according to the quantity and the
quality of the prior knowledge about the degradation level. By this way, some
of the latent variables may now represent one degradation level and multiple
levels can share common feature subspaces through the use of uncertain labels.

The solution for incorporating soft labels in models with latent variables is
based on a modification of the conditional expectation of the log-likelihood in
the Expectation-Maximization algorithm by using the Weighted Distribution
Theory [33]. An application of this criterion is shown for Gaussian Mixture
Models, continuous and discrete HMM. A particular attention is paid to Maxi-
mum Likelihood Estimation (MLE) of parameters in HMM with discrete-valued
observations (DHMM) in presence of soft labels.
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Standard DHMMs have been used in the past in many applications [31,
57, 42, 8, 3, 26] and in particular for noisy speech and character recognition
[7, 50, 17, 12]. In the context of PHM, DHMM has also been widely used,
for instance in [25] for predictive modeling dedicated to intelligent maintenance
in complex semiconductor manufacturing processes, in [29] for incipient fault
detection and diagnosis in turbine engines, in [2] for failure isolation for cognitive
robots and in [16] for anomaly detection in electronic systems.

While the inference phase is very similar between HMM with continuous
(CHMM) and discrete observations (DHMM), the learning phase presents a
fundamental difference since the observations in the latter are discrete. The
learning phase for huge datasets is thus generally faster for the DHMM by
using matrix encoding. Moreover, it has been shown that the DHMM may be
better in presence of noise with unknown (non Gaussian) characteristics [50].

The contribution of this paper is two-fold:

• We propose a framework for PHM based on latent variables. It is based
on the Expectation-Maximization algorithm and the Weighted Distribu-
tion Theory. This work is inspired from a previous work proposed by T.
Denoeux [14] based on Dempster-Shafer’s theory of belief functions and
plausibility weights. The main difference with the present work is the
consideration of almost unrestricted weights (satisfying only positiveness)
based on the work of Patil [33].

• This framework is used to improve the performance of DHMM for PHM.
An application to turbofan health monitoring is presented where we eval-
uate the sensitivity of DHMM to vector quantization with respect to the
quality and quantity of prior.

The problem of incorporating partial knowledge about latent variables is dis-
cussed in Section 2. Section 3 presents the application of this method to DHMM.
Section 4 is dedicated to the analysis of the proposed model on several datasets.

2. Incorporating prior knowledge on latent variables in EM

The Expectation-Maximization algorithm (EM) [13] allows to estimate the
parameters of a statistical model with latent variables. It has been adapted
in [14] in order to take uncertain prior information into account. The prior
is supposed to be represented by a collection of T Basic Belief Assignments

(BBA) denoted as m = {mΩy

1 , . . .m
Ωy

T } defined on the set of discrete states Ωy

with
∑

A⊆Ωy
m

Ωy

t (A) = 1, and such that m
Ωy

t (∅) = 0 (normalized BBA). The

adaptation of EM concerns the auxiliary function (conditional expectation of
the log-likelihood) to be maximized at each iteration q:

Q(θ,θ(q)) = Eθ(q) [logL(θ; z)|x,m]

=

∑
y pl(y)p(y|x,θ(q)) logL(θ; z)

L(θ; pl)

(1)
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where pl represents the prior knowledge on latent variables y encoded by contour
functions in place of BBA m and computed as: pl : Ωy → [0, 1] such that
pl(ω) = Pl({ω}) with Pl(C) =

∑
D∩C 6=∅m(D), C ⊆ Ωy. The quantity L(θ; pl)

represents the amount of conflict between both the model (parameterized by θ
and evaluated on the observed data x) and the prior (represented by pl).

As it can be observed, the uncertain prior play a role of weight on the
posterior distribution in the auxiliary function. This can be interpreted as an
adjustment of the distribution over hidden states due to, for example, model
misspecification or to improve data interpretation.

Proposition 1. Eq. 1 is valid for any positive weights w in place of plausibili-
ties:

Q(θ,θ(q)) = Eθ(q) [logL(θ; z)|x,w]

=

∑
y w(y)p(y|x,θ(q)) logL(θ; z)

Eθ[w(z)]

(2)

The proof is based on the Weighted Distribution Theory (WDT) which is
a general framework for adjusting probabilities. Patil [33] illustrated the WDT
with practical examples and the reader may also be interested by the paper of
Iyengar and Zhao [21] for a use in maximum likelihood, and by the paper of
Nielsen and Signorovitch [32] with an application to single nucleotide polymor-
phisms discovery.

More specifically, the random variable Z is supposed to be governed by a
probability density function f(z;θ) (for instance the posterior in Eq. 2). The
weight function w(z) allows one to weigh the pdf f when Z = z [33]:

fw(z;θ) =
f(z;θ)w(z)

Eθ[w(Z)]
s.c. w(z) ≥ 0, 0 < Eθ[w(Z)] <∞

(3)

The weights are not considered as probabilities and only have to be positive [33].
It is interesting to make a parallel between the denominators of Eq. 1 and 2.
Indeed, in the former case, it has been shown that [14]:

L(θ; pl) = Eθ[pl(Z)] (4)

which is similar to the denominator of Eq. 3. Taking the conditional expectation
of the complete-data log-likelihood given partial knowledge on states encoded
as weights w = {w1 . . . wT } thus leads to a similar expression as Eq. 2.

3. Learning with soft labels in DHMM

This section shows how to use the proposed model to learn parameters in
a Discrete HMM (DHMM). For health monitoring, it follows the plot chart
depicted in Figure 1.

[Figure 1 about here.]
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3.1. Model and notations

In a DHMM, the observed data take the form of a sequence of discrete
symbols x = {x1 . . . xT }, xt ∈ {1 . . . V } with V the number of symbols, and
where t = 1 . . . T is a discrete time index. The model assumes that the sequence
has been generated by a stochastic (first-order) Markov process with hidden
states y = {y1, . . . yT }, with yt ∈ {1 . . .K}, K is the number of hidden states,
and Ωy = {ω1 . . . ωK} represents the set of states. The distribution of the output
observation xt at time t depends only on yt. The complete data is denoted as
z = (x,y).

A DHMM is described by the following parameters [34]:

• Prior probabilities ΠΠΠ = {π1, ..., πk, ..., πK}, where πk = P (y1 = k) is the
probability of being in state k at t = 1 ;

• Transition probabilities A = [akl],where

ak,l = P (yt = l|yt−1 = k), (k, l) ∈ {1, ...,K}2 (5)

is the probability for being in state l at time t given that it was in state k
at t− 1 with

∑
l akl = 1;

• Observation symbol probabilities B = [bkv] (emission matrix) where

bk,v = P (xt = v|yt = k), k ∈ {1, ...,K}, v ∈ {1, ..., V } (6)

is the probability for being in state k at time t and observing symbol v
with

∑
v bk,v = 1

The set of parameters in a DHMM is denoted as:

θ = (A,B,ΠΠΠ) (7)

3.2. Learning procedure based on soft labels

The weighted conditional expectation of the log-likelihood given partial
knowledge on states for DHMM (Eq. 2) requires to express the likelihood over
hidden and observed variables which, in the DHMM, is given by [34]:

L(θ; z) = p(y1; Π)

( T∏
t=2

p(yt|yt−1; A)

) T∏
t=1

p(xt|yt; B) (8a)

=

( K∏
k=1

π
y1,k

k

)( T∏
t=2

∏
k,l

a
yt−1,kyt,l

k,l

)( T∏
t=1

K∏
k=1

V∏
v=1

b
yt,k

k,v

)
(8b)

This form makes use of the fact that the latent variables are multinomial discrete
variables [6], therefore ytk = 1 if state k is true at time t. The conditional
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expectation of the log-likelihood given partial knowledge on states obtained at
iteration q becomes:

Q(θ,θ(q)) =

K∑
k=1

γ
(q)
1,k log πk +

T∑
t=2

∑
k,l

ξ
(q)
t−1,k;t,l log ak,l +

T∑
t=1

K∑
k=1

V∑
v=1

γ
(q)
t,k log bk,v

(9)

where γt,k = Eθ(q) [yt,k|x,w] and ξt−1,k;t,l = Eθ(q) [yt−1,kyt,l|x,w] represent the
mathematical expectations with respect to the posterior distribution over hidden
states given by:

ξ
(q)
t−1,t;k,l =

α
(q)
t−1,k bl,v wt,l a

(q)
k,l βt,l

L(θ(q); w)
(10)

γ
(q)
t,k =

α
(q)
t,kβ

(q)
t,k

L(θ(q); w)
(11)

and

L(θ(q); w) =

K∑
k=1

αT,k (12)

The variables α
(q)
t,k and β

(q)
t,k can be recursively computed as

α
(q)
1k = π

(q)
k w1,k bk,v (13a)

α
(q)
tk = bk,v wt,k

∑
j

α
(q)
t−1,j a

(q)
j,k (13b)

β
(q)
Tk = 1 (13c)

β
(q)
tk =

∑
l

β
(q)
t+1,l bl,v wt+1,l a

(q)
k,l (13d)

for t = 2 . . . T . We can observe that the soft labels w do not change the condi-
tional expectation compared to [38] except for the emission probabilities (third
term of Eq. 9). Therefore, the reestimation of parameters A and ΠΠΠ are given
by:

π
(q+1)
k =γ

(q)
1,k (14)

a
(q+1)
kl =

T∑
t=2

ξ
(q)
t−1,k;t,l

T∑
t=2

K∑
l′=1

ξ
(q)

t−1,k;t,l′

(15)
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and the MLE of the emission probability model B is given by applying a similar
reasoning as in the unsupervised learning of DHMM [34] adapted as proposed
in [38] to take into account the uncertain prior on hidden states leading to

b
(q+1)
k,v =

T∑
t=1

γ
(q)
t,k 1{xt = v}

T∑
t=1

γ
(q)
t,k

(16)

The expression of γ is given by Eq. 11 that makes use of the partial knowledge
about hidden states in discrete HMM.

4. Applications

A first simulated dataset is used to illustrate the behavior of the proposed
model (Eq. 2) for Gaussian Mixture Models, CPHMM and DPHMM with re-
spect to different weights. Those three models are available as Matlab codes
which allow to reproducing all results of this paper:

http://www.mathworks.com/matlabcentral/profile/authors/7468430
The second simulated dataset allows us to study the effect of the soft labels

on the both the performance and on the quantization of continuous variables.
Finally, complex benchmarking datasets provided by the NASA PCOE [46] are
used to illustrate the performance of the proposed model for diagnostics.

In the three applications, the sequences of states estimated (for instance, in
order to represent a degradation) with the proposed approach (WDT applied
on various models such as DHMM) are compared to a ground truth using the
Adjusted Rand Index (ARI) [55]. This performance indicator, widely used for
unsupervised classification, allows to evaluating the impact of the quality and
quantity of labels. It tends to 1 (resp. 0) if the recognition rate is perfect (resp.
bad).

4.1. Toy example dedicated to the application of the methodology on various
models from the literature with comparison

The interest of using arbitrary weights in Eq. 2 is illustrated on three dif-
ferent models: partially-Hidden Markov Models with continuous observations
(CPHMM) [38], the DHMM presented above and the Gaussian Mixture Model
(PGMM) proposed in [10].

A 2-dimensional dataset was generated using the following model made of
K = 3 clusters:

ΠΠΠ = (1/3, 1/3, 1/3)′, A =

 0.6 0.1 0.3
0.1 0.6 0.3
0.15 0.15 0.7

 (17)

µ1 =
(
4 0

)
, µ2 =

(
0 4

)
, µ3 =

(
2 2

)
(18)

Σ1 = diag
(
7 7

)
,Σ2 = diag

(
7 7

)
,Σ3 = diag

(
2 2

)
(19)
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A set of N=300 samples is drawn from this CPHMM and illustrated in Figure 2.

[Figure 2 about here.]

The particularity of this dataset is to be composed of two distinct groups
(clusters) plus a third one located on purpose at the middle of both previous
ones in order to simulate a fuzzy frontier. The centers of the three clusters are
estimated by using the ECM algorithm [27] with K=3 (and with the default
parameters proposed in [27]). The interest of using this algorithm here is to get
the credal partition, denoted as mΩ

i ,Ω = {c1, c2, c3}, i = 1 . . . N , that gives the
membership degree (a BBA) of each data point to each cluster and to all subsets
of clusters. The credal partition is assumed to represent a prior knowledge that
can be used in the three models.

To be used with Eq. 2, we need to transform the credal partition into a set
of weights assigned to singleton clusters. For that, we proceed as proposed in
[27] by transforming the partition into three types of weights:

BBA are belief masses on singleton clusters where weights are equal to wi(ck) ≡
mΩ

i (ck);

PL are plausibilities on singleton clusters where weights are equal to wi(ck) ≡
plΩi (ck);

BETP are pignistic probabilities on singleton clusters [48] where weights are
equal to wi(ck) ≡ BetPΩ

i (ck).

ECM was run 5 times with random initializations of centers, and the model
(position of centers) leading to the highest ARI.

The ARI is used to compare the partition obtained by maximizing the BBA
on singletons with the real partition obtained by sampling the previous model
(the correct cluster is known). By doing so, we explicitly make favourable the
choice of BBA as weights. The performance is thus expected to be higher all
the more than the plausibility and the pignistic transformations are computed
by transfering the belief masses on some subsets towards singletons: Conversely
to BBA, the frontier artificially added through the third cluster is expected to
collapse with those two transformations.

Learning in CPHMM was performed as in [38] except that the weights took
the three forms presented above (BBA, pl and BetP). The states were esti-
mated by maximizing the posterior distribution on states (γ-variable) for both
the DPHMM (DHMM with soft labels) and the CPHMM. For the DPHMM,
quantization was performed by a Kmeans by minimizing the sum of squared-
distance between points and clusters [34].

[Figure 3 about here.]

Figure 3 shows the evolution of the boxplot of ARI over 50 sets of 1000 sam-
ples for the CPHMM and for the PGMM learned with plausibility as initially
required in E2M (Evidential EM) algorithm [14] using Eq. 1 (E2M+pl), with
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pignistic probabilities (E2M+betp) and with the belief masses (E2M+BBA).
The performance of ECM is also shown in order to evaluate the performance
obtained with the introduction of transitions (which are explicitly used for sam-
pling). The results with noisy labels is also depicted: Noisy labels are ob-
tained by assigning a binary value (0 or 1) for the maximum of BBA, pl or
BetP over each cluster and for each data point (for instance mΩ

i (ck) = 1 if
k = argmaxj m

Ω
i (cj), 0 otherwise).

Results are globally quite low for all models. This is due to the fact that
one of the clusters is localized at the very middle of the other clusters with
high overlapping. The comparison between the three models has thus to be
performed relatively. The absolute performance is indeed not the main purpose
of this experiment which is to show that using arbitrary weights can be useful.
A deep analysis of the performances is proposed in next sections.

Figure 3 shows that the performance is better when using the belief masses
by a factor of almost 2 on average, compared to pignistic probabilities and
plausibilities. This is an important result which goes in favor of considering the
Weighted Distribution Theory to incorporate the most relevant information in
the learning phase when using E2M.

Furthermore, the DPHMM behaves similarly with noisy or uncertain labels
on this particular dataset whereas the CPHMM and PGMM with noisy labels
provides lower performance compared to uncertain labels. This result was also
underlined in [38] for CPHMM. The CPHMM provides the best overall result
(37%± 2%) when used with the BBA.

4.2. Impact of soft labels on quantization in DPHMM

The goal of the following experiments is to study the effect of soft labels on
both the performance and the quantization in the newly proposed DPHMM.
For that, we consider the same continuous-valued data as in [38] generated with
a continuous HMM with 3 states in 3 dimensions.

The Kmeans algorithm was applied for vector quantization [34] in order to
obtain discrete symbols. To cope with the sensitivity of Kmeans with respect
to the initialization, 10 runs were performed and the best partition was selected
according to the Davies-Bouldin index [11].

Two different experiments were carried out to study the influence of “label
imprecision” and “labeling error” on the performance of the DPHMM. In each
case, different numbers of clusters (N) were tested to estimate the impact of
the quantization on the performance.

4.2.1. Influence of label imprecision on the performance and on the quantization

We proceed as proposed in [38] to study how the imprecision of knowledge
on hidden states affects the performance of the DPHMM. A learning sequence
of length T was generated using the model presented in [38]. Imprecision on
labels was generated as pltk = 1 if yt = k, or ν otherwise, where ν represents the
nonspecificity coefficient (ν = 1 corresponds to a classical DPHMM model with
no information available on hidden states, ν = 0 represents a fully supervised
learning situation).
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To assess the quality of learning, a testing dataset of 1000 observations was
generated following the same distribution. The most probable state sequence
was computed using the maximum of the γ variable (Eq. 11). It was observed
that the Viterbi algorithm may lead to bad results when the transition matrix
(Eq. 15) or the emission matrix (Eq. 16) are ill-conditioned (presence of 0).
This instability was not observed important in the continuous version of this
algorithm [38].

The precision of the predicted state sequences was assessed using the ARI.
The whole experiment (data generation, clustering and learning) was repeated
30 times, for different number of clusters and for different length of the learning
sequence T = 100 and T = 300.

Results are shown in Figure 4. We can observe that results degrade from the
fully supervised (ν = 0) to the fully unsupervised (ν = 1) case for most of tests.
As T increases, the estimation is improved in terms of better ARI and lower
variance on results. It allows to decrease the impact of both the quantization
phase (ie of N) and of the corruption process (ie of ν).

In addition to the computational problem observed in the Viterbi algorithm
mentioned above, we observed that the number of iterations in the learning
phase should be low (5− 10). Otherwise, the convergence leads to very specific
emission matrices (Eq. 16) which ultimately lead to overfitting. This problem
is mainly due to the size of the training sequence which is probably too small.
It can be remarked that this problem was not encountered in the continuous
version [38].

[Figure 4 about here.]

4.3. Influence of labeling error on the performance and on the quantization

In the previous experiment information on hidden states was assumed to be
always exact, i.e. the true state had always the largest plausibility value. In
this part, we proceed as proposed in [10, 38] where at each time step t of a
sequence, an error probability qt was drawn randomly from a beta distribution
with mean ρ and standard deviation 0.2. With probability qt, the state yt was
then replaced by a completely random value ỹt (with a uniform distribution
over possible states). The plausibilities pltk were determined as pltk = P (yt =
k|ỹt) = qt/K + 1− qt if ỹt = k, or qt/K otherwise.

Uncertain labels generated in this way are more imprecise when the error
probability is high. It simulates a more realistic and complex situation compared
to the previous section.

Training and test data sets were generated as in the previous section, and
results were evaluated in the same way. For each randomly generated data set,
the DPHMM was applied with uncertain labels pltk and noisy labels ỹtk.

Figures 5 and 6 show the ARI as a function of mean error ρ for uncertain and
noisy labels respectively, for different number of clusters and sequence length.
As previously, a degradation of the segmentation quality is observed when the
mean error probability ρ increases, for both uncertain and noisy labels. More-
over, increasing T from 100 to 300 does improve the quality. It can also be
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observed that results are better with noisy labels than with uncertain ones.
The explanation is that the observation matrix is better filled with noisy but
certain information than with uncertain (fuzzy), the latter tends to smooth the
values of the matrix. This is in contrast with results obtained with continuous
HMM reported in [38] in which the distributions are better fitted with noisy-
fuzzy information than with noisy-certain ones. This is also in agreement with
previous experiments.

[Figure 5 about here.]

[Figure 6 about here.]

4.4. Application of DPHMM to turbofan engine diagnostics

4.4.1. Description of the data

The turbofan datasets were generated using the CMAPSS simulation envi-
ronment that represents an engine model of the 90,000 lb thrust class [18, 46].
A number of editable input parameters was used to specify operational profile,
closed-loop controllers, environmental conditions (various altitudes and temper-
atures). Some efficiency parameters were modified to simulate various degrada-
tions in different sections of the engine system. Selected fault injection param-
eters were varied to simulate continuous degradation trends. Data from various
parts of the system were collected to record effects of degradations on 21 sen-
sor measurements and provide time-series exhibiting degradation behaviors in
multiple units.

These datasets possess unique characteristics that make them very useful and
suitable for developing prognostic and health monitoring algorithms [41]: Multi-
dimensional response from a complex non-linear system, high levels of noise,
effects of faults and operational conditions, and plenty of units were simulated
with high variability.

In the present paper, the learning datasets of the four turbofan datasets were
used to illustrate the DPHMM on a complex system. The characteristics of the
datasets are described in Table 1. It can be observed that dataset #1 is the
simplest one with one operating condition (OC) and one fault mode. Datasets
#2 and #4 are the most complex datasets with six OC and one or two fault
modes. Dataset #3 presents two fault modes and one OC.

The state-of-the-art results on those datasets are presented in [41]. Accord-
ing to this review, only the publication [38] provided results using soft labels
for health monitoring purposes. However, it makes use of particular features for
dataset #1 only. In the present work, we apply a more general methodology
where a health indicator is extracted as presented in [36] for each training data
in each dataset. Then, soft labels are introduced (described below) and the
influence of noise and uncertainty on those labels are analyzed.

[Table 1 about here.]
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Each dataset is made of a certain number of trajectories with different length
and 21 sensor measurements, with a total amount of about 700 training degra-
dation trajectories (sum of values in Table 1). From sensor measurements, a
health indicator is built for each trajectory as proposed in [36]. The health
indicators (HI) for all trajectories and all datasets are depicted in Figure 7. We
can observe that datasets #2 and #4 are made of about 500 trajectories with
high variability in terms of noise and length as compared to dataset #1. These
four sets of trajectories are used for both training and testing data to illustrate
the influence of labeling errors in the DPHMM.

[Figure 7 about here.]

4.4.2. Generation of the ground truth

Those datasets have been used for clustering or classification purposes in
many papers as reported in [41]. In order to get a ground truth to both feed the
DPHMM and make comparison, a way to automatically generate three states
from each trajectory is described in [37] with Matlab codes.

The generation of the state sequences corresponds to a labeling which may
be corrupted by errors due, for example, to the noise on the HI (impacted
by OC and fault modes), and to the threshold (10% on the absolute error).
To evaluate the influence of labeling errors, we proceed as in Section 4.3 (by
drawing randomly from a beta distribution and replacing the label by a random
value) and considering noisy labels. It was indeed observed that the DPHMM
performed badly in presence of uncertain labels for this particular application
but better with noisy labels.

The influence of labeling errors was studied for the four datasets using
a leave-one-out cross-validation over all training instances for each CMAPSS
dataset. Since the HI are continuous, a quantization was performed to generate
symbols used in the DPHMM by simply converting the floats into integers as
follows:

HIdiscrete(t)← bHIcontinuous(t)×Nc (20)

where N is a parameter playing a similar role as the number of clusters in usual
quantization methods [34]. The influence of N is studied in the next tests.

Figure 8, 9, 10 and 11 represent boxplots of the ARI with respect to both the
labeling error rate and to the value of N for the four datasets. For dataset #1
(Fig. 8), the best performance is obtained for the supervised case with N = 5
yielding 88%, then it decreases monotonically with respect to the labeling error
but always remains above the unsupervised case (ρ = 1) with 66%. This perfor-
mance is similar to the state-of-the-art results using soft labels presented in [38].
For dataset #2 (Fig. 9), the performance equals 83% for the supervised case and
63% for the unsupervised case. The performances decreases monotonically with
an increasing noise level except for N = 15. For dataset #3 (Fig. 10), the best
performance is obtained for the supervised case with N = 5 yielding 82%. For
dataset #4 (Fig. 11), a similar behavior to dataset #2 can be observed. The
performance for the supervised case is similar to dataset #2 (84.5%) despite
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one additional fault mode. The results for this last dataset shows the impact of
the combination of fault modes and operating conditions on the performance.

[Figure 8 about here.]

[Figure 9 about here.]

[Figure 10 about here.]

[Figure 11 about here.]

N = 5 yields the best performance for all datasets (over about 700 degrada-
tion trajectories). The DPHMM with partial noisy knowledge depicts robustness
to the labeling error on the four datasets. Moreover, the performance in the
supervised case is generally expectedly better than the unsupervised case. The
performance then generally decreases as the level of labeling error increases.

Large values of N leads to a particular results where the performance is
almost independent of the noise level. It can be pointed out that the ARI was
created for corrected-for-chance evaluation which means that random labelling
of states should tend to 0. Therefore, the performance obtained with large
N is not due to randomness. Moreover, the performance is better than with
N = 3. An explanation is given hereafter, remembering that large N implies
a high number of symbols. In addition to the noise level on the HI together
with the labeling error rate, the estimation of the emission probability model
(Eq. 16) is impacted but the performance still remains satisfying (above N = 3)
since there are always some symbols which allows to represent the sequence. It
can also be pointed out that, in presence of more symbols, the model requires
more data to estimate the emission matrix. This behavior is confirmed by the
interquartile ranges which are important for N = 15 for datasets #1 and #3
which are made of 100 trajectories (Tab. 1) whereas the interquartile ranges
are lower for datasets #2 and #4 made of about 260 trajectories.

5. Conclusion

The Weighted Distribution Theory (WDT) has been initially proposed to
cope with the fact that the probability of a particular observation entering in
a data sample gets multiplied by some non-negative weight function w. The
data are thus naturally distributed according to fw (Eq. 3) instead of f . Since
model specification is of paramount interest in data analysis, such bias should
be taken into account.

This paper suggests a means to incorporate noisy and uncertain prior knowl-
edge on latent variables in a sound manner using the Expectation-Maximization
algorithm together with the WDT. An application to discrete Hidden Markov
Models (DHMM) is developed and illustrated for system’s health monitoring.
Illustrations are also provided for Gaussian Mixture Models and HMM with
continuous outputs.
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The interest of such an approach is to cope with model selection for classifi-
cation with maximum likelihood learning. Instead of considering one model per
class, all classes are considered simultaneously and the definition of the classes
may be imperfect (noise on labels, uncertainty). The learning phase based on
WDT and EM then finds a compromise between the data and the prior.

The first experiment allows to demonstrate the relevance of considering pos-
sibly arbitrary weights compared to the algorithm proposed in [14]. The second
and third experiments show the DPHMM model behaved better when consid-
ering noisy labels than uncertain labels compared to continuous HMM, which
seems in agreement with the model. It is also demonstrated that the quantiza-
tion (transformation of continuous to discrete values) in the DPHMM applied to
continuous data does not have so much impact on classification results when se-
lected appropriately, using for instance validity index as proposed in this paper.
It is practically interesting since DPHMM are less complex.

The third experiment was performed on a complex benchmark represent-
ing health indicators originating from a turbofan engine simulator developed
at NASA. These tests shown that the proposed model depicted robustness to
labelling errors when the level of noise on the initial data was reasonable. A
labeling error rate up to 50-60% yields good results. Moreover, the same pa-
rameterization of the quantization phase applied to all datasets provided the
best results, demonstrating that the model is reasonably robust to quantization
on different datasets.

The integration of prior in a sound manner for the modelling of real systems
is of key interest, in both data-driven and physics-based approaches. Indeed, the
amount of tests required to correctly pave a complex feature space and deduce
particular behavior should be sufficiently large to expect a correct identification
of parameters. This is for instance the case for identification of failure modes in
complex mechanical systems. The integration of prior is all the more important
in presence of non stationary systems submitted to external factors (generally
hidden and unknown) which creates intermittent faults characterized by sudden
changes in system parameters. Making use of prior appears as a means to reduce
the number of experiments and include information about external factors with
respect to time.

The Bayesian approach is an inescapable way to integrate uncertain prior
knowledge on parameters [6]. The main advantage is the possibility to penalize
models with too many parameters with the aim to reduce overfitting which can
appear in maximum likelihood approaches. As a consequence, this allows to
improving model selection which is particularly important for health monitoring
[54, 56]. The influence of the prior on results is however not often deeply studied
as proposed in this paper.

While the Bayesian approach makes generally use of prior on parameters, the
proposed WDT-based approach is focused on the integration of prior on discrete
latent variables which appears as a different means to adjust indirectly the
distributions on parameters. The proposed approach could be used in Bayesian
formulations to give a hand in improving model specifications by driving the
estimation using both prior on parameters and on latent variables. We aim at
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exploring this path in addition to the application of the WDT approaches to
other Markov switching and statistical models with latent variables especially
dedicated to nonlinear and non-stationary systems monitoring and prognostics
[22].
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Figure 1: Plot chart of the proposed scheme
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Figure 2: Distribution of signal points for the first dataset
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Figure 3: Boxplots of ARI for GMM and HMM (continuous and discrete) learned with E2M
based on different weights.
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Figure 4: Medians of the adjusted Rand index as a function of the nonspecificity coefficient
over 30 repetitions for different number of clusters (3, 5, 15) and with time-series of different
length (100, 300).
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Figure 5: Medians of the adjusted Rand index as a function of the labelling error with
uncertain labels over 30 repetitions for different number of clusters (3, 5, 15) and with
time-series of different length (100, 300).
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Figure 6: Medians of the adjusted Rand index as a function of the labelling error with
noisy labels over 30 repetitions for different number of clusters (3, 5, 15) and with time-series
of different length (100, 300).
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Figure 7: Evolution of the health indices for all engines in the four datasets.
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Figure 8: Dataset #1: Boxplot of ARI for different numbers of symbols (N, used in quantiza-
tion).
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Figure 9: Dataset #2, with operating conditions modeling: Boxplot of ARI for different
numbers of symbols (N, used in quantization).
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Figure 10: Dataset #3: Boxplot of ARI for different numbers of symbols (N, used in quanti-
zation).
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Figure 11: Dataset #4, with operating conditions modeling: Boxplot of ARI for different
numbers of symbols (N, used in quantization).
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Datasets #Fault Modes #Conditions #Train Units #Test Units

Turbofan
data from
NASA
repository

#1 1 1 100 100
#2 1 6 260 259
#3 2 1 100 100
#4 2 6 249 248

Table 1: Description of the turbofan degradation datasets available from NASA repository.
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