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Abstract Exact measurements of the rheological parameters of time-dependent materials
are crucial to improve our understanding of their intimate relation to the internal bulk mi-
crostructure. Concerning solid polymers and the apparently simple determination of Young’s
modulus in tensile tests, international standards rely on basic protocols that are known to
lead to erroneous values. This paper describes an approach allowing a correct measurement
of the instantaneous elastic modulus of polymers by a tensile test. It is based on the use of
an appropriate reduced model to describe the behavior of the material up to great strains,
together with well-established principles of parameter estimation in engineering science.
These principles are objective tools that are used to determine which parameters of a model
can be correctly identified according to the informational content of a given data set. The
assessment of the methodology and of the measurements is accomplished by comparing
the results with those obtained from two other physical experiments, probing the material
response at small temporal and length scales, namely, ultrasound measurements with exci-
tation at 5 MHz and modulated nanoindentation tests over a few nanometers of amplitude.

Keywords Inverse identification · Parameter estimation · Elastic modulus · Tensile test ·
Semi-crystalline polymer

1 Introduction

This paper originates from the observation of a significant gap between recommended prac-
tices in the field of rheological parameter determination, which rely on international stan-
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dards, and the efforts made by the scientific community to improve measurements. During
recent decades, the scientific field of inverse methods, which deals precisely with the mathe-
matical basis of parameter estimation through models (Model-Based Metrology, or MBM),
emerged and grew intensively. MBM should nowadays be a common framework when con-
sidering the metrology of physical parameters through pertinent modeling of experiments.
It is necessary for a real enhancement of the quality in measured properties of materials,
which will in turn allow a deeper investigation of the link that can be made with the mi-
crostructural organization of materials and help to further develop the models. To illustrate
this point of view, an example is given in this paper concerning the determination of the
elastic modulus of polymers using the uniaxial tensile test. With respect to international
standards (ISO 527-1 and ASTM D 638), it depends upon the characterization of a linear
elastic regime, i.e., proportionality between stress and strain, at very small strains (short
times). Although this method is efficient and physically well-founded for metallic materials,
it is less satisfactory for polymers. Indeed, these materials quickly manifest a viscoelastic
regime, which takes place in the beginning of the tensile test, and the response does not
show any obvious linear part. A mathematical inverse approach of parameter estimation
is required that may explain why this question, also basic and apparently simple, was not
really considered earlier in detail and was consequently not well-documented. This latter
point consists of the use of an optimization procedure based on uniaxial tensile test data
and relying upon an adapted rheological constitutive model. The inverse problem is merely
formulated as a least squares optimization problem. It must be verified that the assessed pa-
rameters are not correlated and that their sensitivity is high enough to ensure a good quality
of identification.

The aim of this paper is to present such an approach in view of the measurement of
the elastic modulus of materials like HDPE (High Density PolyEthylene) one of the Semi-
Crystalline Polymers (SCP). The paper starts with detailed information about the mate-
rial we investigated and about the metrology we developed to produce curves of true
strain–true stress relationships. In a second step, a rheological constitutive model is pre-
sented in its most reduced version. In view of a parameter estimation problem, a reduced
model means a model that meets the identifiability criteria, i.e., a good balance between
the number of identifiable parameters and the relevance of the model to the experiments
(parsimony principle). This model was shown to be able to describe different behavioral
regimes (viscoelasticity, viscoplasticity, material hardening) with only 3 parameters. In
the third part of the manuscript, the identification procedure and the sensitivity analy-
sis of the estimated parameters are described. They rely on mathematical tools that have
now spread throughout the engineering community (see the books of Aster et al. 2013;
Beck and Arnold 1977; Walter and Pronzato 1997, to cite a few references), but are not so
frequently used in the field of material mechanics, where models are generally not ques-
tioned from the angle of the identifiability or measurability of their parameters. Essen-
tial works that address this question are generally based on Finite Element simulations
at the structure scale (Ponthot and Kleinermann 2006; Cooreman et al. 2007) and make
the inverse methods work on various observable features that can be local such as strain
fields, or global like force, radius geometry, total elongation etc. At the end, the results
of the identification will be discussed and compared to identification as measured by two
other scientific techniques. One of these is based on ultrasonic measurements (Piché 1984;
Legros et al. 1999). The other is based on nanoindentation tests (Oliver and Pharr 1992;
Qasmi and Delobelle 2006; Le Rouzic et al. 2009). Both prior approaches provide direct
measurements of the Young modulus, meaning that no inverse approach is used.
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2 Material and methods

2.1 Material

The material tested in this work is a “500 Natural” grade HDPE produced by Röchling En-
gineering Plastics KG. Two different products (A and B) were manufactured under the same
reference at an interval of six years and were supplied as sheets (extrusion process). Infor-
mation from the supplier indicates that the molecular weight and density are 500,000 g/mol
and 0.935 g/cm3, respectively. Differential scanning calorimetry gave a crystallinity index
of 68 wt% for product A and 66 wt% for product B. The structural characteristics of this
material in a non-deformed state and at room temperature were found to be a long period
of the stack of 26.8 nm, a crystalline phase thickness of 18.5 nm and an amorphous layer
thickness of 8.2 nm (from SAXS synchrotron measurements reported in Farge et al. 2013a,
2013b).

A particular geometry of dog-bone shaped specimens was used for the tensile tests. A nar-
row material “gauge” cube of 6 × 6 × 6 mm3 was deliberately arranged between the spec-
imen shoulders so that necking was always initiated at the center of the specimen. A-type
specimens were cut from a 6 mm-thick sheet of polymer along the extrusion direction “A‖”
(reference samples throughout this paper) and perpendicularly to it “A⊥”. Some specimens
of the A‖ type were machine-finished symmetrically to produce 3 mm thick core samples
referred to as “Ac”. B samples were cut along the extrusion direction only, from a 4 mm
sheet produced six years earlier. Even if specimens A and B are supposedly of the same
chemical material, they exhibit a slightly different mechanical behavior, leading to different
values of the parameters identified by the model. Experiments performed on B samples at
delivery and 6 years later gave exactly the same results. Thus ageing or the time interval be-
tween the dates of their production cannot be considered to be responsible for the difference
between samples A and B. Instead, it is more likely to be due to a different manufacturing
process. The microstructure and mechanical behavior of a polymer are clearly dependent on
the cooling process which rules the development of a crystalline phase and its distribution
and organization in the bulk among the amorphous phase. This material has been studied for
more than 15 years and the interested reader can refer to (Farge et al. 2013a, 2013b; Blaise
et al. 2011, 2010; Baravian et al. 2008) to gain insight into all its microstructural aspects
that are not covered in the present study.

The various types of specimen (A‖, A⊥, Ac , B) for the same material will be very useful
in view of the discussion about the results obtained through tensile tests and the validation
of the methodology we used.

2.2 Video-controlled tensile tests and experimental tensile curves

All mechanical tests were performed on a servo-hydraulic MTS 810 load frame with a Flex-
test SE electronic controller. A video-extensometer (VidéoTraction®, G’sell et al. 2002)
gives access to the real-time measurement of local true strain in the central part of the
specimen (Fig. 1). Seven dot markers were printed on the front face of the sample prior
to deformation. The markers are black, nearly round and have a diameter of about 0.4 mm.
A CCD camera mounted on a telescopic drive records images during the test and follows
the elementary frame during deformation. Local transversal and longitudinal deformations
are measured at the barycenter of two neighboring dots, according to Hencky’s definition of
the true strain:

ε(t) = ln

(
l(t)

l0

)
. (1)
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Fig. 1 (a) Principle of the true strain measurements as put into action in the VidéoTraction system. (b) Pic-
tures of the specimen in non-deformed (left) and highly-deformed (right) states

Longitudinal strains are interpolated through Lagrangian polynomials to obtain exactly
the longitudinal strain value ε11 in the section where the transversal strains are measured
(averaged FCG line in Fig. 1(a)). An important feature of the system is that this latter mea-
surement is used in real-time to control the machine’s servo-valve through a feedback loop.
Any desired input path for the true longitudinal strain ε11 can be imposed on the gauge vol-
ume. A standard deviation of nearly 10−4 is commonly achieved for the noise that corrupts
this strain signal (it increases logically as the marker deformation proceeds). VidéoTraction
measurements were assessed with a 3D-DIC system (ARAMIS 3D Digital Image Stereo-
Correlation from GOM Instruments), relying on the correlation of successive images be-
cause of a black and white pattern sprayed on the reverse-side of the specimen (Fig. 1(b)).
For example, the longitudinal strain as measured by VidéoTraction has been proved to re-
main within an error of less than 4 %, which accounts for the 2D plane measurement bias,
since 3D-DIC takes into account the out-of plane displacement when necking occurs.

In addition to the longitudinal strain, the applied force F is measured directly by a 5 kN
load cell. These two measurements enable the axial true stress–true strain behavior of the
material to be obtained. True stress takes into account the reduction of the cross-sectional
area S(t) < S0 undergone by the sample while it is stretched according to

σ11(ε22, ε33) = F

S
= F

S0
exp(−ε22 − ε33). (2)

Because the measurements of the transversal strains ε22 and/or ε33 are not very reliable
with this system, or in the case where measurement of the transversal strain is simply not
available, a constant volume strain hypothesis can be used. This hypothesis is nearly met for
our HDPE samples, as proved with 3D-DIC measurements of the strain field on both lateral
sides of a specimen. Figure 2 shows that even if the transverse strain measurements exhibit
some lack of reproducibility and precision, especially at high strains, the curves are nearly
linear with approximately a −0.5 slope. Hence, we will consider the case where the Poisson
coefficient ν is set to 0.5.

This criterion is summarized as follows:

ε∗
22 = ε∗

33 = −υε11 = −0.5ε11. (3)
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Fig. 2 True stress σ or σ∗ (left axis—the latter in solid black) and transversal true strain ε22 (right axis),
plotted versus longitudinal true strain ε11 for 3 repeated experiments—Specimen A‖ at ε̇11 = 0.005 s−1

A star superscript denotes the calculated transversal strain obtained under a constant
volume strain assumption. This leads to a null volume strain,

εv = ε11 + ε∗
22 + ε∗

33 = 0, (4)

and to a true stress calculated with

σ ∗
11 = F

S0
exp

(−ε∗
22 − ε∗

33

) = F

S0
exp(ε11) (5)

where the observed σ ∗
11 is obtained directly from the measurements of F and ε11. In Fig. 2,

the curves obtained for σ ∗
11 are plotted for three repeated experiments and the curves ob-

tained for σ11 (Eq. (2)), where the stress is calculated using the measurement of ε22 and the
transversal isotropy assumption ε22 = ε33, are shown. The limits of this assumption were
clearly established in a recent paper (Farge et al. 2013a, 2013b). For the three distinct ex-
periments shown here, it is clear that the σ11(ε11) curves present some discrepancies due to
uncertainties in the transversal strain measurements, whereas the σ ∗(ε11) curves are super-
imposed. As both options introduce some bias, we chose to work with σ ∗(ε11) which ensures
a high reproducibility of experiments. In the approach developed in Sect. 4 of this paper, the
analysis of post-identification residuals allows the extent of the overall metrological bias to
be quantified.

Figure 3 represents true stress σ ∗–true strain ε11 curves for five different strain rates ε̇11

(covering a 3 decades range). Because only the longitudinal behavior in direction 1 is under
investigation, subscript (11) will be omitted from now on in the notations of ε, σ or other
mechanical variables.

According to information that is well-known for SCPs, a plot is shown in Fig. 4 of the
true stress as a function of the variable strain εHT defined as

εHT = λ2 − λ−1 = exp(2ε) − exp(−ε) (6)

with λ = exp(ε) = l/ l0, the extension ratio.
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Fig. 3 True stress σ∗ versus true strain ε11 curves for different strain rates (Specimen A‖)

Fig. 4 True stress σ∗ versus strain variable εHT (specimen A‖—Different strain rates)

This “Gaussian” strain variable arises naturally from microscopic modeling of the en-
tropic elasticity of a molecular network (Treloar 1975; Haward 1993). It favors the observa-
tion of the mechanical regime at high strains which in SCPs generally appear to follow an
almost linear relation

σ hard = GεHT (7)

where G stands for the rubbery (or hardening, or hyper-elastic) modulus (in MPa) and the
superscript hard is for the hardening stress, or stress at high strains. As can be seen in Fig. 4,
this is so for our HDPE material.

Various domains can be clearly identified on the true stress σ ∗–true strain ε curves of
HDPE (Fig. 3). At very low strains, the mechanical behavior is viscoelastic, i.e., there is no
existence of a pure elastic regime. The yield point identifies the initiation of a necking phe-
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nomenon (Fig. 1(b)), which takes place for a strain range of 0.05 < εyield < 0.1, depending
on the applied strain rate. At this point, the force reaches a maximum in agreement with the
first Considere condition (Hiss et al. 1999). After the yield point, the mechanical response
reveals the presence of a pseudo-plateau corresponding to polymer softening, followed by
a plastic or flow regime. The point where the strain hardening coefficient is greater than 1
(Gaucher-Miri et al. 1996) occurs at a value of about 1.2. This corresponds more or less
to the second Considere condition (Haward 2007) and marks the onset of hardening. This
strain level corresponds to the propagation of necking over the whole specimen. The harden-
ing stage initiates in the viscoplastic flow regime and is followed in this study up to strains of
about ε ≈ 1.9. More details on the kinematic behavior of HDPE necking and its underlying
microstructural aspects are discussed in Ye et al. (2015) and will not be considered in this
study which is methodologically oriented.

3 Behavioral model for HDPE (an SCP)

3.1 General formulation

To accurately and correctly characterize the HDPE mechanical behavior, a necessary con-
dition is to develop a general constitutive model that can capture the physics involved. The
model used in this study relies on Thermodynamics of Irreversible Processes (TIP) (Callen
1985; Kuiken 1994). In irreversible thermodynamics, state laws are classically decomposed
into an instantaneous, or unrelaxed, component and a delayed one. In the following consid-
erations, superscripts u and d refer respectively to the unrelaxed and delayed components.
This decomposition is classical in other thermodynamic approaches that make use of inter-
nal variables (e.g., Maugin and Muschink 1994). In a tensile test where the strain is imposed,
its dual thermodynamic variable is the stress, and this corresponds to the system response.
The delayed response σd is described using a modal approach (j subscripts in the equations
will denote the j th mode). Meixner (1949) proved the existence of a modal basis to describe
dissipative mechanisms in thermodynamics. In short, this means that the matrix that would
represent the effect of a relaxation kernel in a viscoelastic integral formulation in algebraic
form can always be diagonalized in an appropriate basis. As a result, any vector representing
variables that govern internal processes can be transformed into vector modes. This classical
way of thinking in mechanics leads to a simple description of relaxation through a first order
kinetic model. In this model, the stress ‘fluctuation’ or difference between the modal true
stress σj and the modal relaxed stress σ r

j regresses according to the modal time τj , which
represents the relaxation time governing the kinetics of each dissipation mode j . The overall
true stress σ is the sum of all the modal components, σj . All this information is summarized
in the following rate-type constitutive equation, which is given for a single component of
the stress–strain tensor in its principal framework (Cunat 1991, 2001; André et al. 2012):

σ̇ = σ̇ u + σ̇ d =
N∑

j=1

σ̇j =
N∑

j=1

(
Eu

j ε̇ − σj − σ r
j

τj

)
. (8)

Eu
j corresponds to the modal unrelaxed modulus. Eu

j and σ r
j can be defined by Eu

j = p0
jE

u

and σ r
j = p0

j σ
r where p0

j is a coefficient that weights the modal component j with respect
to the overall quantity. σ r refers to the stress in the relaxed state. This latter corresponds
to the steady-state regime of internal mechanisms, where the non-equilibrium forces do
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not evolve with time. This thermodynamic state is strictly defined by Ȧ = 0 and is named
the “iso-affin” state according to the recommendation of Prigogine and Defay (1944–1946).
A is the affinity state variable introduced by De Donder (1936) to take into account chemical
reactions. It is used by mechanical or material scientists in solid rheology to describe internal
reorganizations that take place in matter under deformation processes (Nowick and Berry
1972; Kuiken 1994; Gutman 1988). Eu stands for the common elastic (Young’s) modulus,
and hence the modal weights must fulfill the normalized condition

N∑
j=1

p0
j = 1. (9)

From Eq. (8), we can infer that for a tensile test at a very low strain rate or when all
relaxation times are depleted, i.e., viscoelastic effects are finished and the material enters
the hardening regime, the true stress is expected to behave as does the relaxed one (the non-
equilibrium forces are constant). According to this, the relaxed state can be seen as a pseudo-
equilibrium that is still dynamic. It must not be mistaken for the equilibrium state, which is
rigorously defined in TIP by a state of zero affinity A = 0 obtained when all external forces
are stopped. As an example, this distinction is clearly made in the same type of modeling
using the viscoplasticity theory based on overstress (VBO) approach of Krempl (2001),
although the same stress notation (g) and name (“equilibrium”) are used for both. g can be
considered as the equilibrium stress “when all time rates are zero” and must be equal to 0 in
the absence of applied stress. At the same time, the equilibrium stress has to evolve under
the application of an external force. It is then said to correspond to the stress “that must
be overcome to generate inelastic deformation” and corresponds to the variable σ r in the
present model.

The constitutive equation (8) is generally referred to as the DNLR approach (Distribution
of Non-Linear Relaxations) and has been used in the past to reproduce different experiments
(various polymers and loading conditions, Rahouadj et al. 2003; Mrabet et al. 2005). It was
recently applied to analyze thermomechanical experiments with strain and infrared imaging
(André et al. 2012). It offers two entry points for modeling: the spectrum of relaxation times
and the relaxed state.

3.2 Spectrum of relaxation times

The full linear spectrum of relaxation times is defined by the following equation:

τj = τmax10−(
N−j
N−1 )d (10)

which requires three values to be assigned to parameters: τmax, d,N . In practice and inher-
ent to the modal thermodynamic approach, one has to consider vanishingly small relaxation
times. As Eq. (10) distributes relaxation times along a logarithmic scale (τmax = τmin10d )
in the interval [τmin, τmax], the number of decades d has to be as high as possible. In prac-
tice, it is set to the minimum value that preserves the solution from being dependent on, or
sensitive to, larger values of this parameter. In other words, the solutions of the Estimation
Problem will not depend on its value once it is set to a maximum value. d = 6 decades are
generally required. This is so for the second (hyper)parameter of the model N , the number
of dissipative modes or the number of Ordinary Differential Equations (ODEs) considered
in the system of Eqs. (8). This behaves, for example, like the number of nodes of a finite
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element calculation, the solution should not depend on its value. N = 50 dissipative modes,
for example, build a quasi-continuous spectrum of relaxation times.

As a result, only one parameter is needed to describe this spectrum in linear viscoelastic-
ity, the longest relaxation time τmax. This has the advantage of being closer to the physical
perception of an experimenter. It is named τT

max where the “T ” superscript denotes the Ten-
sile phase of the test. In the case where a non-linear spectrum is needed, a multiplying (shift-)
factor (a(T , t, . . .)) is classically used to drive the τmax value (Faccio-Toussaint et al. 2001;
Mrabet et al. 2005).

Following the postulate of an equipartition of the entropy created that accompanies re-
gression of the fluctuation around an equilibrium state, a ‘universal’ spectrum can be defined
that links each dissipative modal weight p0

j to its corresponding relaxation time τj (Cunat
1991, 2001):

p0
j =

√
τj∑N

j=1
√

τj

. (11)

3.3 Relaxed state model adopted for HDPE under tensile tests

The second entry point for modeling lies in the model used for the relaxed stress σ r , sup-
posed to describe the plastic-hardening phase. The most basic form assumes the linear form
σ r = Erε, but this can only produce linear hardening in a plastic regime. As elaborated in
Sect. 2, a constitutive law for HDPE must comply with a more complex continuous model-
ing, from the viscoplastic to hardening behaviors. Hence, different modeling must be con-
sidered for the relaxed state. A SCP in a highly deformed state is generally considered as a
rubber-type tridimensional network with entanglements. A model for elastomer-hardening
first considered by Wang and Güth (1952) and modified by Arruda and Boyce (1993) put
forward cells with eight sub-chains per node which is close to a random distribution of the
chains in a real material and does not favor any spatial direction. Starting from the works of
Haward & Thackray (Haward 1993) and Treloar (1975), Arruda and Boyce (1993) showed
that during hardening, the “back stress”, which is understood as the stress necessary to
overcome the anisotropic resistance to chain alignment, can be described by the following
formula:

σ backstress = N0kBT

3λc

√
nL−1

(
λc√
n

)
εHT (12)

with λc = √
(exp(2ε) + 2 exp(ε))/3 and where N0 stands for the density of chains per unit

volume, n is the number of segments per chain, which controls the behavior at large strains
until the maximum extensibility of the network is reached, kB is the Boltzmann constant and
T the temperature. L−1 represents the inverse Langevin function.

According to Krempl (2001), the term “back stress” is often used in the literature but does
not express clearly the subtle differences that exist between an equilibrium stress and over-
stress, called a relaxed state in our approach, already discussed in the “General Formulation”
section (Sect. 3.1). Furthermore, Negahban (2006) considers that the “back stress” concept
is responsible for the delayed, or inelastic, response. In the framework of Irreversible Ther-
modynamics based on the concept of Affinity, the distinction between true, relaxed, and
equilibrium states is self-contained.

Returning to the experimental results presented above (Fig. 4), it is clear that the true
stress plotted as function of the Haward–Thackray strain variable εHT exhibits an almost
linear relation, irrespective of the strain rate. This fact has already been highlighted in other
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works (Van Melick et al. 2003). In our paper and in view of proposing the most reduced
model possible in terms of the number of parameters, the relaxed state of our model will be
considered to follow the simplified version of Eq. (12) given below:

σ r = GεHT. (13)

Only the single parameter G (called the hardening modulus) is expected to be correctly
measured from this relaxed state description.

Finally, the reduced model that will be considered in this study contains only three pa-
rameters: Eu, G and τT

max, and is now fully described by Eq. (14):

σ̇ =
N∑

j=1

σ̇j =
N∑

j=1

(
p0

jE
uε̇ − σj − p0

jGεHT

τj

)
. (14)

This constitutive relationship corresponds to a set of very simple ODEs that can be solved
analytically, either directly or using the Laplace transformation. The analytical solution for
a tensile test at a constant strain rate (ε(t) = ε̇0t ) is

σj (t) = ε̇0

[
p0

j τjE
u
(
1 − e−t/τj

)

+ G

(
3p0

j ε̇0e
−t/τj − p0

j (2ε̇0 + 1/τj )e
−ε̇0t + p0

j (1/τj − ε̇0)e
2ε̇0t

τj ε̇0(1/τj − ε̇0)(2ε̇0 + 1/τj )

)]

for each modal “branch”,

σ(t) =
N∑

j=1

σj (t) for the overall response.

(15)

The mathematical structure of this model (Eq. (14)) rigorously corresponds to the Biot
model for viscoelasticity (Biot 1958) or to a generalized Zener model (Tschoegl 1989),
except that a recursive-type relation links both the relaxation times and weights (Eqs. (10)
and (11); André et al. 2003). In the case where the relaxed stress is modeled through a linear
relationship, σ r = Erε, this model has an exact equivalent analog representation in terms of
springs and dashpots, which is given in Fig. 5. The following correspondence between the
springs and dashpot constants and the parameters of the model is required:

Eu
j = p0

jE
u = E1, Er

j = p0
jE

r = E1E2

E1 + E2
, τj = ηj/(E1 + E2).

In the case where the relaxed stress is modeled through the more complicated relation of
Eq. (13), this schema no longer holds (there is no analog schema available for the Kelvin
unit) but the mathematical structure of Eq. (14) remains identical.

The relevance of this 3-parameter model will now be proven through the sensitivity anal-
ysis and parameter identification procedures.

4 Identification procedure

All fundamental mathematical concepts of the Parameter Estimation Theory and major def-
initions have been summarized briefly in the Appendix to recreate a sequential presentation
of the results. Nevertheless, they are also at the heart of the rational study presented below.
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Fig. 5 Approximate analog
representation of the model
described by Eqs. (14)–(15)

4.1 Adjustment results

The model described above was applied to experimental data σ ∗(ε) to identify the follow-
ing parameter vector: β = [Eu,G, τT

max]. We made computations with Matlab software and
used the Levenberg–Marquardt algorithm to minimize the least squares criterion (Eq. (A.2)).
Once the convergence was reached and the parameters determined, we could calculate the
sensitivity coefficients at this point of the parameter space (Eqs. (A.4a) and (A.4b)) along
with the resulting optimal confidence bounds (Eq. (A.15)). We roughly determined the initial
βinit values used as starting approximations to calculate the parameter vector, according to
various strategies. We derived an initial instantaneous modulus from the approximate slope
at the origin of the stress–strain curve. An initial value for the maximum relaxation time can
be derived by assuming a pure exponential-type behavior of the rising part of the curve as
a result of a step input. For the experiment performed at a strain rate of 5 × 10−3 s−1, for
example (Fig. 6), a characteristic strain of the order of 0.04 can be deduced from the rule of
tangents, or logarithmic plots, and this leads to a typical time of about 8 seconds. Finally,
a “visual” linear regression applied to the experimental data of Fig. 4 gives a first rough
estimate of the order of magnitude of G = 110/50 = 2.2 MPa. We intentionally performed
the identification of the 3 parameters for each experiment carried out at each strain rate.
That is to say, there is no parameter in the model that accounts for a strain rate dependency.
This latter may be analyzed from the results brought about by the identification for the two
parameters that can physically carry this dependency, namely G and τT

max.
Two different identification intervals can be considered. In cases where small strain lev-

els are examined (ε ≤ εyield ≈ 0.13—Interval I), the way the relaxed state is modeled has
no influence on the solution. Only Eu and τT

max parameters can be identified. The model-
ing cannot be sensitive to the hardening phase since the polymer is still in the viscoelastic
regime. Identifications performed on either σ or σ ∗ lead to the same results. In Fig. 6, both
the experimental data and the model for the optimal identified values (reported in the insert
in the figure) are plotted. Setting aside the initial points of the curve, which are highly
dependent on the feedback-loop control efficiency, the identification residuals lie in the
[−1, 1] MPa range, which represents a maximal discrepancy of 3 % with respect to the
yield stress value (of the order of 33 MPa). If the identification interval covers a high range
of strains (0 < ε < 2—Interval II), then the complete model can be used to account for the
hardening.

Figures 7 and 8 show the experimental and fitted curves obtained for specimen A‖ for
two different strain rates. Good agreement between the model and the experimental tensile
curves was obtained. The residuals, that is, the difference between the modeled data for
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Fig. 6 Experimental data, fitted curve (Eq. (15)) and residuals obtained when identifying parameters Eu and
τT

max on interval I (Specimen A‖—Strain rate of 5 × 10−3 s−1)

the optimally identified parameters and the experimental data, are also plotted in the same
figures (right axis MPa scale). In the ideal case, the model would perfectly represent the
true behavior of the material and the experimental set-up would be in total agreement with
the assumptions of the model (e.g., perfect ramp excitation, exact sensors, etc.). Then these
residuals would be unsigned and distributed around the zero-value. They should, in fact,
represent the only measurement noise carried by signals σ ∗ and ε11. If and only if the iden-
tifiability of the parameters of this model is proved, null residuals mean that the parameters
are perfectly identified. The confidence interval is then mainly due to the contribution of the
noise (Eq. (A.15) or (A.17)). In the two experiments reported in Figs. 7 and 8, the residuals
show a signed (“non-ideal”) character, which means that some bias exists (incompatibility
between model and data). This bias means an additional error in the estimated parameters
(biased estimations). If the bias remains limited (of the order of the noise level as is the
case in Figs. 7 and 8) then the parameters can still be considered to be well-identified. In
the present case and according to the sensitivity analysis tools presented in the Appendix,
this means that the estimation process produces the unique optimal set of parameters that
minimizes the residuals in the least-squares sense. Assuming no bias in either the data or
the model but the same amount of noise, the variances on the unbiased parameter estimates
can be shown to be lower-bounded by those calculated using Eq. (A.15). The existence of
a bias generally helps the experimentalist to improve the model–experiment couplet. For
example, in this metrological application, a possible origin of the bias may be the non-ideal
input command. In our case, the input ramp ε(t) = ε̇t is very good due to the special care
taken in the selection of the PID settings used by the control feed-back loop. The bias here
could be due to the choice of working with the isochoric assumption to produce our ob-
servable stresses and strains (Eqs. (3) to (5)), which is the price to pay to avoid using (bad)
transversal strain measurements to calculate the cross-section variations of the specimen
with respect to time. This bias can also be due to the approximation used in the relaxed state
modeling (Eq. (14)) as evidenced by the curves shown in Fig. 4 since the linear behavior is
not perfect. If this bias is too great, trying to reduce it by tracking defects with respect to
the idealized experimental conditions is the first thing to do. A refinement of the model can
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Fig. 7 Experimental data, fitted curve (Eq. (15)) and residuals obtained when identifying parameters Eu , G

and τT
max on interval II (Specimen A‖—Strain rate of 2.5 × 10−3 s−1)

Fig. 8 Experimental data, fitted curve (Eq. (15)) and residuals obtained when identifying parameters Eu , G

and τT
max on interval II (Specimen A‖—Strain rate of 5 × 10−3 s−1)

be a legitimate second step. Otherwise, a refinement of the model stimulated by biased data
can be dramatic in view of the Parameter Estimation Problem (PEP). For example, trying to
use here the Arruda & Boyce model of Eq. (13) will introduce additional unnecessary pa-
rameters (N0 and n in isothermal conditions) which will distort the PEP and introduce poor
identifiability conditions. In so far as the residuals remain small enough with respect to the
signal to noise ratio, which is the case here, the model is judged efficient in terms of adjust-
ment ability, and one now has to investigate it in terms of identifiability of its parameters,
especially the instantaneous Young modulus.
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Fig. 9 Tensile test followed by a relaxation for specimen B. Experimental data, fitted curve (Eq. (15)) and
residuals plotted as a function of time. Identified parameters are Eu, G, τT

max, σ∞ and τR
max—Strain rate of

5 × 10−3 s−1 (400 s correspond to a true strain of 2)

It is also interesting to show the results of the identification procedure when the tensile
test is followed by a relaxation (initiated around a strain of 1.9). The reduced model can still
be used but with two variations. When relaxation starts, the material is highly deformed.
This new excitation applies to a material which is totally different and implies a change in
the modeling associated with the relaxed state and the time spectrum. For the relaxed state
a simple constant stress value denoted as σ r = σ∞, “equilibrium” state at rest, is assumed
to be reached at long times. The spectrum conserves its properties of linearity, number of
decades d and number of modes N , but is simply shifted according to a new maximum
relaxation time denoted as τR

max which is a new property of the material in a complete fib-
rillary state for such a high deformation. Note that, in view of our constitutive model, the
instantaneous, or unrelaxed, modulus does not have to be considered different. For a whole
tensile-relaxation test, the parameter vector is now β = [Eu,G, τT

max, σ∞, τR
max]. The results

of the identification are shown in Fig. 9 for specimen B. The agreement is very good, both
in the tensile and relaxation stages with the same Eu value. Physically, this means that the
SCP elastic, or instantaneous, properties are the same in the initial bi-phasic microstructure
and in the fibrillary state, when unloading is triggered.

For both tensile and tensile-relaxation tests the fit is good, although a simple linear vis-
coelastic approach is considered for the model; the spectrum of relaxation times is fixed
once with a single parameter and it does not change during the test.

4.2 Sensitivity analysis

Figure 10 plots the normalized sensitivity coefficients (Eq. (A.4b)) of the model parameters,
and Table 1 presents the results of the stochastic analysis (Matrix 
̃ of Eq. (A.17)).

Parameters Eu and τT
max apparently seem to be strongly correlated over a large part of

the curve (between ε ≈ 0.1 and ε ≈ 0.8). If the identification was only carried out on the
‘plateau’, it would be impossible to gain simultaneous information about Eu and τ T

max. In-
deed, the correlation coefficient between Eu and τ T

max has a value very close to 1 (Tables 1a
and 1b). Therefore, further investigation is required. Figure 11 plots the sensitivity of the
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Fig. 10 Normalized sensitivities to Eu, G and τT
max parameters on interval II

Table 1 Variance–correlation matrix 
̃ of parameters Eu and τT
max on interval I (a) and Eu, G, τT

max on
interval II (b)

(a)

Interval I Eu τT
max

Eu 2.15 % −0.9667

τT
max −0.9667 3.61 %

(b)

Interval II Eu G τT
max

Eu 1.37 % −0.18 −0.9988

G −0.18 0.06 % 0.147

τT
max −0.9988 0.147 1.38 %

elastic modulus Eu versus that of the relaxation time τT
max. One can see that at small strain

values (ε ≤ 0.13), the sensitivities of Eu and τ T
max show a nearly linear behavior with a zero

intercept, which explains in part the high degree of correlation found. Nevertheless, there
is sufficient divergence in their behavior to have good identification conditions. Indeed, the
singular point around ε11 = 0.13 that marks the transition between the different regimes can
be seen in the insert of Fig. 11. Furthermore, the relative errors calculated for both Eu and
τ T

max parameters are of the order of a few percent. The parameter G can be estimated with
a very low confidence bound (error of 0.06 %) as a consequence of its very weak or inex-
istent correlation with the other parameters (ρ12 = −0.18 and ρ23 = 0.14). The robustness
of the identification has been checked by changing the initial values of the optimization al-
gorithm. If two parameters were correlated, then the estimated values would have changed
for each different run. Converging towards a single identified parameter vector, whatever its
initialization, is a good verification that the PEP is well-conditioned.

Concerning the use of interval I to perform the identification of parameters Eu and τ T
max

only, the sensitivity analysis helps in their definition. For strain values below 0.13, the sen-
sitivity to G is only 5 % of the maximum sensitivities of Eu and τ T

max and therefore this
parameter can be omitted. When Tables 1a and 1b are compared, it can be seen that the
variances of parameters Eu and τ T

max are lowered by a factor of 2 when considering inter-
val II instead of interval I. Therefore, using the whole curve is recommended. Additionally,
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Fig. 11 Normalized sensitivities X̃(Eu) as a function of X̃(τT
max)

the sensitivities of both Eu and τ T
max remain at their maximum value after the yield. This is

physically sound as they actually determine the value of the yield stress plateau.

5 Identification results and validation of the approach

The MBM approach can be validated by analyzing the results obtained for tensile tests
performed at different strain rates. Table 2 gives the values estimated for specimen A on
both interval I (Eu, τ T

max) and interval II (Eu, τT
max,G).

Firstly, we compared the measurements obtained for the elastic modulus to those given
by two other physical techniques and for the two specimens, A and B. Secondly, we analyzed
the consistency of the values obtained for the 3 parameters of this rheological model.

5.1 Elastic moduli measurements—comparison with other techniques

As can be seen from Table 2, the elastic moduli identified for sample A, specimen A‖,
lie in the range from 2720 to 2950 MPa for all experiments including the results obtained
from both identification intervals and more than 3 experiments were reproduced at each
different strain rate. This represents a variation of ±4 % around the central value, which
corresponds to the order of magnitude of the estimated variances yielded by the stochastic
analysis (Table 1b). The uncertainty of these measurements has been calculated by changing
the value of the identified Eu within a ±
Eu interval so that the direct model produces
theoretical curves that flank the experimental ones. This allows the bias effects evidenced
earlier by the residual plotting to be taken into account. For specimen A‖, at a strain rate of
5×10−3 s−1, this uncertainty is ±180 MPa that corresponds to a variation of ±6.5 % around
the nominal value. The results for all specimens tested are: 2830±180 MPa, 2940±200 MPa,
2400±260 MPa, and 2270±150 MPa for specimens A‖, Ac , A⊥ and B, respectively.

To check the validity of the results obtained by this MBM approach, two independent
direct measurements of the elastic modulus of the material were carried out. One relies
upon the Pulse–Echo technique, which is based on ultrasound measurements (Optel OPBOX
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Table 2 Identified values of parameters Eu , τT
max (Identification interval I) and Eu, τT

max, G (Identification
interval II) for Specimen A‖ at different strain rates

Strain rate

5 × 10−5 s−1 4 × 10−4 s−1 2.5 × 10−3 s−1 5 × 10−3 s−1 10−2 s−1

Eu (MPa)
Interval I

2777 2783 2787 2828 2846

Eu (MPa)
Interval II

2811 2809 2940 2812 2772

τT
max (s)

Interval I
433.64 64.17 11.40 6.01 3.17

τT
max (s)

Interval II
419.72 63.23 11.02 6.01 3.21

G (MPa) 1.53 1.85 2.31 2.31 2.46

Table 3 Comparison between elastic modulus values given by standards applied to tensile curves, the present
model-based parameter estimation, the Pulse–Echo technique and the Nanoindentation technique, for all
A(A‖,A⊥,Ac) and B samples (in MPa). Discrepancy percentages in brackets were calculated with refer-
ence to Eu

MBM

Specimen Manufacturer ISO 527-1
ε̇N =
5 mm/min
(values for
ASTMD638)

ISO 527-1
ε̇N =
6 mm/min
(values for
ASTMD638)

Present
model-
based
parameter
estimation
Eu

MBM

Ultrasonic
technique
Eu

PE

Nano-
indentation
Eu

Nano

A A‖ 1200 1138 1475 2830 2780±40 2380±40

(1141) (1479) (−2 %) (−16 %)

Ac – – 2940 2800±230 2730±60

(−5 %) (−8 %)

A⊥ – – 2400 2780±40 2320±40

(=Eu
A‖ ) (−3 %)

B 772 – 2270 2220±230 2180±110

(763) (−2 %) (−5 %)

system). Direct measurements of the velocity of a sonic wave at 5 MHz were made in the
longitudinal and transversal directions of the sample which allowed an elastic modulus to be
calculated. The other measurement depends upon the Nanoindentation Continuous Stiffness
Method. Indentation tests were performed with Nanoindenter IIS at the L.M.A Femto-ST
laboratory (France). Harmonic excitations of the pyramidal Berkovich probe tip at 45 Hz
allowed the measurement of a complex modulus (and hardness) of the material with good
precision (Oliver and Pharr 1992; Le Rouzic et al. 2009).

Table 3 gathers together the values of the elastic modulus obtained for all 500 Natural
HDPE A (A‖, A⊥ and Ac) and B specimens by the three metrological techniques (MBM, PE
and Nano subscripts are for the Model Based Metrology applied to tensile curves, Pulse-
Echo and Nanonindentation techniques, respectively).

The data obtained by applying standards on tensile curves are also given. These last val-
ues show that standards are far from producing (i) reliable data and (ii) physically founded
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estimations. The discrepancy between standards and experimental techniques can be as high
as 300 % and the values obtained depend on the applied displacement rate. Nevertheless,
using tensile curves to precisely identify the elastic modulus of polymers is possible if a
correct MBM is used. This can be asserted from the comparison made in Table 3 where the
values yielded by the two other physical techniques have all the corresponding uncertainty
intervals.

For all specimens, the three techniques gave very similar results. The agreement was
very good between MBM and PE values, but local differences from the nanoindentation
test occurred. These differences must be analyzed carefully. For specimen A‖, the value
given by the “Nano” technique is 16 % lower than by the MBM and PE techniques. This
can be explained since this former technique probes a small volume just behind the surface.
The value identified is then sensitive to a skin effect which is generally observed on thick
extruded samples (such as for the 6 mm A‖ specimen). In contrast, both the MBM and PE
methods probe the entire volume. As specimen B was manufactured directly with a 4 mm
thickness, this effect is not visible within the confidence intervals of the three measurements.
Looking at specimen Ac , this effect should disappear. Higher values of Eu

Nano are indeed
obtained and the three techniques give more convergent results. This proves that (i) from
a physical point of view core samples are slightly more rigid than full samples, with less
differences in microstructure and (ii) from a metrological point of view, the MBM technique
is sensitive to such small variations.

Examining the incidence of these results on the material property, it is clear that even
though this commercial HDPE is produced under the same reference for specimens A and
B, it can exhibit major changes in its elastic behavior (around 600 MPa). The increase in
elasticity of A‖, Ac samples compared to sample B indicates an oriented texture due to the
extrusion process. The presence of such anisotropy is confirmed by a positive anisotropy in-
dex measured for the undeformed HDPE A‖ specimens, thanks to X-ray microtomography
(Blaise et al. 2010). This result conforms to those reported by Legros et al. (1999), where un-
oriented and oriented HDPE are investigated by the Pulse–Echo technique. Oriented HDPE
produces a higher longitudinal and shear wave signal and hence a higher elastic modulus
than does unoriented HDPE.

Lastly, as expected from an instantaneous modulus, the identified values can be consid-
ered as independent from each other.

5.2 Analysis of the results for the other parameters

The results were next analyzed with respect to viscosity, hyper-elasticity (or hardening)
and time-dependency. Table 4 brings together the estimated maximal relaxation times τT

max,
for specimens A‖ and B for different strain rates. The corresponding Weissenberg number
(similar to the Deborah number) is also shown, as is the identified hardening modulus G.

The Weissenberg number corresponds to the ratio between the time constant tmat char-
acterizing the intrinsic ‘fluidity’ of the material and the time scale of the experiment or of
the observed texp. The fluidity of the material is inversely proportional to the Weissenberg
number. In the present case, its maximal value can be calculated by the following formula:

Wemax = tmat

texp
= τmaxε̇ (16)

where τmax, the maximum relaxation time of the spectrum, is used for the material charac-
teristic time and 1/ε̇ for the experimental characteristic excitation time.
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Table 4 Average estimated
maximal relaxation time τT

max,
corresponding Weissenberg
number Wemax and hardening
modulus G for specimens A‖ and
B at different strain rates

Specimen Strain rate (s−1) τT
max (s) Wemax G (MPa)

A‖ 5 × 10−5 419.72 0.0209 1.53

4 × 10−4 63.23 0.0252 1.85

2.5 × 10−3 11.02 0.0276 2.31

5 × 10−3 6.01 0.0301 2.31

10−2 3.21 0.0321 2.46

B 5 × 10−3 7.16 0.0358 2.30

10−2 3.79 0.0379 2.39

The Weissenberg number varies logarithmically from 0.02 to 0.032 (+50 %) over nearly
3 decades of strain rates. A regression gives Wemax ∝ 0.005 log(ε̇). The increase in the Weis-
senberg number agrees well with the observation that plasticity of the material is enhanced
when strain rates are diminished. The low values of Wemax also indicate that the time re-
sponse of the material always remains two logs below the time scale imposed by the exper-
iment. This argues in favor of a similar scenario for the succession of internal mechanisms
taking place at the microstructure levels. Finally, it has been shown by André et al. (2012)
that a characteristic time of the order of 1 s can be derived from energetic measurement for
a strain rate of ε̇ = 10−2 s−1, which validates the order of magnitude found here for τT

max.
Additionally, good agreement of the values found for Eu and τ T

max with respect to the strain
rate dependency of the yield stress and the identification intervals was found. Re-examining
Table 2 shows two things:

– When identified values of Eu increase slightly between the two identification intervals I
and II, the corresponding τT

max value decreases, and the contrary is true.
– The EuτT

max product increases with strain rate.

Both effects can be explained as follows. At short times, the model (Eq. (15)) acts like
σ(t) = ∑

j ε̇0p
0
j τjE

u(1 − e−t/τj ). The behavior of the material is roughly considered to be
described by a simple exponential relation like σ(t) = σyield(1 − e−t/〈τ 〉). As a result the
pre-factors can be compared through kε̇0τmaxE

u � σyield (k is a constant which weights τmax

to have a barycentric relaxation time corresponding to 〈τ 〉). The yield stress increases with
strain rate in the experimental curves and for a given strain rate a constant σyield imposes that
Eu varies inversely proportionally to τmax.

Concerning the value of the hardening modulus G that describes the behavior of HDPE
at a high strain, the identified values for all strain rates are also in a logarithmic dependency
with respect to the strain rates. The values identified for G are close to those found in the
experimental results of uniaxial tensile tests reported by Haward for HDPE (Haward 1993;
Haward 2007) and the value found by Bartczak and Kozanecki (2005) for linear polyethy-
lene in plane-strain compression. The estimated hardening modulus appears to be the same
for both specimens A and B, which is in line with the idea that the microstructure transfor-
mation in uniaxial drawing is highly reproducible for a given polymer even if the initial state
may be different.

Considering the consistency of all estimated parameters, one can remember that the sen-
sitivity analysis showed that the identification of parameters Eu, τ T

max and G of the reduced
model (Eq. (15)) was possible with good variances (confidence bounds) and that the order of
magnitude was confirmed by the uncertainties obtained from the residuals analysis. For each
strain rate tested, the same value was identified for the elastic modulus, as expected from the
instantaneous character of this physical parameter. Young’s modulus results obtained with
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the MBM approach have been corroborated by two other independent and direct physical
measurements that probe the material at high frequencies (MHz) or at small spatial scales
(nm-µm). This is clear evidence of the consistency of the approach with the underlying
physics because this agreement is the corollary of an identified maximum relaxation time of
the order of a few seconds. As a spectrum of 6 decades is considered in the model to arrive
at convergence of estimates, this means that relaxation times as small as 1 µs are necessary
to allow for a good description of the data and a determination of the ‘truly’ instantaneous
modulus. The pulse–echo technique relies on excitation at 5 MHz, which means that the
time scale required by the model is in perfect agreement with this technique, and supports
the identification of an “instantaneous” modulus. For the nanoindentation technique, the
spatial size of the representative elementary volume is less than a micrometer, which means
that small time scale events are also probed.

6 Conclusion

In the light of the characterization of SCP trough tensile tests, both ideas of using an ap-
propriate reduced metrological model in the relationship of sensitivity analysis principles
have been shown to be key concepts for a correct estimation of the parameters of the model
through optimization procedures. The 3 parameter rheological model we have developed
is sufficient to apprehend correctly the physics of the tensile behavior and to give reliable
estimates of the parameters. Based on such measurements, much precise information can
be gained concerning the behavior of the polymer. An illustration has been given of the ap-
parently simple problem of measuring an instantaneous Young modulus, where contempo-
rary recommended standards lead to measurements twice as low as the experimental values.
If good confidence bounds are obtained for the estimated parameters, associated phenom-
ena like strain rate effects in our case, can be more securely quantified. Additionally, any
deviation in the residuals can be considered to result from a bias (in the model or in the
experimental conditions) which in all cases, give the modeler–experimentalist new trails to
improve the model and experimental conditions.

Like various other works in different fields of physics, we hope that the research de-
scribed here demonstrates that major improvements can be expected if simple identifiability
principles are used more frequently in material science studies.

Appendix: Sensitivity analysis fundamentals

Let ymeas(t) be the measured stress output of a system (our material specimen), and y(β, t)

the theoretical stress output of the behavioral model with a parameter vector β of dimension
n, representing in our case the n constitutive material parameters. The output error e(t), or
the residuals, can be defined as

e(t) = ymeas(t) − y(β, t). (A.1)

The role of an estimator is to minimize this output error. A least squares criterion can be
used classically and is written as follows:

ELS =
m∑

i=1

(
ymeas(ti) − y(β, ti )

)2
(A.2)
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where the sum is over the successive acquisition times ti , up to a total number of measure-
ment data points m.

The minimization of the criterion is done when its derivatives with respect to parameters
βj (j = 1 . . . n) are null:

∀j ∈ [1, n], ∂ELS

∂βj

= 0 →
m∑

i=1

(
∂y(β, ti)

∂βj

[
ymeas(ti) − y(β, ti)

]) = 0

→
m∑

i=1

(
Xj(β, ti)

[
ymeas(ti) − y(β, ti)

]) = 0. (A.3)

From this equation, the sensitivity coefficient vector component Xj associated to the param-
eter βj can be clearly recognized as

Xj(β, ti) = ∂y(β, ti )

∂βj

. (A.4a)

Normalized sensitivity coefficients,

X̃j = βj

∂y(β, t)

∂βj

, (A.4b)

are introduced to graphically check the level of sensitivity and possible correlations between
parameters: different intervals of the time-independent variable t may be advantageously
considered. These coefficients are dimensionally homogeneous to the signal itself, the stress
in MPa.

Sensitivity coefficients express how much a model reacts to some small variation of the
parameters. Sensitivity coefficients play a fundamental role in the conditioning of the inverse
parameter estimation process and, as a consequence, in the errors made in the estimates of
confidence bounds. It is obvious that major sensitivities are sought for, when designing
an experiment for metrological purposes. In almost all cases, sensitivity coefficients are
nonlinear functions of the parameters themselves when the model y is a nonlinear function
of βj .

Switching to a matrix formulation and defining vectors Ymeas and Y as

Ymeas =

⎡
⎢⎢⎣

ymeas(t1)

ymeas(t2)

. . .

ymeas(tm)

⎤
⎥⎥⎦ and Y =

⎡
⎢⎢⎣

y(β, t1)

y(β, t2)

. . .

y(β, tm)

⎤
⎥⎥⎦ (A.5)

makes the minimization process expressed as

XT
(
Ymeas − Y

) = 0 (A.6)

with X, the m×n rectangular sensitivity matrix, where m is the number of rows (dimension
of the experimental observation time vector t) and n is the number of columns (dimension
of the parameter vector β).

In the case of a linear model with respect to the parameters (linear estimation problem)
for which the matrix of the sensitivity coefficients does not depend on the parameters, we
have

Y = Xβ. (A.7)
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The estimated parameter vector, denoted by β̂, corresponds to the value reached by β when
the criterion is minimized. Therefore, using (A.7), we can rewrite Eq. (A.6) as

XT
(
Ymeas − Xβ̂

) = 0. (A.8)

Relation (A.8) can be inverted to obtain the expression of β̂ in the case of a linear estimation
problem:

β̂ = (
XT X

)−1
XT Ymeas. (A.9)

However, most parameter estimation problems are not linear and require an iterative
linearizing procedure. This is obtained by developing the solution at rank n+1 in the neigh-
borhood of the solution obtained for the prior iteration at rank n:

Y(n+1) = Y(n) + X(n)
(
β̂

(n+1) − β̂
(n))

. (A.10)

If relation (A.6) is written at rank n + 1 for parameters estimated at rank n, we obtain
XT (n)(Ymeas − Y(n+1)) = 0, and when this is combined with relation (A.10), we obtain the
following relation of recurrence between estimated parameters at rank n + 1 and rank n:

β̂
(n+1) = β̂

(n) + (
XT (n) X(n)

)−1
XT (n)

(
Ymeas − Y(n)

)
(A.11)

which defines the iterative procedure that can be used to estimate the parameters (Gauss–
Newton algorithm).

The statistical estimator’s properties depend on the noise ε(t)of the signal. If the theoret-
ical model is assumed to be unbiased (perfect) then we have

Y meas(t) = Y (t,β) + ε(t). (A.12)

If classical statistical assumptions are made concerning the experimental noise ε(t) in the
measured stress signal (Beck and Arnold 1977), it is possible to obtain an approximation
of the errors that can be made in the estimation process for the different parameters. These
assumptions are:

(a) Zero mean value of the signal in the absence of excitation, which corresponds to a zero
expectancy for noise (expected value E(ε) = 0);

(b) Constant variance or standard deviation of the noise, V (ε) = σ 2
0 .

In the case of a 1st order linearized estimation, its expected value can be proved to be

E(β̂) = β. (A.13)

This means that there is no error or bias made on the identified parameters.
The variance–covariance matrix � of the estimated parameters (generalization of the

scalar-valued variance to a higher dimension) involves the sensitivity coefficients. It is cal-
culated as � = E[(β̂−E(β̂))(β̂−E(β̂))T ] = σ 2

0 (XT X)−1 which in the expanded form gives

� =

⎡
⎢⎢⎣

V (β1) cov(β1, β2) . . . cov(β1, βp)

cov(β1, β2) V (β2) . . . cov(β2, βp)

. . . . . . . . . . . .

cov(β1, βp) cov(β2, βp) . . . V (βp)

⎤
⎥⎥⎦ . (A.14)

Author's personal copy



Mech Time-Depend Mater

A stochastic analysis can be made that consists of calculating the variance–covariance
matrix through Eq. (A.14) theoretically according to a given noise and set of parameters.
This symmetric square matrix has dimension equal to the number of parameters. The diag-
onal terms correspond directly to the variance of each parameter V (βj ). They can be used
to determine the error made for each parameter. This error can be expressed as a percentage

Err(βj ) =
√

V (βj )

βj

. (A.15)

The off-diagonal terms can be used to calculate the correlation coefficients ρmn which ex-
press the degree of correlation of the parameters,

ρrs = cov(βr , βs)√
V (βr)

√
V (βs)

. (A.16)

The |ρrs | values lie between 0 and 1. In the case of a model with strongly correlated
parameters, the correlation coefficients are close to 1, which means that two columns of the
sensitivity matrix X are nearly proportional to each other. The resulting confidence bounds
interval for two correlated parameters are therefore generally very high. This means that
a large number of solutions exist for these two parameters to allow for a good fit to the
experimental curve. A deterministic algorithm like the steepest gradient technique, used for
the minimization process, is consequently very sensitive to the initial estimate made for the
parameters. A strategy to produce first approximations using the physical background is
highly recommended. But even so, the estimation problem is ill-conditioned and indicates
to the experimentalist that the physical description involved is probably not appropriate and
must be changed.

In the following considerations, the identifiability of the model parameters will be ana-
lyzed through the �̃ array, which combines the variance–covariance matrix and the correla-
tion matrix. �̃ puts the main diagonal of � in place and the correlation coefficients on the
off-diagonal terms,

�̃ =

⎡
⎢⎢⎣

Err(β1) ρ12 . . . ρ1p

ρ12 Err(β2) . . . ρ2p

. . . . . . . . . . . .

ρ1p ρ2p . . . Err(βp)

⎤
⎥⎥⎦ . (A.17)

When there is no model bias, or perfect agreement between the conditions of the exper-
iment and the model based on it, the relation between the estimated parameter vector for
the nonlinear estimation problem and its ‘exact’ value can be given at convergence by the
following formula:

β̂ = β + (
XT X

)−1
XT ε. (A.18)

In this case, the residuals e(t) that are the difference between the model and the data
correspond exactly to the noise. Their standard deviation corresponds to the experimental
standard deviation of the noise, and the residuals remain unsigned with no large fluctuation
around the zero level.

The matrix �̃ is a good tool to investigate the identification conditions of a parameter
estimation problem.
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