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Abstract. In supervised time-series segmentation, each instance in the
training set has to be assigned a label. However, elicitation of labels
from experts or their estimation may be time consuming and prone to
errors. The problem considered in this paper is focused on time-series
segmentation based on noisy and uncertain labels by using discrete Hid-
den Markov Models (dHMM). Maximum likelihood parameter learning
in dHMM with such labels is tackled by two methods: the Eviden-
tial Expectation-Maximization (E2M) algorithm where weights repre-
sent plausibility functions, and the Weighted Likelihood Principle (WLP)
coupled with the usual Expectation-Maximization algorithm. The model
is tested using the E2M solution on simulated datasets. The results al-
lows to evaluating the sensitivity of the quantization phase, with report
to the noise level and the level of uncertainty on labels, on the quality of
the statistical modelling of continuous-valued time-series.

1 Introduction

Hidden Markov models (HMM) are powerful tools for sequence modeling and
state sequence recognition that have been used in many different applications.
Discrete HMM represents a particular of HMM where the observations are dis-
crete symbols. One of the most extended use has been text character recognition
from several scripts as Latin [9], Korean [11] or Farsi (Arabic) [6]. Other ap-
plications concerned signal processing [16], video event classification [3] medical
applications [1], model families of biological sequences [1] or transformer relaying
protection [12].

A dHMM is composed of observed variables (outputs) Xt, t = 1 . . . T where
t is a discrete time index and latent discrete random variables (hidden states)
Yt [14]. The sequence of states Y1, Y2, ...YT is a first-order Markov chain and the
distribution of the output Xt at time t depends only on Yt.

One of the objective of a dHMM is to estimate the state sequence hidden
within the observations. In order to improve the convergence (quicker and more
precise) and to better estimate the parameters, it is proposed to use partial prior
knowledge about the states. For that, we first apply the Evidential Expectation-
Maximization (E2M) algorithm [8] by assuming that the prior is encoded by



a set of plausibility functions or basic belief assignments (Section 2). We then
apply the Weighted Likelihood Principle (WLP) coupled with the Expectation-
Maximization algorithm and we discuss the differences between both solutions.
Experiments are focused on continuous-valued time-series segmentation with the
solution provided by E2M. We illustrate the impact of the quantization phase
with report to uncertain and noisy labels on the quality of the results (Section 3).

2 Developing the model

2.1 Model and notations

The following parameters are used to describe a HMM:

– Prior probabilities ΠΠΠ = {π1, ..., πk, ..., πK}, where πk = P (Y1 = k) is the
probability of being in state k at t = 1 being K the number of states;

– Transition probabilities A = [akl],where

akl = P (Yt = l|Yt−1 = k), (k, l) ∈ {1, ...,K}2

is the probability for being in state l at time t given that it was in state k
at t− 1 with

∑
l akl = 1;

– Observation symbol probabilities B = [bkv] where

bkv = P (xt = v|Yt = k), k ∈ {1, ...,K} & v ∈ {1, ..., V }

is the probability for being in state k at time t and observing symbol v with∑
v bkv = 1

The set of parameters is denoted as θ = (A,B,ΠΠΠ).
The complete data is defined as z = (x,y) composed of the observed output

sequence x = (x1, ..., xT ) and the corresponding sequence of hidden states y =
(y1, ..., yT ). In the discrete case each observation takes a discrete value v ∈
{1, ..., V } called symbol.

2.2 Learning procedures based on soft labels

E2M algorithm Let Y be a variable taking values in a finite domain Ω =
{1, 2 . . .K}, called the frame of discernment. Uncertain information about Y (i.e.
partial knowledge about hidden states, also called soft labels) is supposed to be
represented by a mass function m on Ω,

∑
A⊆Ωm(A) = 1 (assumed normalized).

Maximising the likelihood in presence of such uncertain information about
hidden states can be performed by applying the E2M algorithm [8]. For that,
it is first required to express the likelihood function over hidden and observed
variables which, in the dHMM, is given by

L(θ; z) = p(y1;Π)

( T∏
t=2

p(yt|yt−1; A)

) T∏
t=1

p(xt|yt; B)

=

( K∏
k=1

πy1kk

)( T∏
t=2

∏
k,l

a
y(t−1,k)ytl
kl

)( T∏
t=1

K∏
k=1

V∏
v=1

bytkkv

)



where ytk is a binary variable such that ytk = 1 if state k is true at time t.
The second step is to take the conditional expectation of the log-likelihood given
partial knowledge on states which can then be obtained at iteration q of E2M
as [8]:

Q(θ,θ(q)) = Eθ(q) [log(L(θ; z)|x, pl] =

∑
y∈Ω log(L(θ; z))p(y|x,θ(q))pl(y)

L(θ(q);x, pl)

where pl is the contour function (plausibility of singleton states) associated to

m. L(θ(q);x, pl) is a generalized likelihood function [8] evaluated by using the
forward-backward propagations [15]. By expanding the expectation, we get three
terms:

– Two terms involving prior and transitions and similar to HMM with contin-
uous observations [15] ;

– The third one is specific to the dHMM and concerns the emission probability
model B from which the maximum likelihood estimate can be obtained as:

b
(q+1)
kv =

T∑
t=1

γ
(q)
tk 1{xt = v}

T∑
t=1

γ
(q)
tk

where γtk = Eθ(q) [yt,k|x, pl] has the same expression as in [15].

Weighted likelihood principle (WLP) It is described in detail in [18, 19]
and aims at exploiting pieces of information obtained from independent samples
generated by some distributions with unknown parameters that have justly to
be estimated. In the WLP model, a sample is produced by a weighted likelihood
function [13, 18]. For the dHMM, it is given by

L(θ; z,W) = p(y1;Π)w1k

( T∏
t=2

p(yt|yt−1;A)w(t−1,k)wtl

) T∏
t=1

p(xt|yt;B)wtk

which can be rewritten by using multinomial variables as

L(θ; z,W) =( K∏
k=1

πw1ky1k
k

)( T∏
t=2

∏
k,l

a
w(t−1,k)y(t−1,k)wtlytl
kl

)( T∏
t=1

K∏
k=1

V∏
v=1

bwtkytk
kv

)
(1)

where the weights W = {wt,k, t = 1 . . . T, k = 1 . . .K : wt,k ≥ 0} can be obtained
by optimization (given a target) [13, 19] or provided by an end-user. By taking



the logarithm of Eq. 1, we have:

logL(θ; z,W) =

K∑
k=1

w1ky1k log πk +

T∑
t=2

∑
k,l

w(t−1,k)y(t−1,k)wtlytl log akl+

T∑
t=1

K∑
k=1

V∑
v=1

wtkytk log bkv

(2)

We then apply the usual EM algorithm [7] to estimate the parameters θ in an
iterative way as in standard dHMM. Assuming independence between hidden
variables and weights, the expression of the expectation of E[wtkytk|x,θ] can be
obtained as:

E[wtkytk] =
wtkp(yt = k|x,θ)
K∑
l=1

wtlp(yt = l|x,θ)

This posterior distribution is then used to find the expectation of the complete-
data log likelihood evaluated for some general parameter value [2]. The M-step
then makes use of this posterior that relies on soft labels to estimate the param-
eters for the next iteration.

Differences betweem the two models The E2M and WLP models differ from
two main points, independently on the statistical model considered (dHMM or
another).

Firstly, in E2M, the prior on latent variables is expressed as a plausibility
function (in [0, 1]), while the WLP allows more general weights provided posi-
tiveness. In practice, it permits more flexibility. Real applications are necessary
to assess if this difference actually plays a role, either for weights elicitation or
estimation, or concerning the performance.

Secondly, and more fundamentally, the plausibilities used in E2M play a role
of weights on the emission model that generates the likelihood of the current data
given the current state (p(xt|yt)). Therefore, the computation of the posterior
probability on states (γt) at time t makes use of the plausibilities at t (in the
forward propagation [2]) and on t + 1 (in the backward propagation [2]). In
comparison, in the WLP model, the weights are combined conjunctively only
once with the posterior probability on states (p(yt|x)). Eventually, this difference
leads to models with different likelihoods, and more interestingly, it shows that
the WLP acts similarly as the approach proposed in [4, 5].



3 Simulations

We consider a dHMM with 3 states and three symbols per state distributed with
report to uniform distribution defined as:

ΠΠΠ = (1/3, 1/3, 1/3)′, A =

0.6 0.3 0.1
0.1 0.6 0.3
0.1 0.3 0.6


S1 ∼

x ∼ U(0, 0.2)
y ∼ U(0.8, 1)
z ∼ U(0, 0.1)

S2 ∼

x ∼ U(0.8, 1)
y ∼ U(0, 0.2)
z ∼ U(0, 0.1)

S3 = {S31} ∪ {S32} S31 ∼

x ∼ U(0.4, 0.6)
y ∼ U(0, 1)
z ∼ U(0, 0.1)

S32 ∼

x ∼ U(0, 1)
y ∼ U(0.4, 0.6)
z ∼ U(0, 0.1)

Two sets of samples are represented in Figure 1.
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Fig. 1: Distribution of signal points

The Kmeans algorithm was used for vector quantization [14] in order to
transform those continuous-valued observations into discrete symbols. Different
number of clusters were tested to estimate the impact of the quantization on
the performance. Two different experiments were carried out with this model in
order to study the influence of “label imprecision” and “labeling error” [5, 8, 15].

3.1 Influence of label imprecision

To study how the influence of imprecision of knowledge on hidden states affects
the performing of the learning procedures described above, a learning sequence



(x,y) of length T was generated using the model above. Uncertain labels were
generated as follows:

pltk

{
1 if yt = k,
ν otherwise.

ν represents the nonspecificity coefficient, which quantifies the imprecision
of the contour function plt. To assess the quality of learning, a testing dataset
of 1000 observations was generated following the same distribution. The most
probable state at a given time was given by the maximum a posteriori prob-
ability [14], assuming no previous knowledge about hidden states in the test
sequence. The precision of the predicted state sequences was assessed using the
adjusted Rand index (ARI) [10] (equals 0 on average for a random partition,
and 1 when comparing two identical partitions). The whole experiment (data
generation, clustering and learning) was repeated 30 times, for different number
of clusters and for T = 100 and T = 300.
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(b) T=300

Fig. 2: Medians of the adjusted Rand index as a function of the nonspecificity
coefficient over 30 repetitions for diferent number of clusters, from 3 to 50.

Results are shown in Figures 2 and 3. We can observe that the results degrade
from the fully supervised (ν = 0) to the fully unsupervised (ν = 1) case. In
Figure 2 we can see different curves representing the results for different number
of clusters. For a small number of clusters, the results with precise knowledge
about states (ν < 0.4) are lower than for a larger number of clusters. However,
from that point and till the fully unsupervised situation, curves representing
larger number of clusters decrease faster and reach values near to 0. Those with
fewer number of clusters keep a higher ARI till ν = 1 and do not decrease so
fast.

3.2 Influence of labeling error

To simulate a situation where information on states may be wrong, we proceed
as proposed in [5, 8, 15]. At each time step t, an error probability qt was drawn
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Fig. 3: Boxplots of the adjusted Rand index as a function of the nonspecificity
coefficient over 30 repetitions for 5 clusters. Learning datasets of T=100 (left)
and T=300 (right) observations.

randomly from a beta distribution with mean ρ and standard deviation 0.2. With
probability qt, the state yt was then replaced by a completely random value ỹt
(with a uniform distribution over possible states). The plausibilities pltk were
determined as

pltk = P (yt = k|ỹt) =

{
qt/K + 1− qt if ỹt = k,
qt/K otherwise.

Uncertain labels are more imprecise when the error probability is high. Training
and test data sets were generated as in previous section, and results were eval-
uated in the same way. For each randomly generated data set, the dHMM was
applied with uncertain labels pltk, noisy labels ỹtk and no information on states.

Figure 4 shows the ARI as a function of mean error ρ for uncertain (left) and
noisy (right) labels for different number of clusters and T = 100. As expected,
a degradation of the segmentation quality is observed when the mean error
probability ρ increases. The ARI tends to a value close to zero as ρ tends to 1
for a larger number of clusters. For fewer clusters, the results when ρ tends to
1 stay over 0. From the curves, we see that a smaller number of clusters give
generally better results. The number of clusters used for quantization produces
a side effect called distorsion [14] which remains difficult to assess in practice.

In Figure 5 we show the same experiments as in Figure 4 but with longer
sequences (T = 300). Results are quite similar in both cases but we appreciate
that with a larger number of observations, the curves scatter less and results
are better for all values of ρ. This is an expected result since the dHMM is
a statistical model where the parameters are learned by maximum likelihood
and therefore the quantity of learning data may have an important impact on
estimations.

Figure 6 shows the evolution of both the noisy and uncertain labels for the
experiment with 5 clusters. It is proved that the use of partial information on
states in the form of uncertain or noisy labels allows to reach better results than
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(a) Uncertain labels, T=100
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(b) Noisy labels, T=100

Fig. 4: Medians of the adjusted Rand index as a function of the labeling error for
uncertain and noisy labels over 30 repetitions for different number of clusters,
from 3 to 50. Learning datasets made of T=100 observations.
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(a) Uncertain labels, T=100
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(b) Noisy labels, T=300

Fig. 5: Medians of the adjusted Rand index as a function of the labeling error for
uncertain and noisy labels over 30 repetitions for different number of clusters,
from 3 to 50. Learning datasets made of T=300 observations.

the unsupervised case in every condition. Noisy labels reach better results than
the uncertain labels till ρ = 0.9.

4 Conclusion

This paper studies the influence of labelling errors on the performance of of
discrete Hidden Markov Models for continuous-valued time-series segmentation.
Noisy and uncertain labels can be taken into account by the Evidential EM
algorithm or by the weighted maximum likelihood principle, yielding two dif-
ferent results. The results shows that the degradation of the performance was
accentuated when the quantization phase was inappropriately tuned. In contrast
with the continuous HMM proposed in [15], the model can behave better when
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Fig. 6: Average values (plus and minus one standard deviation) of the adjusted
Rand index over the 30 repetitions, as a function of the mean error probability
for learning datasets of T=100 (left) and T=300 (right) observations

considering noisy labels than uncertain labels. The way to integrate imprecise
knowledge on latent variables in HMM is under study. This would lead to im-
precise transition matrices and observation models generating sets of possible
states sequences [17].
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