arXiv:1112.5239v1 [cs.CR] 22 Dec 2011

Efficient and Cryptographically Secure Generation of Chaotic
Pseudorandom Numbers on GPU

Jacques M. Bahi, Raphaél Couturier, Christophe Guyeux, and Pierre-Cyrille Héam*
December 23, 2011

Abstract

In this paper we present a new pseudorandom number generator (PRNG) on graphics processing units
(GPU). This PRNG is based on the so-called chaotic iterations. It is firstly proven to be chaotic according
to the Devaney’s formulation. We thus propose an efficient implementation for GPU that successfully
passes the BigCrush tests, deemed to be the hardest battery of tests in TestUO1. Experiments show that
this PRNG can generate about 20 billion of random numbers per second on Tesla C1060 and NVidia
GTX280 cards. It is then established that, under reasonable assumptions, the proposed PRNG can be
cryptographically secure. A chaotic version of the Blum-Goldwasser asymmetric key encryption scheme
is finally proposed.

1 Introduction

Randomness is of importance in many fields such as scientific simulations or cryptography. “Random num-
bers” can mainly be generated either by a deterministic and reproducible algorithm called a pseudorandom
number generator (PRNG), or by a physical non-deterministic process having all the characteristics of a
random noise, called a truly random number generator (TRNG). In this paper, we focus on reproducible
generators, useful for instance in Monte-Carlo based simulators or in several cryptographic schemes. These
domains need PRNGs that are statistically irreproachable. In some fields such as in numerical simulations,
speed is a strong requirement that is usually attained by using parallel architectures. In that case, a recurrent
problem is that a deflation of the statistical qualities is often reported, when the parallelization of a good
PRNG is realized. This is why ad-hoc PRNGs for each possible architecture must be found to achieve both
speed and randomness. On the other side, speed is not the main requirement in cryptography: the great need
is to define secure generators able to withstand malicious attacks. Roughly speaking, an attacker should not
be able in practice to make the distinction between numbers obtained with the secure generator and a true
random sequence. Finally, a small part of the community working in this domain focuses on a third require-
ment, that is to define chaotic generators. The main idea is to take benefits from a chaotic dynamical system
to obtain a generator that is unpredictable, disordered, sensible to its seed, or in other word chaotic. Their
desire is to map a given chaotic dynamics into a sequence that seems random and unassailable due to chaos.
However, the chaotic maps used as a pattern are defined in the real line whereas computers deal with finite
precision numbers. This distortion leads to a deflation of both chaotic properties and speed. Furthermore,
authors of such chaotic generators often claim their PRNG as secure due to their chaos properties, but there
is no obvious relation between chaos and security as it is understood in cryptography. This is why the use
of chaos for PRNG still remains marginal and disputable.

The authors’ opinion is that topological properties of disorder, as they are properly defined in the math-
ematical theory of chaos, can reinforce the quality of a PRNG. But they are not substitutable for security
or statistical perfection. Indeed, to the authors’ mind, such properties can be useful in the two following

*Authors in alphabetic order

situations. On the one hand, a post-treatment based on a chaotic dynamical system can be applied to a
PRNG statistically deflective, in order to improve its statistical properties. Such an improvement can be
found, for instance, in [5, 2]. On the other hand, chaos can be added to a fast, statistically perfect PRNG
and/or a cryptographically secure one, in case where chaos can be of interest, only if these last properties
are not lost during the proposed post-treatment. Such an assumption is behind this research work. It leads
to the attempts to define a family of PRNGs that are chaotic while being fast and statistically perfect, or
cryptographically secure. Let us finish this paragraph by noticing that, in this paper, statistical perfection
refers to the ability to pass the whole BigCrush battery of tests, which is widely considered as the most strin-
gent statistical evaluation of a sequence claimed as random. This battery can be found in the well-known
TestUO1 package [I3]. Chaos, for its part, refers to the well-established definition of a chaotic dynamical
system proposed by Devaney [10].

In a previous work [5], 4] we have proposed a post-treatment on PRNGs making them behave as a chaotic
dynamical system. Such a post-treatment leads to a new category of PRNGs. We have shown that proofs of
Devaney’s chaos can be established for this family, and that the sequence obtained after this post-treatment
can pass the NIST [7], DieHARD [I4], and TestUO01 [I3] batteries of tests, even if the inputted generators
cannot. The proposition of this paper is to improve widely the speed of the formerly proposed generator,
without any lack of chaos or statistical properties. In particular, a version of this PRNG on graphics
processing units (GPU) is proposed. Although GPU was initially designed to accelerate the manipulation
of images, they are nowadays commonly used in many scientific applications. Therefore, it is important
to be able to generate pseudorandom numbers inside a GPU when a scientific application runs in it. This
remark motivates our proposal of a chaotic and statistically perfect PRNG for GPU. Such device allows us to
generate almost 20 billion of pseudorandom numbers per second. Furthermore, we show that the proposed
post-treatment preserves the cryptographical security of the inputted PRNG, when this last has such a
property. Last, but not least, we propose a rewriting of the Blum-Goldwasser asymmetric key encryption
protocol by using the proposed method.

The remainder of this paper is organized as follows. In Section [2] we review some GPU implementations
of PRNGs. Section [3] gives some basic recalls on the well-known Devaney’s formulation of chaos, and on an
iteration process called “chaotic iterations” on which the post-treatment is based. The proposed PRNG and
its proof of chaos are given in Section[d Section [§] presents an efficient implementation of this chaotic PRNG
on a CPU, whereas Section[6] describes and evaluates theoretically the GPU implementation. Such generators
are experimented in Section []] We show in Section [§] that, if the inputted generator is cryptographically
secure, then it is the case too for the generator provided by the post-treatment. Such a proof leads to the
proposition of a cryptographically secure and chaotic generator on GPU based on the famous Blum Blum
Shum in Section and to an improvement of the Blum-Goldwasser protocol in Sect. This research
work ends by a conclusion section, in which the contribution is summarized and intended future work is
presented.

2 Related works on GPU based PRNGs

Numerous research works on defining GPU based PRNGs have already been proposed in the literature,
so that exhaustivity is impossible. This is why authors of this document only give reference to the most
significant attempts in this domain, from their subjective point of view. The quantity of pseudorandom
numbers generated per second is mentioned here only when the information is given in the related work. A
million numbers per second will be simply written as 1MSample/s whereas a billion numbers per second is
1GSample/s.

In [I8] a PRNG based on cellular automata is defined with no requirement to an high precision integer
arithmetic or to any bitwise operations. Authors can generate about 3.2MSamples/s on a GeForce 7800
GTX GPU, which is quite an old card now. However, there is neither a mention of statistical tests nor any
proof of chaos or cryptography in this document.

In [I], the authors propose different versions of efficient GPU PRNGs based on Lagged Fibonacci or
Hybrid Taus. They have used these PRNGs for Langevin simulations of biomolecules fully implemented on

GPU. Performances of the GPU versions are far better than those obtained with a CPU, and these PRNGs
succeed to pass the BigCrush battery of TestUO1. However the evaluations of the proposed PRNGs are only
statistical ones.

Authors of [20] have studied the implementation of some PRNGs on different computing architectures:
CPU, field-programmable gate array (FPGA), massively parallel processors, and GPU. This study is of in-
terest, because the performance of the same PRNGs on different architectures are compared. FPGA appears
as the fastest and the most efficient architecture, providing the fastest number of generated pseudorandom
numbers per joule. However, we notice that authors can “only” generate between 11 and 16GSamples/s with
a GTX 280 GPU, which should be compared with the results presented in this document. We can remark
too that the PRNGs proposed in [20] are only able to pass the Crush battery, which is far easier than the
Big Crush one.

Lastly, Cuda has developed a library for the generation of pseudorandom numbers called Curand [I7].
Several PRNGs are implemented, among other things Xorwow [I5] and some variants of Sobol. The tests
reported show that their fastest version provides 15GSamples/s on the new Fermi C2050 card. But their
PRNGs cannot pass the whole TestU01 battery (only one test is failed).

We can finally remark that, to the best of our knowledge, no GPU implementation has been proven to
be chaotic, and the cryptographically secure property has surprisingly never been considered.

3 Basic Recalls

This section is devoted to basic definitions and terminologies in the fields of topological chaos and chaotic
iterations.

3.1 Devaney’s Chaotic Dynamical Systems

In the sequel S™ denotes the n'* term of a sequence S and V; denotes the i** component of a vector

V. f¥ = fo..of is for the k" composition of a function f. Finally, the following notation is used:
[1;N]={1,2,...,N}.
Consider a topological space (X, 7) and a continuous function f: X — X.

Definition 1 f is said to be topologically transitive if, for any pair of open sets U,V C X, there exists k > 0
such that f*(U)NV # @.

Definition 2 An element z is a periodic point for f of period n € IN* if f"(x) = x.

Definition 3 f is said to be regular on (X, 1) if the set of periodic points for f is dense in X: for any point
z in X, any neighborhood of x contains at least one periodic point (without necessarily the same period).

Definition 4 (Devaney’s formulation of chaos [10]) f is said to be chaotic on (X, 7) if f is regular
and topologically transitive.

The chaos property is strongly linked to the notion of “sensitivity”, defined on a metric space (X, d) by:

Definition 5 f has sensitive dependence on initial conditions if there exists § > 0 such that, for any x € X
and any neighborhood V of x, there exist y € V and n > 0 such that d (f"(x), f”(y)) > 4.
¢ is called the constant of sensitivity of f.

Indeed, Banks et al. have proven in [6] that when f is chaotic and (X, d) is a metric space, then f has the
property of sensitive dependence on initial conditions (this property was formerly an element of the definition
of chaos). To sum up, quoting Devaney in [10], a chaotic dynamical system “is unpredictable because of the
sensitive dependence on initial conditions. It cannot be broken down or simplified into two subsystems which
do not interact because of topological transitivity. And in the midst of this random behavior, we nevertheless
have an element of regularity”. Fundamentally different behaviors are consequently possible and occur in an
unpredictable way.

3.2 Chaotic Iterations

Let us consider a system with a finite number N € IN* of elements (or cells), so that each cell has a Boolean
state. Having N Boolean values for these cells leads to the definition of a particular state of the system. A
sequence which elements belong to [1; N] is called a strategy. The set of all strategies is denoted by [1, NJN.

Definition 6 The set B denoting {0,1}, let f : BN — BN be a function and S € [1,N]™ be a “strategy”.
The so-called chaotic iterations are defined by 2° € BN and

. n an ! if S™ £
Vn €]N ,Vl S Hl, N]],‘Ti = { (f(xnil))sn lf Sn _ Z (1)

In other words, at the n'" iteration, only the S™—th cell is “iterated”. Note that in a more general
formulation, S™ can be a subset of components and (f(x”_l))sn can be replaced by (f(ac’“))sn7 where
k < n, describing for example, delays transmission [I9, [4]. Finally, let us remark that the term “chaotic”, in
the name of these iterations, has a priori no link with the mathematical theory of chaos, presented above.

Let us now recall how to define a suitable metric space where chaotic iterations are continuous. For
further explanations, see, e.g., [4].

Let & be the discrete Boolean metric, 6(x,y) = 0 < x = y. Given a function f, define the function:

Fp: [LN)xBN — BN
(k. B) > (Byohg) + F(E)ID)
JE[L;N]
where + and . are the Boolean addition and product operations. Consider the phase space:

X = [1;N]N x BN, (3)

and the map defined on X:
Gy (S, E) = (a(S), Fy(i(S), E)) , (4)

where o is the shift function defined by ¢(S™),en € [1,N]N — (S"*1),en € [1,N]N and i is the initial
function i : (S™)nen € [1,N]N¥ — S° € [1;N]. Then the chaotic iterations proposed in Definition |§| can be
described by the following iterations:

Xvex 5

Xkt ZGf(Xk). ()

With this formulation, a shift function appears as a component of chaotic iterations. The shift function

is a famous example of a chaotic map [10] but its presence is not sufficient enough to claim Gy as chaotic.
To study this claim, a new distance between two points X = (S, E),Y = (S, F) € X has been introduced in
[4] as follows:

d(XaY):de(EaE)"_ds(SvS)? (6)
where
N
de(EaE) = Z(s(EkaEk)a
~ : (7
w9 = |Sk— Sk
ds(S,5) = N;T-

This new distance has been introduced to satisfy the following requirements.

e When the number of different cells between two systems is increasing, then their distance should
increase too.

e In addition, if two systems present the same cells and their respective strategies start with the same
terms, then the distance between these two points must be small because the evolution of the two
systems will be the same for a while. Indeed, both dynamical systems start with the same initial
condition, use the same update function, and as strategies are the same for a while, furthermore
updated components are the same as well.

The distance presented above follows these recommendations. Indeed, if the floor value |d(X,Y)] is equal
to n, then the systems F, E differ in n cells (d, is indeed the Hamming distance). In addition, d(X,Y) —
|d(X,Y)] is a measure of the differences between strategies S and S. More precisely, this floating part is
less than 107" if and only if the first k£ terms of the two strategies are equal. Moreover, if the k" digit is
nonzero, then the k" terms of the two strategies are different. The impact of this choice for a distance will
be investigated at the end of the document.

Finally, it has been established in [4] that,

Proposition 1 Let f be a map from BN to itself. Then Gy 1is continuous in the metric space (X,d).

The chaotic property of Gy has been firstly established for the vectorial Boolean negation f(z1,...,zn) =
(Z1,...,Zn) []. To obtain a characterization, we have secondly introduced the notion of asynchronous
iteration graph recalled bellow.

Let f be a map from BN to itself. The asynchronous iteration graph associated with f is the directed
graph T'(f) defined by: the set of vertices is BN; for all z € BN and i € [1;N], the graph T'(f) contains an
arc from z to Fy(i,z). The relation between I'(f) and Gy is clear: there exists a path from x to ' in I'(f) if
and only if there exists a strategy s such that the parallel iteration of Gy from the initial point (s, z) reaches
the point 2’. We have then proven in [2] that,

Theorem 1 Let f : BN — BN. G} is chaotic (according to Devaney) if and only if T(f) is strongly
connected.

Finally, we have established in [2] that,

Theorem 2 Let f : B" — B", T'(f) its iteration graph, M its adjacency matriz and M a n X n matric
defined by M;; = LM;; ifi # j and My; =1— L S M;; otherwise.

" =i
If T(f) is strongly connected, then the output of the PRNG detailed in Algorithm (1| follows a law that

tends to the uniform distribution if and only if M is a double stochastic matriz.

These results of chaos and uniform distribution have led us to study the possibility of building a pseudoran-
dom number generator (PRNG) based on the chaotic iterations. As G, defined on the domain [1; N]™ x BN,
is built from Boolean networks f : BN — BN, we can preserve the theoretical properties on G ¢ during imple-
mentations (due to the discrete nature of f). Indeed, it is as if BN represents the memory of the computer
whereas [1;N]¥ is its input stream (the seeds, for instance, in PRNG, or a physical noise in TRNG). Let us
finally remark that the vectorial negation satisfies the hypotheses of both theorems above.

4 Application to Pseudorandomness

4.1 A First Pseudorandom Number Generator

We have proposed in [5] a new family of generators that receives two PRNGs as inputs. These two generators
are mixed with chaotic iterations, leading thus to a new PRNG that improves the statistical properties of
each generator taken alone. Furthermore, our generator possesses various chaos properties that none of the
generators used as input present.

This generator is synthesized in Algorithm([I] It takes as input: a Boolean function f satisfying Theorem|[T}
an integer b, ensuring that the number of executed iterations is at least b and at most 2b + 1; and an initial

Algorithm 1: PRNG with chaotic functions

Input: a function f, an iteration number b, an initial configuration 2° (n bits)
Output: a configuration x (n bits)
x 2
k < b+ XORshift(b);
fort=0,...,k do
s <= XORshift(n);
L T = Ff<87 .’L‘);

return x;

Algorithm 2: An arbitrary round of XORshift algorithm

Input: the internal configuration z (a 32-bit word)
Output: y (a 32-bit word)

24+ 2@ (2 < 13);

24 2@ (2> 17);

2 2® (2 <5);

Yz

return y;

configuration z°. It returns the new generated configuration z. Internally, it embeds two XORshift(k)

PRNGs [I5] that return integers uniformly distributed into [1;k]. XORshift is a category of very fast
PRNGs designed by George Marsaglia, which repeatedly uses the transform of exclusive or (XOR, @) on a
number with a bit shifted version of it. This PRNG, which has a period of 232 — 1 = 4.29 x 10?, is summed
up in Algorithm [2| It is used in our PRNG to compute the strategy length and the strategy elements.

This former generator has successively passed various batteries of statistical tests, as the NIST [2],
DieHARD [14], and TestU01 [13] ones.

4.2 Improving the Speed of the Former Generator

Instead of updating only one cell at each iteration, we can try to choose a subset of components and to
update them together. Such an attempt leads to a kind of merger of the two sequences used in Algorithm
When the updating function is the vectorial negation, this algorithm can be rewritten as follows:

2% € [0,2N —1],5 € [0,2N — 1N ®)
Vn e N* 2™ = 2" L @ S™,

where & is for the bitwise exclusive or between two integers. This rewriting can be understood as follows.
The n—th term S™ of the sequence S, which is an integer of N binary digits, presents the list of cells to
update in the state 2™ of the system (represented as an integer having N bits too). More precisely, the k—th
component of this state (a binary digit) changes if and only if the k—th digit in the binary decomposition of
S™is 1.

The single basic component presented in Eq. [§]is of ordinary use as a good elementary brick in various
PRNGs. It corresponds to the following discrete dynamical system in chaotic iterations:

. . N ! if i ¢ S™
Vn e N 7V’L € [[11 N]]axi = { (f(xnfl))sn if i € S™. (9)

where f is the vectorial negation and Vn € IN, 8™ C [[1,N] is such that k € S™ if and only if the k—th digit
in the binary decomposition of S™ is 1. Such chaotic iterations are more general than the ones presented in

Definition [6] because, instead of updating only one term at each iteration, we select a subset of components
to change.

Obviously, replacing Algorithm [I] by Equation [8] which is possible when the iteration function is the
vectorial negation, leads to a speed improvement. However, proofs of chaos obtained in [3] have been
established only for chaotic iterations of the form presented in Definition[6] The question is now to determine
whether the use of more general chaotic iterations to generate pseudorandom numbers faster, does not deflate
their topological chaos properties.

4.3 Proofs of Chaos of the General Formulation of the Chaotic Iterations

Let us consider the discrete dynamical systems in chaotic iterations having the general form:

. n zp ! ifi ¢ S”
vn e N7 € (1N = = { (fl@™), ifiesm

In other words, at the n'” iteration, only the cells whose id is contained into the set S™ are iterated.

Let us now rewrite these general chaotic iterations as usual discrete dynamical system of the form X" t! =
f(X™) on an ad hoc metric space. Such a formulation is required in order to study the topological behavior
of the system.

Let us introduce the following function:

(10)

x: [LN]xP([L;N]) — B
. 0 ifidX, 11)
(i) — {1 ifieX, |

where P (X) is for the powerset of the set X, that is, Y € P(X) <Y C X.
Given a function f : BN — BN, define the function:

Fr: P([;N]) xBY — BN
(P.B) = (ExG.P)+JELXGP) 12)

where + and . are the Boolean addition and product operations, and T is the negation of the Boolean .
Consider the phase space:

X =P ([;;N)" x B, (13)

and the map defined on X:
Gy (S,E) = (a(5), Fy(i(S), B)) , (14)

where o is the shift function defined by o(S™)new € P ([1; N]])]N — (S"M)new € P ([1; N]])]N and ¢ is the

initial function i : (S™)pen € P ([1; N]])]N — S% € P ([1;N]). Then the general chaotic iterations defined
in Equation [I0] can be described by the following discrete dynamical system:

Xex
{ Xk = Gp(XF). (15)
Once more, a shift function appears as a component of these general chaotic iterations. o
To study the Devaney’s chaos property, a distance between two points X = (S, E),Y = (S5, F) of X must

be defined. Let us introduce: 5 5
d(X,Y)=d.(E,E)+d(S,5), (16)

where

&
&
E}

[
™=

d(Ek, E‘k) is once more the Hamming distance,

1

i |SFASH|
106

k=1

where |X| is the cardinality of a set X and AAB is for the symmetric difference, defined for sets A, B as
AAB=(A\B)U(B\A4).

(17)

<
Z\mﬁ“

Proposition 2 The function d defined in Eq. 18 a metric on X.

PROOF d, is the Hamming distance. We will prove that dg is a distance too, thus d, as being the sum of
two distances, will also be a distance.

e Obviously, ds(S,S) > 0, and if S = S, then dy(S,S) = 0. Conversely, if dy(S,S) = 0, then V& €
N, |S*AS*| = 0, and so V&, S¥ = S*.

e d, is symmetric (d4(S,S) = ds(S,S)) due to the commutative property of the symmetric difference.

e Finally, |[SAS”| = [(SAZ)AS"| = |SA(S'AS)AS"| = [(SAS)A(S'AS")| < |SAS'| 4+ |S'AS”|, and
so for all subsets S,.5’, and S” of [1,N], we have ds(S,S”) < d.(S5,S5") + ds(S’,S”), and the triangle
inequality is obtained.

Before being able to study the topological behavior of the general chaotic iterations, we must first establish
that:

Proposition 3 For all f : BN — BN, the function Gy is continuous on (X,d).

PrOOF We use the sequential continuity. Let (S™, E™),en be a sequence of the phase space X, which
converges to (S, E). We will prove that (G(S™, E"))HE]N converges to (Gf(S, E)). Let us remark that for
all n, S™ is a strategy, thus, we consider a sequence of strategies (i.e., a sequence of sequences).
As d((S™, E™); (S, E)) converges to 0, each distance d.(E™, E) and ds(S™, S) converges to 0. But d.(E™, E)
is an integer, so dng € IN, d.(E™, E) = 0 for any n > nyg.
In other words, there exists a threshold ng € IN after which no cell will change its state: dng € N, n > ng =
E"=F.

In addition, d4(S™,S) — 0, so In; € IN,d,(S™,S) < 107! for all indexes greater than or equal to n;.
This means that for n > ny, all the S™ have the same first term, which is S°: Vn > ny, S§ = So.

Thus, after the max(ng,n1)t" term, states of E™ and E are identical and strategies S™ and S start with
the same first term.
Consequently, states of G(S™, E™) and G (S, E) are equal, so, after the maz(ng,n1)" term, the distance
d between these two points is strictly less than 1.
We now prove that the distance between (G(S", E")) and (G(S, E)) is convergent to 0. Let ¢ > 0.

e If € > 1, we see that the distance between (G(S™, E™)) and (Gy(S, E)) is strictly less than 1 after
the maz(ng,n1)*" term (same state).

o If e <1, then 3k € N,107% > ¢ > 10~ *+1_ But ds(S™, S) converges to 0, so
Ing € N,Vn > ng, ds(S™, S) < 107 F+2),

thus after no, the k + 2 first terms of S™ and S are equal.

As a consequence, the k + 1 first entries of the strategies of G¢(S™, E™) and G(S, E) are the same (G is
a shift of strategies) and due to the definition of ds, the floating part of the distance between (S™, E™) and
(S, E) is strictly less than 10~(*+1) L ¢,

In conclusion,
Ve > 0,3INy = maz(ng,n1,n2) € N,Vn = No,d (G¢(S", E™); G4(S,E)) <e.
G is consequently continuous.
It is now possible to study the topological behavior of the general chaotic iterations. We will prove that,
Theorem 3 The general chaotic iterations defined on Equation[I0 satisfy the Devaney’s property of chaos.

Let us firstly prove the following lemma.

Lemma 1 (Strong transitivity) For all couples X, Y € X and any neighborhood V of X, we can find
n € IN* and X' € V such that G"(X') =Y.

PROOF Let X = (S,E), € > 0, and kg = |logio(¢) + 1. Any point X’ = (S, E’) such that B/ = E and
Vk < ko, S = S*, are in the open ball B (X,¢). Let us define X = (S’, E), where X = G*0(X). We denote

by s C [1;N] the set of coordinates that are different between E and the state of Y. Thus each point X’ of
the form (S, E’) where E' = E and S’ starts with (S, 8% ... S%0 s ...), verifies the following properties:

e X'isin B(X,e),
e the state of G’;OH(X’) is the state of Y.

Finally the point ((SO,Sl,...,Sko,&so,sl,...) ;E)7 where (s, s!,...) is the strategy of Y, satisfies the

properties claimed in the lemma.

We can now prove Theorem [3]..

PROOF (THEOREM Firstly, strong transitivity implies transitivity.

Let (S,E) € X and € > 0. To prove that G is regular, it is sufficient to prove that there exists a strategy
S such that the distance between (S, E) and (S, E) is less than ¢, and such that (S, E) is a periodic point.

Let t; = [—logyo(e)], and let E’ be the configuration that we obtain from (S, E) after ¢; iterations of
Gy. As Gy is strongly transitive, there exists a strategy S’ and ¢ € IN such that E is reached from (5’, E')
after to iterations of G.

Consider the strategy S that alternates the first ¢; terms of S and the first ¢, terms of S':

/ ! / !
S = (S0s- ey Sty 138y s St 1350, 3 G155y St 1,50,)-

It is clear that (S, E) is obtained from (S, E) after t; + to iterations of G¢. So (S, E) is a periodic point.
Since Sy = Sy for t < ¢1, by the choice of t1, we have d((S, E), (S, E)) < e.

5 Efficient PRNG based on Chaotic Iterations

Based on the proof presented in the previous section, it is now possible to improve the speed of the generator
formerly presented in [5, [4]. The first idea is to consider that the provided strategy is a pseudorandom
Boolean vector obtained by a given PRNG. An iteration of the system is simply the bitwise exclusive or
between the last computed state and the current strategy. Topological properties of disorder exhibited by
chaotic iterations can be inherited by the inputted generator, we hope by doing so to obtain some statistical
improvements while preserving speed.

Let us give an example using 16-bits numbers, to clearly understand how the bitwise xor operations are
done. Suppose that = and the strategy S* are given as binary vectors. Table [I| shows the result of z @ S*.

T 1011 101010010010
s =/01 10011011100 111
xS =110 1 110001110101
Table 1: Example of an arbitrary round of the proposed generator

Listing 1: C code of the sequential PRNG based on chaotic iteration s
unsigned int CIPRNG() {

static unsigned int x = 123123123;
unsigned long t1 = xorshift ();
unsigned long t2 = xorl28();
unsigned long t3 = xorwow ();

[T T I B

x " (unsigned
x " (unsigned
x " (unsigned
x " (unsigned
x "~ (unsigned
x " (unsigned

int)tl;
int)(t2>>32);
int)(t3>>32);
int)t2;
int)(tl>>32);
)

int)t3;

return x;

In Listing [1| a sequential version of the proposed PRNG based on chaotic iterations is presented. The
xor operator is represented by ~. This function uses three classical 64-bits PRNGs, namely the xorshift,
the xor128, and the xorwow [I5]. In the following, we call them “xor-like PRNGs”. As each xor-like PRNG
uses 64-bits whereas our proposed generator works with 32-bits, we use the command (unsigned int), that
selects the 32 least significant bits of a given integer, and the code (unsigned int) (t>>32) in order to
obtain the 32 most significant bits of t.

Thus producing a pseudorandom number needs 6 xor operations with 6 32-bits numbers that are provided
by 3 64-bits PRNGs. This version successfully passes the stringent BigCrush battery of tests [13].

6 Efficient PRNGs based on Chaotic Iterations on GPU

In order to take benefits from the computing power of GPU, a program needs to have independent blocks of
threads that can be computed simultaneously. In general, the larger the number of threads is, the more local
memory is used, and the less branching instructions are used (if, while, ...), the better the performances on
GPU is. Obviously, having these requirements in mind, it is possible to build a program similar to the one
presented in Listing [I] which computes pseudorandom numbers on GPU. To do so, we must firstly recall
that in the CUDA [I6] environment, threads have a local identifier called ThreadIdx, which is relative to
the block containing them. Furthermore, in CUDA, parts of the code that are executed by the GPU, are
called kernels.

6.1 Naive Version for GPU

It is possible to deduce from the CPU version a quite similar version adapted to GPU. The simple principle
consists in making each thread of the GPU computing the CPU version of our PRNG. Of course, the
three xor-like PRNGs used in these computations must have different parameters. In a given thread, these
parameters are randomly picked from another PRNGs. The initialization stage is performed by the CPU.
To do it, the ISAAC PRNG [12] is used to set all the parameters embedded into each thread.

The implementation of the three xor-like PRNGs is straightforward when their parameters have been
allocated in the GPU memory. Each xor-like works with an internal number x that saves the last generated

10

pseudorandom number. Additionally, the implementation of the xorl28, the xorshift, and the xorwow
respectively require 4, 5, and 6 unsigned long as internal variables.

Algorithm 3: Main kernel of the GPU “naive” version of the PRNG based on chaotic iterations

Input: InternalVarXorLikeArray: array with internal variables of the 3 xor-like PRNGs in global
memory;

NumThreads: number of threads;
Output: NewNb: array containing random numbers in global memory
if threadldx is concerned by the computation then

retrieve data from InternalVarXorLikeArray|threadldx] in local variables;

for i=1 to n do

L compute a new PRNG as in Listin
store the new PRNG in NewNb[NumThreads*threadIdx-+i;

store internal variables in InternalVarXorLikeArray|[threadIdx];

Algorithm [3| presents a naive implementation of the proposed PRNG on GPU. Due to the available
memory in the GPU and the number of threads used simultaneously, the number of random numbers that
a thread can generate inside a kernel is limited (i.e., the variable n in algorithm [3)). For instance, if 100,000
threads are used and if n = 10(E|, then the memory required to store all of the internals variables of both
the xor-like PRNG&H and the pseudorandom numbers generated by our PRNG,; is equal to 100,000 x ((4 +
54 6) x 24 (14 100)) = 1,310,000 32-bits numbers, that is, approximately 52Mb.

This generator is able to pass the whole BigCrush battery of tests, for all the versions that have been
tested depending on their number of threads (called NumThreads in our algorithm, tested up to 5 million).

Remark 1 The proposed algorithm has the advantage of manipulating independent PRNGs, so this version
is easily adaptable on a cluster of computers too. The only thing to ensure is to use a single ISAAC PRNG.
To achieve this requirement, a simple solution consists in using a master node for the initialization. This
master node computes the initial parameters for all the different nodes involved in the computation.

6.2 Improved Version for GPU

As GPU cards using CUDA have shared memory between threads of the same block, it is possible to use
this feature in order to simplify the previous algorithm, i.e., to use less than 3 xor-like PRNGs. The solution
consists in computing only one xor-like PRNG by thread, saving it into the shared memory, and then to
use the results of some other threads in the same block of threads. In order to define which thread uses the
result of which other one, we can use a combination array that contains the indexes of all threads and for
which a combination has been performed.

In Algorithm [4 two combination arrays are used. The variable offset is computed using the value of
combination_size. Then we can compute ol and o2 representing the indexes of the other threads whose
results are used by the current one. In this algorithm, we consider that a 32-bits xor-like PRNG has been
chosen. In practice, we use the xor128 proposed in [I5] in which unsigned longs (64 bits) have been replaced
by unsigned integers (32 bits).

This version can also pass the whole BigCrush battery of tests.

6.3 Theoretical Evaluation of the Improved Version

A run of Algorithm [consists in an operation (x = x @ t) having the form of Equation |8 which is equivalent
to the iterative system of Eq.[9] That is, an iteration of the general chaotic iterations is realized between

Lin fact, we need to add the initial seed (a 32-bits number)
2we multiply this number by 2 in order to count 32-bits numbers

11

Algorithm 4: Main kernel for the chaotic iterations based PRNG GPU efficient version

Input: InternalVarXorLikeArray: array with internal variables of 1 xor-like PRNGs in global
memory;
NumThreads: Number of threads;
array combl, array comb2: Arrays containing combinations of size combination _size;
Output: NewNb: array containing random numbers in global memory
if threadld is concerned then
retrieve data from InternalVarXorLikeArray|threadId] in local variables including shared memory
and x;
offset = threadIdx%combination _size;
ol = threadldx-offset+array combl|offset];
02 = threadldx-offset+array comb2[offset];
for i=1 to n do
t=xor-like();
t=t"shmem|o1]~shmem|02];
shared mem|threadld]|=t;
X =Xx"t;

store the new PRNG in NewNb|[NumThreads*threadld-+i;

store internal variables in InternalVarXorLikeArray[threadId];

the last stored value x of the thread and a strategy ¢ (obtained by a bitwise exclusive or between a value
provided by a xor-like() call and two values previously obtained by two other threads). To be certain that
we are in the framework of Theorem [3] we must guarantee that this dynamical system iterates on the space
X ="P ([[1, N]])]N x BN. The left term 2 obviously belongs to BN. To prevent from any flaws of chaotic
properties, we must check that the right term (the last ¢), corresponding to the strategies, can possibly be
equal to any integer of 1, N].

Such a result is obvious, as for the xor-like(), all the integers belonging into its interval of definition can
occur at each iteration, and thus the last ¢ respects the requirement. Furthermore, it is possible to prove
by an immediate mathematical induction that, as the initial « is uniformly distributed (it is provided by
a cryptographically secure PRNG), the two other stored values shmem|ol] and shmem|[o2]| are uniformly
distributed too, (this is the induction hypothesis), and thus the next z is finally uniformly distributed.

Thus Algorithm [is a concrete realization of the general chaotic iterations presented previously, and for
this reason, it satisfies the Devaney’s formulation of a chaotic behavior.

7 Experiments

Different experiments have been performed in order to measure the generation speed. We have used a first
computer equipped with a Tesla C1060 NVidia GPU card and an Intel Xeon E5530 cadenced at 2.40 GHz,
and a second computer equipped with a smaller CPU and a GeForce GTX 280. All the cards have 240 cores.

In Figure [I| we compare the quantity of pseudorandom numbers generated per second with various xor-
like based PRNGs. In this figure, the optimized versions use the zor64 described in [I5], whereas the
naive versions embed the three xor-like PRNGs described in Listing [l In order to obtain the optimal
performances, the storage of pseudorandom numbers into the GPU memory has been removed. This step
is time consuming and slows down the numbers generation. Moreover this storage is completely useless, in
case of applications that consume the pseudorandom numbers directly after generation. We can see that
when the number of threads is greater than approximately 30,000 and lower than 5 million, the number of
pseudorandom numbers generated per second is almost constant. With the naive version, this value ranges
from 2.5 to 3GSamples/s. With the optimized version, it is approximately equal to 20GSamples/s. Finally
we can remark that both GPU cards are quite similar, but in practice, the Tesla C1060 has more memory

12

than the GTX 280, and this memory should be of better quality. As a comparison, Listing [I] leads to the
generation of about 138MSample/s when using one core of the Xeon E5530.

le+11 T T T T —
optimized prng on C1060 ——
optimized prng on GTX285 -------
naive prng on C1060 -
naive prng on GTX285 —-—-—-
T

1e+10 - -

Random numbers generated / second

10000 100000 1e+06 1e+07
Number of threads used by the GPU

Figure 1: Quantity of pseudorandom numbers generated per second with the xorlike-based PRNG

In Figure [2] we highlight the performances of the optimized BBS-based PRNG on GPU. On the Tesla
C1060 we obtain approximately 700MSample/s and on the GTX 280 about 670MSample/s, which is obviously
slower than the xorlike-based PRNG on GPU. However, we will show in the next sections that this new PRNG
has a strong level of security, which is necessarily paid by a speed reduction.

All these experiments allow us to conclude that it is possible to generate a very large quantity of pseudo-
random numbers statistically perfect with the xor-like version. To a certain extend, it is also the case with
the secure BBS-based version, the speed deflation being explained by the fact that the former version has
“only” chaotic properties and statistical perfection, whereas the latter is also cryptographically secure, as it
is shown in the next sections.

8 Security Analysis

In this section the concatenation of two strings v and v is classically denoted by uv. In a cryptographic
context, a pseudorandom generator is a deterministic algorithm G transforming strings into strings and such
that, for any seed s of length m, G(s) (the output of G on the input s) has size ¢g(m) with {g(m) > m.
The notion of secure PRNGs can now be defined as follows.

Definition 7 A cryptographic PRNG G is secure if for any probabilistic polynomial time algorithm D, for
any positive polynomial p, and for all sufficiently large m’s,

1
p(m)
where U, is the uniform distribution over {0,1}" and the probabilities are taken over Uy, Uy, (m) as well as
over the internal coin tosses of D.

[Pr[D(G(Um)) = 1] = PriD(Upgm)) = 1]| <

)

13

1e+09 ————T T ———— ——
L optimized bbs based prng on C1060 ——— -
optimized bbs based prng on GTX285 -------

Random numbers generated / second

1e+08 o e e
10000 100000 1e+06 1e+07

Number of threads used by the GPU

Figure 2: Quantity of pseudorandom numbers generated per second using the BBS-based PRNG

Intuitively, it means that there is no polynomial time algorithm that can distinguish a perfect uniform
random generator from G with a non negligible probability. The interested reader is referred to [I1], chapter 3]
for more information. Note that it is quite easily possible to change the function ¢ into any polynomial
function ¢ satisfying ¢'(m) > m) [I1, Chapter 3.3].

The generation schema developed in () is based on a pseudorandom generator. Let H be a cryptographic
PRNG. We may assume, without loss of generality, that for any string Sy of size N, the size of H(Sy) is kN,
with k& > 2. It means that £ (N) = kN. Let S, ..., Sk be the strings of length N such that H(Sp) = 57 ...S%
(H(So) is the concatenation of the S;’s). The cryptographic PRNG X defined in (8) is the algorithm mapping
any string of length 2N x0Sy into the string (zg @ So ® S1)(xo ® So B S1 D Sa) ... (o @Z’g S;). One in
particular has £x (2N) = kN = ¢g(N). We claim now that if this PRNG is secure, then the new one is
secure too.

Proposition 4 If H is a secure cryptographic PRNG, then X is a secure cryptographic PRNG too.

PROOF The proposition is proved by contraposition. Assume that X is not secure. By Definition, there
exists a polynomial time probabilistic algorithm D, a positive polynomial p, such that for all kg there exists
N > %" satisfying

1
p(2N)’

We describe a new probabilistic algorithm D’ on an input w of size kN:

[Pr{D(X (Uw)) = 1] — Pr[D(Upy = 1]] >

1. Decompose w into w = wy . ..wy, where each w; has size N.
2. Pick a string y of size N uniformly at random.

3. Compute z = (y ® w1)(y D wy D ws)...(y @Zlf w;).

4. Return D(z).

14

Consider for each y € B*Y the function ¢y from B*N into B*N mapping w = w; ... w;, (each w; has
length N) to (y ® w1)(y B wy B ws)...(y @:zﬁ w;). By construction, one has for every w,

D'(w) = D(py(w)), (18)

where y is randomly generated. Moreover, for each y, ¢, is injective: if (y®w:)(y®dwBws) ... (y @zz’;l w;)

(y @ w))(y®w) @wh)...(y EBZ? w}), then for every 1 < 5 < k, y@z{ w) = y@i]l w;. It follows, by a
direct induction, that w; = w]. Furthermore, since B*" is finite, each @y is bijective. Therefore, and using

, one has

PI[D/(UkN) =].} = PI‘[D((py(UkN)) =].] = Pr[D(UkN) = 1] (19)

Now, using (18) again, one has for every z,
D'(H(z)) = D(py(H(x))), (20)
where y is randomly generated. By construction, ¢, (H(x)) = X (yx), thus
D'(H(z)) = D(yz), (21)
where y is randomly generated. It follows that

Pr{D/(H(Un)) = 1] = Pr[D(Uan) = 1] (22)

From and , one can deduce that there exists a polynomial time probabilistic algorithm D', a positive
polynomial p, such that for all ky there exists N > % satisfying

|Pr[D(H(Un)) = 1] = Pr[D(Upn = 1]| > SN’

proving that H is not secure, which is a contradiction.

9 Cryptographical Applications

9.1 A Cryptographically Secure PRNG for GPU

It is possible to build a cryptographically secure PRNG based on the previous algorithm (Algorithm. Due
to Proposition [4] it simply consists in replacing the zor-like PRNG by a cryptographically secure one. We
have chosen the Blum Blum Shum generator [8] (usually denoted by BBS) having the form:

Tpt1 = xi mod M

where M is the product of two prime numbers (these prime numbers need to be congruent to 3 modulus 4).
BBS is known to be very slow and only usable for cryptographic applications.

The modulus operation is the most time consuming operation for current GPU cards. So in order to obtain
quite reasonable performances, it is required to use only modulus on 32-bits integer numbers. Consequently
22 need to be lesser than 232, and thus the number M must be lesser than 216, So in practice we can choose
prime numbers around 256 that are congruent to 3 modulus 4. With 32-bits numbers, only the 4 least
significant bits of x,, can be chosen (the maximum number of indistinguishable bits is lesser than or equals
to loga(loga(M))). In other words, to generate a 32-bits number, we need to use 8 times the BBS algorithm
with possibly different combinations of M. This approach is not sufficient to be able to pass all the tests of
TestUO01, as small values of M for the BBS lead to small periods. So, in order to add randomness we have
proceeded with the followings modifications.

15

e Firstly, we define 16 arrangement arrays instead of 2 (as described in Algorithm , but only 2 of them
are used at each call of the PRNG kernels. In practice, the selection of combination arrays to be used
is different for all the threads. It is determined by using the three last bits of two internal variables
used by BBS. In Algorithm [f] character & is for the bitwise AND. Thus using &7 with a number gives
the last 3 bits, thus providing a number between 0 and 7.

e Secondly, after the generation of the 8 BBS numbers for each thread, we have a 32-bits number whose
period is possibly quite small. So to add randomness, we generate 4 more BBS numbers to shift the
32-bits numbers, and add up to 6 new bits. This improvement is described in Algorithm[5] In practice,
the last 2 bits of the first new BBS number are used to make a left shift of at most 3 bits. The last 3
bits of the second new BBS number are added to the strategy whatever the value of the first left shift.
The third and the fourth new BBS numbers are used similarly to apply a new left shift and add 3 new
bits.

e Finally, as we use 8 BBS numbers for each thread, the storage of these numbers at the end of the kernel
is performed using a rotation. So, internal variable for BBS number 1 is stored in place 2, internal
variable for BBS number 2 is stored in place 3, ..., and finally, internal variable for BBS number 8 is
stored in place 1.

In Algorithm [5] n is for the quantity of random numbers that a thread has to generate. The operation
t«=4 performs a left shift of 4 bits on the variable ¢ and stores the result in ¢, and BBS1(bbs1)&15 selects
the last four bits of the result of BBS1. Thus an operation of the form ¢t <<= 4;¢| = BBS1(bbs1)&15
realizes in ¢ a left shift of 4 bits, and then puts the 4 last bits of BBS1(bbs1) in the four last positions of t.
Let us remark that the initialization ¢ is not a necessity as we fill it 4 bits by 4 bits, until having obtained
32-bits. The two last new shifts are realized in order to enlarge the small periods of the BBS used here,
to introduce a kind of variability. In these operations, we make twice a left shift of ¢t of at most 3 bits,
represented by shift in the algorithm, and we put exactly the shift last bits from a BBS into the shift
last bits of t. For this, an array named array_shift, containing the correspondence between the shift and
the number obtained with shift 1 to make the and operation is used. For example, with a left shift of 0,
we make an and operation with 0, with a left shift of 3, we make an and operation with 7 (represented by
111 in binary mode).

It should be noticed that this generator has once more the form 2"*! = 2™ @ S™, where S™ is referred in
this algorithm as ¢: each iteration of this PRNG ends with x = x A t. This S™ is only constituted by secure
bits produced by the BBS generator, and thus, due to Proposition[4] the resulted PRNG is cryptographically
secure.

9.2 Toward a Cryptographically Secure and Chaotic Asymmetric Cryptosystem

We finish this research work by giving some thoughts about the use of the proposed PRNG in an asymmetric
cryptosystem. This first approach will be further investigated in a future work.

9.2.1 Recalls of the Blum-Goldwasser Probabilistic Cryptosystem

The Blum-Goldwasser cryptosystem is a cryptographically secure asymmetric key encryption algorithm
proposed in 1984 [9]. The encryption algorithm implements a XOR-based stream cipher using the BBS
PRNG, in order to generate the keystream. Decryption is done by obtaining the initial seed thanks to the
final state of the BBS generator and the secret key, thus leading to the reconstruction of the keystream.

The key generation consists in generating two prime numbers (p, ¢), randomly and independently of each
other, that are congruent to 3 mod 4, and to compute the modulus N = pq. The public key is NV, whereas
the secret key is the factorization (p, q).

Suppose Bob wishes to send a string m = (myg,...,mz_1) of L bits to Alice:

1. Bob picks an integer r randomly in the interval [1, N] and computes xo = r? mod N.

16

Algorithm 5: main kernel for the BBS based PRNG GPU

Input: InternalVarBBSArray: array with internal variables of the 8 BBS in global memory;

NumThreads: Number of threads;

array _comb: 2D Arrays containing 16 combinations (in first dimension) of size combination _size (in

second dimension);

array _shift[4]={0,1,3,7};

Output: NewNb: array containing random numbers in global memory
if threadld is concerned then

X,

offset = threadIdx%combination _size;
ol = threadldx-offset+array comb[bbs1&7][offset];
02 = threadldx-offset+array comb|8+bbs2&7|[offset|;
for i=1 to n do
t<<=4;
t|=BBS1(bbs1)&15;
<<=4;
t|=BBS8(bbs8)&15;
// two new shifts
shift=BBS3(bbs3)&3;
t<<=shift;
t|=BBS1(bbsl)&array shift[shift];
shift=BBS7(bbs7)&3;
t<<=shift;
t|=BBS2(bbs2)&array _shift[shift];
t=t"shmem|o1]~shmem|02];
shared mem|threadld]|=t;
X =Xx"t;

store the new PRNG in NewNb|[NumThreads*threadld-+i|;

17

retrieve data from InternalVarBBSArray[threadId| in local variables including shared memory and

we consider that bbsl ... bbs8 represent the internal states of the 8 BBS numbers;

store internal variables in InternalVarXorLikeArray[threadId] using a rotation;

2. He uses the BBS to generate the keystream of L pseudorandom bits (by,...,br_1), as follows. For
i=0to L—1,
e i =0.
e Whilei < L —1:
— Set b; equal to the least—signiﬁcantﬂ bit of x;,
—i=1i+1,
— x; = (2;_1)? mod N.
3. The ciphertext is computed by XORing the plaintext bits m with the keystream: ¢ = (cq,...,cr—1) =
m @ b. This ciphertext is [c, y], where y = x%L mod N.

When Alice receives [(co, cesCL—1), y], she can recover m as follows:

1. Using the secret key (p, ¢), she computes 7, = y((p+1)/4)L mod p and rq = y((Q+1)/4)L mod q.

2. The initial seed can be obtained using the following procedure: x¢ = ¢(¢~* mod p)rp—i—p(p*l

mod q)rg mod N.
3. She recomputes the bit-vector b by using BBS and x.

4. Alice finally computes the plaintext by XORing the keystream with the ciphertext: m = ¢ ® b.

9.2.2 Proposal of a new Asymmetric Cryptosystem Adapted from Blum-Goldwasser

We propose to adapt the Blum-Goldwasser protocol as follows. Let N = |log(log(N))] be the number of
bits that can be obtained securely with the BBS generator using the public key N of Alice. Alice will pick
randomly S° in [0, 2N~!] too, and her new public key will be (S°, V).

To encrypt his message, Bob will compute

CcC = (’ITLO (&%) (bo [S2) SO)7TTL1 (&%) (bo () b1 () SO), oo,y (&%) (bo (&%) bl ... bL—l (&) SO)) (23)
instead of (mg @ by, m1 B by,...,mp_1 Bbr_1).
The same decryption stage as in Blum-Goldwasser leads to the sequence (mo D% m @S m_1® SO).

Thus, with a simple use of SY, Alice can obtain the plaintext. By doing so, the proposed generator is used
in place of BBS, leading to the inheritance of all the properties presented in this paper.

10 Conclusion

In this paper, a formerly proposed PRNG based on chaotic iterations has been generalized to improve its
speed. It has been proven to be chaotic according to Devaney. Efficient implementations on GPU using
xor-like PRNGs as input generators have shown that a very large quantity of pseudorandom numbers can be
generated per second (about 20Gsamples/s), and that these proposed PRNGs succeed to pass the hardest
battery in TestU01, namely the BigCrush. Furthermore, we have shown that when the inputted generator
is cryptographically secure, then it is the case too for the PRNG we propose, thus leading to the possibility
to develop fast and secure PRNGs using the GPU architecture. Thoughts about an improvement of the
Blum-Goldwasser cryptosystem, using the proposed method, has been finally proposed.

In future work we plan to extend these researches, building a parallel PRNG for clusters or grid computing.
Topological properties of the various proposed generators will be investigated, and the use of other categories
of PRNGs as input will be studied too. The improvement of Blum-Goldwasser will be deepened. Finally,
we will try to enlarge the quantity of pseudorandom numbers generated per second either in a simulation
context or in a cryptographic one.

3 As signaled previously, BBS can securely output up to N = |log(log(N))| of the least-significant bits of z; during each
round.

18

References

(1]

2]

13l

4]

[5]

[6]

17l

18]

19]

[10]

[11]
[12]
[13]

[14]
[15]
[16]
[17]
[18]

[19]

Y. Kholodov A. Zhmurov, K. Rybnikov and V. Barsegov. Generation of random numbers on graphics
processors: Forced indentation in silico of the bacteriophage hk97. J. Phys. Chem. B, 115(18):5278-5288,
2011.

Jacques M. Bahi, Jean-frangois Couchot, Christophe Guyeux, and Adrien Richard. On the link between
strongly connected iteration graphs and chaotic boolean discrete-time dynamical systems. In FCT’11,
18th Int. Symp. on Fundamentals of Computation Theory, volume * of LNCS, pages ***-*** (Oslo,
Norway, August 2011. To appear.

Jacques M. Bahi and Christophe Guyeux. Hash functions using chaotic iterations. Journal of Algorithms
& Computational Technology, 4(2):167-181, 2010.

Jacques M. Bahi and Christophe Guyeux. Topological chaos and chaotic iterations, application to hash
functions. In WCCI’10, IEEE World Congress on Computational Intelligence, pages 1-7, Barcelona,
Spain, July 2010. Best paper award.

Jacques M. Bahi, Christophe Guyeux, and Qianxue Wang. A novel pseudo-random generator based
on discrete chaotic iterations. In INTERNET’09, 1-st Int. Conf. on Evolving Internet, pages 71-76,
Cannes, France, August 2009.

J. Banks, J. Brooks, G. Cairns, and P. Stacey. On devaney’s definition of chaos. Amer. Math. Monthly,
99:332-334, 1992.

E. Barker and A. Roginsky. Draft nist special publication 800-131 recommendation for the transitioning
of cryptographic algorithms and key sizes, 2010.

Lenore Blum, Manuel Blum, and Michael Shub. A simple unpredictable pseudo-random number gener-
ator. SIAM Journal on Computing, 15:364—-383, 1986.

Manuel Blum and Shafi Goldwasser. An efficient probabilistic public key encryption scheme which hides
all partial information. In Proceedings of CRYPTO 84 on Advances in cryptology, pages 289-302, New
York, NY, USA, 1985. Springer-Verlag New York, Inc.

Robert L. Devaney. An Introduction to Chaotic Dynamical Systems. Addison-Wesley, Redwood City,
CA, 2nd edition, 1989.

Oded Goldreich. Foundations of Cryptography: Basic Tools. Cambridge University Press, 2007.
Jenkins. ISAAC. In IWFSE: International Workshop on Fast Software Encryption, LNCS, 1996.

Pierre L’Ecuyer and Richard J. Simard. TestUO1: A C library for empirical testing of random number
generators. ACM Trans. Math. Softw, 33(4), 2007.

G. Marsaglia. Diehard: a battery of tests of randomness. http://stat.fsu.edu/ geo/diehard.html, 1996.
G. Marsaglia. Xorshift rngs. Journal of Statistical Software, 8(14):1-6, 2003.

Nvidia. Cuda cublas library, 2011. Version 4.0.

Nvidia. Curand library, 2011. Version 4.0.

Wai-Man Pang, Tien-Tsin Wong, and Pheng-Ann Heng. Generating massive high-quality random num-
bers using GPU. In Jun Wang, editor, 2008 IEEE World Congress on Computational Intelligence, Hong
Kong, 2008. IEEE Computational Intelligence Society, IEEE Press.

F. Robert. Discrete Iterations: A Metric Study, volume 6 of Springer Series in Computational Mathe-
matics. 1986.

19

[20] David B. Thomas, Lee W. Howes, and Wayne Luk. A comparison of CPUs, GPUs, FPGAs, and
massively parallel processor arrays for random number generation. In Paul Chow and Peter Y. K.
Cheung, editors, Proceedings of the ACM/SIGDA 17th International Symposium on Field Programmable
Gate Arrays, FPGA 2009, Monterey, California, USA, February 22-24, 2009, pages 63—-72. ACM, 2009.

20

	1 Introduction
	2 Related works on GPU based PRNGs
	3 Basic Recalls
	3.1 Devaney's Chaotic Dynamical Systems
	3.2 Chaotic Iterations

	4 Application to Pseudorandomness
	4.1 A First Pseudorandom Number Generator
	4.2 Improving the Speed of the Former Generator
	4.3 Proofs of Chaos of the General Formulation of the Chaotic Iterations

	5 Efficient PRNG based on Chaotic Iterations
	6 Efficient PRNGs based on Chaotic Iterations on GPU
	6.1 Naive Version for GPU
	6.2 Improved Version for GPU
	6.3 Theoretical Evaluation of the Improved Version

	7 Experiments
	8 Security Analysis
	9 Cryptographical Applications
	9.1 A Cryptographically Secure PRNG for GPU
	9.2 Toward a Cryptographically Secure and Chaotic Asymmetric Cryptosystem
	9.2.1 Recalls of the Blum-Goldwasser Probabilistic Cryptosystem
	9.2.2 Proposal of a new Asymmetric Cryptosystem Adapted from Blum-Goldwasser

	10 Conclusion

