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Abstract: Piezoelectric tube actuators are extensively used in scanning probe microscopes to provide 

dynamic scanning motions in open-loop operations. Furthermore, they are employed as 

micropositioners due to their high bandwidth, high resolution and ease of excitation. However, 

these piezoelectric micropositioners exhibit badly damped vibrations that occur when the input 

excites the dynamic response, which tends to degrade positioning accuracy and performance. This 

paper deals with vibrations’ feedforward control of a multi-degrees of freedom (DOF) piezoelectric 

micropositioner in order to damp the vibrations in the direct axes and to reduce the cross-couplings. 

The novelty in this paper relative to the existing vibrations feedforward controls is the simplicity in 

design approach, the minimal number of shaper impulses for each input required to damp all modes 

of vibration at each output, and the account for the strong cross-couplings which only occur in 

multi-DOF cases. A generalization to a multiple degrees of freedom actuator is first proposed. Then 

simulation runs on a 3-DOF piezoelectric tube micropositioner have been effectuated to 

demonstrate the efficiency of the proposed method. Finally, experimental tests were carried out to 

validate and to confirm the predicted simulation. 
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1. Introduction 

Piezoelectric actuators are well known for their high force density, high bandwidth, high 

resolution and ease of fabrication and excitation. They are the foremost actuators in Atomic Force 

Microscopy, and they are likely to remain the most widely used positioning actuators not only in 

AFMs, but also in other micro and nano scale positioning systems [1–4,9,20–22]. Piezoelectric 

actuators have evolved, after several decades of research and development, from their simple 1-DOF 

to multi-DOF micropositioners. They have several advantages over traditional motion-control 

devices, but also present challenges as they exhibit nonlinearities (creep and hysteresis) and badly 

damped vibrations not only in the direct transfers but also in the cross-coupling transfers which 

strongly affect the final performances and stability of these actuators. Many papers have dealt with 

the compensation against the nonlinearities and vibrations to improve actuator performance and 

accuracy [5–9,23–25]. One of the methods used to tackle vibrations of piezoelectric actuators was the 

feedforward input shaping method where the original input command is convolved with a set of 

impulses with different amplitudes to generate a new shaped command that is fed to the system 

input. The input shaping approach as a feedforward control configuration allows the avoidance of 

the use of sensors. This is particularity essential in applications where there is a great lack of sensors, 

like miniaturized systems for microassembly or micromanipulation. Additionally, the input shaping 

approach permits a reduction in the vibrations without substantially reducing the bandwidth, which 

is important in high dynamics positioning applications. 

Input shaping has been given a great deal of consideration for single input systems with multiple 

modes of vibrations in time and frequency domains [10–15]. The newly formed commands for such 



 

systems are typically made by connecting single-mode impulse sequences in series. Singer [13] 

demonstrated that shorter-length sequences would normally minimize distortion in the original 

command while removing all unwanted vibrations. Hyde [16] extended Singer’s approach by using 

non-linear, numerical search algorithms to build time-optimal impulse sequences. As an alternate 

approach, Smith shown that Posicast inputs for multiple-mode systems could be built by placing 

zeros over all unwanted system poles in the z-plane. Smith suggested that the discrete transfer 

function resulting from the specified zeros could then be used to build a Posicast command to remove 

multiple-mode vibrations. Tuttle and Seering [12] moved forward with what Smith suggested and 

proposed practical zero-placement technique to design optimal input shapers for systems with an 

arbitrary number of modes in the z-plane. In this technique, guidelines for effective strategy and 

simple shaper design to suppress vibrations become apparent. For systems with multiple inputs and 

multiple modes of vibrations, Pao [16] developed an input shaping design technique using pole 

placement in the s-plane which leads to a smaller number of impulses and therefore shorter shaping 

delay and faster maneuvering. In her approach, more information about the system model is taken 

into account and input shaping sequences for all system inputs are solved simultaneously, rather 

than solving them for each input independently of one another. However, the technique was only 

valuable for systems with single-output, although the input was multiple (see Figure 1a). In [17], we 

extended Pao’s technique to damp the vibrations in a 2-DOF piezoelectric actuator by segregating the 

system into two different subsystems, each with one output only. 

  
(a) (b) 

Figure 1. Feedforward control of badly damped vibrations. (a) control of SIMO (single input multiple 

outputs) systems [16]; (b) generalized control for MIMO (multiple inputs multiple outputs) systems. 

This paper generalizes the work in [17] so it can be applied to control the vibrations of multi-

input and multi-output systems with multi modes of vibrations, see Figure 1b. The results are 

important for piezoelectric actuators having several degrees of freedom and to which exploiting 

higher modes (and thus higher frequencies) is desired. We therefore apply the theoretical results to 

a 3-DoF piezoelectric tube actuator classically used in atomic force microscopes which demonstrates 

the effectiveness of this newly developed technique. 

For the remainder of this paper, we briefly review the existing input shaping method for 

multiple input systems (but single output) in Section 2. Then, the proposed extended approach for 

multiple input multiple output systems is outlined in Section 3. Finally, in Section 4, the theoretical 

results are adapted and applied to a 3-DoF piezoelectric actuator which demonstrates its efficiency 

to reduce the vibrations in both the direct transfers and in the cross-couplings. 

2. Preliminaries on Multiple Input Shaping and Single Output Input Shaping Control 

This section explains an approach to design input shapers for multi-input systems with multi-

modes of vibrations using zero placement input shaping technique. The input shapers can be 

designed to be identical to each other by solving shaper constraint equations for only one sequence 

of impulses and applying the solution to all inputs, or by including more information about the 

system model into the problem formulation and solving for the impulse sequences simultaneously. 

The latter generally leads to shorter sequences [16]. Let us assume a system with m + 1 input, single 

output, and n structural frequencies ɷ1… ɷn  



 

𝑋 .(𝑡) = 𝑨𝑋(𝑡) + 𝑩𝑢(𝑡) 

𝑦(𝑡) = 𝐶𝑋(𝑡) 
(1) 

where     𝐴 = 𝑏𝑙𝑜𝑐𝑘𝑑𝑖𝑎𝑔[𝐴𝑖] = 𝑏𝑙𝑜𝑐𝑘𝑑𝑖𝑎𝑔 [
0 1

−𝑤𝑖
2 −2𝜁𝑤𝑖

] 

For the rigid body  𝜁0 = 𝑤0 = 0 

And     𝐵 = 𝑏𝑙𝑜𝑐𝑘𝑐𝑜𝑙[𝐵𝑖] = 𝑏𝑙𝑜𝑐𝑘𝑐𝑜𝑙 [
0 0… 0
𝑏0

𝑖 𝑏1
𝑖 … 𝑏𝑚

𝑖 ]  𝑖 = 0, 1, 2, … , 𝑛 

The problem of coupling among inputs is addressed by including information from the 𝑩 

matrix of the system model in Equation (1) into the derivation of the designed shapers. Matrix A for 

each sub-system represents the modal modeling of the system which defines how the sub-system 

states are related to the modes of vibrations. Matrix A for the whole MIMO system contributes to the 

formulation of the transfer matrix from the unshaped inputs to the system states (𝑠𝑰 − 𝑨)−1𝑩𝑸(𝑠). 

The multiple input shaper transfer functions are  𝑸𝒓(𝑠) ,  𝑟 = 0, 1, 2, … ,𝑚  and 𝑸(𝑠)  is a vector 

containing them. 

To filter out any vibrations due to the flexible mode, we choose 𝑸𝒓(𝑠) such that:  

𝑏0
𝑖𝑄0(𝑠) + 𝑏1

𝑖𝑄1(𝑠) + ⋯+ 𝑏𝑚
𝑖 𝑄𝑚(𝑠)|𝑠=−𝜁𝑖𝑤𝑖∓𝑗𝑤𝑑,𝑖

= 0 (2) 

The desired impulse sequences (shapers) can then be solved for by taking the inverse Laplace 

transforms of  𝑸𝒓(𝑠). If we assume the same T for all designed shapers then 𝑸𝒓(𝑠) can be written in 

the following form:  

𝑄𝒓(𝑠) = 𝑎0𝑟 + 𝑎1𝑟𝑒
−𝑠𝑇 + ⋯+ 𝑎𝑙𝑟𝑒

−𝑠𝑙𝑇 (3) 

where 𝑙 is the number of zeros that each of the shapers has.  

For 𝑙 =
2𝑛

𝑚+1
 there will be an equal number of equations and unknowns, however this doesn’t 

mean that we have to satisfy this condition to solve for the shaper’s impulse amplitudes. 

By substituting 𝑄𝒓(𝑠) in Equation (2), the constraint equations can be re-written in the following 

matrix form: 

𝑷𝒂 = 𝑾 (4) 

where  

𝑝 =

[
 
 
 
 
 
 
 
 
 
 
 

𝑏0
1 𝑏0

1𝑒−𝑠1𝑇   … 𝑏0
1𝑒−𝑠1𝑙𝑇

𝑏0
1 𝑏0

1𝑒−𝑠1
∗𝑇  … 𝑏0

1𝑒−𝑠1
∗𝑙𝑇 

… … …

    𝑏1
1 𝑏1

1𝑒−𝑠1𝑇   … 𝑏1
1𝑒−𝑠1𝑙𝑇      …

   𝑏1
1 𝑏1

1𝑒−𝑠1
∗𝑇  … 𝑏1

1𝑒−𝑠1
∗𝑙𝑇      …

… … …

    𝑏𝑚
1 𝑏𝑚

1 𝑒−𝑠1𝑇   … 𝑏𝑚
1 𝑒−𝑠1𝑙𝑇

   𝑏𝑚
1 𝑏𝑚

1 𝑒−𝑠1
∗𝑇  … 𝑏𝑚

1 𝑒−𝑠1
∗𝑙𝑇 

… … … 
 

𝑏0
𝑛 𝑏0

𝑛𝑒−𝑠𝑛𝑇   … 𝑏0
𝑛𝑒−𝑠𝑛𝑙𝑇

𝑏0
𝑛 𝑏0

𝑛𝑒−𝑠𝑛
∗𝑇  … 𝑏0

𝑛𝑒−𝑠𝑛
∗ 𝑙𝑇 

1        1       … 1

    𝑏1
𝑛 𝑏1

𝑛𝑒−𝑠𝑛𝑇   … 𝑏1
𝑛𝑒−𝑠𝑛𝑙𝑇      …

   𝑏1
𝑛 𝑏1

𝑛𝑒−𝑠𝑛
∗𝑇  … 𝑏1

𝑛𝑒−𝑠𝑛
∗ 𝑙𝑇      …

0        0       …       0             …

    𝑏𝑚
𝑛 𝑏𝑚

𝑛 𝑒−𝑠𝑛𝑇   … 𝑏𝑚
𝑛 𝑒−𝑠𝑛𝑙𝑇

   𝑏𝑚
𝑛 𝑏𝑚

𝑛 𝑒−𝑠𝑛
∗𝑇  … 𝑏𝑚

𝑛 𝑒−𝑠𝑛
∗ 𝑙𝑇 

 0       0         … 0     

 

                …  

0
𝑛 𝑏0

𝑛𝑒−𝑠𝑛
∗𝑇  … 𝑏0

𝑛𝑒
−𝑠𝑛

∗ 𝑙𝑇

 
0        0       … 0

 𝑏1
𝑛𝑒−𝑠𝑛𝑇   … 𝑏1

𝑛𝑒−𝑠𝑛𝑙𝑇      …

   𝑏1
𝑛 𝑏1

𝑛𝑒−𝑠𝑛
∗𝑇  … 𝑏1

𝑛𝑒−𝑠𝑛
∗ 𝑙𝑇      …

0        0       …       0             …

    𝑏𝑚
𝑛 𝑏𝑚

𝑛 𝑒−𝑠𝑛𝑇   … 𝑏𝑚
𝑛 𝑒−𝑠𝑛𝑙𝑇

   𝑏𝑚
𝑛 𝑏𝑚

𝑛 𝑒−𝑠𝑛
∗𝑇  … 𝑏𝑚

𝑛 𝑒−𝑠𝑛
∗ 𝑙𝑇 

 1       1         … 1

 

                   ]
 
 
 
 
 
 
 
 
 
 
 

 (5) 

𝒂 = [𝑎00  𝑎10 … 𝑎𝑙0  𝑎01  𝑎11 … 𝑎𝑙1 … 𝑎0𝑚  𝑎1𝑚 … 𝑎𝑙𝑚 ]𝑇 (6) 

𝑾 = [
𝟎2𝑛𝑥1

𝟏(𝑚+1)𝑥1
], and 𝒂 can be solved using a generalized inverse: 

𝒂 = 𝑷ϯ𝑾 (7) 

As can be seen in this section, the design procedure of input shapers for systems with multiple 

inputs and one single output is straightforward, simple to implement, and easily adaptable to various 

types of robustness constraints. Further, the resulting shaper designs have fewer impulses per input, 

and lead to shorter shaper lengths, thus yielding faster output responses. 

 



 

3. A Novel Multi-Mode MIMO Shaping Control 

In this section, we explain how the same approach explained in Section 2 can be extended and 

applied to multiple output systems with multi modes of vibrations. A multi-input multi-output 

system can be thought of as a number of sub-systems, each has the same number of inputs as the 

original system and only one output. The number of these resulting sub-systems is equal to the 

number of the original system’s outputs and each has its own shaper solution 𝑸(𝑠). To be able to have 

one solution of shapers for all outputs, we have to include 𝑩𝑗 information of all outputs in the shaper 

design process. That is, the designed shapers should be able to cancel all modes of vibrations for all 

outputs. This can be achieved by creating a new state vector 𝑋 = [𝑋1 𝑋2  … 𝑋𝐾]𝑇 that includes all state 

vectors 𝑋𝑗 = [𝑥𝑗1  𝑥𝑗2 𝑥𝑗3
1  𝑥𝑗4

1 … 𝑥𝑗3
𝑛  𝑥𝑗4

𝑛

 
]
𝑇

 where 𝑋𝑗  represents the jth output state vector.  

The new input matrix can be expressed as the following: 

𝐵 = 𝑏𝑙𝑜𝑐𝑘𝑐𝑜𝑙[𝐵𝑗] = 𝑏𝑙𝑜𝑐𝑘𝑐𝑜𝑙 [𝑏𝑙𝑜𝑐𝑘𝑐𝑜𝑙 [
0 0 ⋯ 0  ⋯ 0

𝑏𝑗0
𝑖 𝑏𝑗1

𝑖  ⋯ 𝑏𝑗𝑟
𝑖  … 𝑏𝑗𝑚

𝑖 ]]  

𝐵 =

[
 
 
 
 
 
 0 𝑏10

0

0 𝑏11
0

⋮  ⋮
0 𝑏1𝑟

0

⋮  ⋮
0 𝑏1𝑚

0

0 𝑏10
1

0 𝑏11
1

⋮  ⋮
0 𝑏1𝑟

1

⋮  ⋮
0 𝑏1𝑚

1

…
 
…
 … 
…

0 𝑏10
𝑛

0 𝑏11
𝑛

⋮  ⋮
0 𝑏1𝑟

𝑛

⋮  ⋮
0 𝑏1𝑚

𝑛

…
 
…
 … 
…

0 𝑏𝑗0
0

0 𝑏𝑗1
0

⋮  ⋮
0 𝑏𝑗𝑟

0

⋮  ⋮
0 𝑏𝑗𝑚

0

0 𝑏𝑗0
1

0 𝑏𝑗1
1

⋮  ⋮
0 𝑏𝑗𝑟

1

⋮  ⋮
0 𝑏𝑗𝑚

1

…
 
…
 … 
…

0 𝑏𝑗0
𝑛

0 𝑏𝑗1
𝑛

⋮  ⋮
0 𝑏𝑗𝑟

𝑛

⋮  ⋮
0 𝑏𝑗𝑚

𝑛

…
 
…
 … 
…

0 𝑏𝐾0
0

0 𝑏𝐾1
0

⋮  ⋮
0 𝑏𝐾𝑟

0

⋮  ⋮
0 𝑏𝐾𝑚

0

0 𝑏𝐾0
1

0 𝑏𝐾1
1

⋮  ⋮
0 𝑏𝐾𝑟

1

⋮  ⋮
0 𝑏𝐾𝑚

1

…
 
…
 … 
…

0 𝑏𝐾0
𝑛

0 𝑏𝐾1
𝑛

⋮  ⋮
0 𝑏𝐾𝑟

𝑛

⋮  ⋮
0 𝑏𝐾𝑚

𝑛
]
 
 
 
 
 
 
𝑇

 (8) 

where the number of inputs is  𝑟 = 0, 1, 2, … ,𝑚, the number of structural frequencies in each direction 

is 𝑖 = 0, 1, 2, … , 𝑛 and the number of outputs is  𝑗 = 1, 2, … , 𝐾.  

As explained in [17], for a system with two inputs (𝑚 = 1) and two outputs  (𝐾 = 2), each with 

two modes of vibrations  (𝑛 = 2), the system input matrix for one of the outputs is: 

𝑩𝒋 = [
𝟎 𝑏𝑗0

0

𝟎 𝑏𝑗1
0

𝟎 𝑏𝑗0
1

𝟎 𝑏𝑗1
1

𝟎 𝑏𝑗0
2

𝟎 𝑏𝑗1
2 ]

𝑻

  

and the system input matrix for both outputs will be:  

𝑩 = [
0 𝑏10

0

0 𝑏11
0

0 𝑏10
1

0 𝑏11
1

0 𝑏10
2

0 𝑏11
2

0 𝑏20
0

0 𝑏21
0

0 𝑏20
1

0 𝑏21
1

0 𝑏20
2

0 𝑏21
2 ]

𝑇

 (9) 

For a system with three inputs (𝑚 = 2) and three outputs  (𝐾 = 3), each with three modes of 

vibrations  (𝑛 = 3), the system input matrix for all outputs is: 

𝑩 =  [

0 𝑏10
0

0 𝑏11
0

0 𝑏10
1

0 𝑏11
1

0 𝑏10
2

0 𝑏11
2

0 𝑏20
0

0 𝑏21
0

0 𝑏20
1

0 𝑏21
1

0 𝑏20
2

0 𝑏21
2  

 0
 0

𝑏30
0

𝑏31
0

0 𝑏30
1 0 𝑏30

2

0 𝑏31
1 0 𝑏31

2

 0 𝑏12
0 0 𝑏12

1 0 𝑏12
2 0 𝑏22

0 0 𝑏22
1 0 𝑏22

2 0 𝑏32
0 0 𝑏32

1 0 𝑏32
2

]

𝑇

 (10) 

The new resultant constraint matrix  𝑃 = 𝑏𝑙𝑜𝑐𝑘𝑐𝑜𝑙[𝑃𝑗], where 𝑃𝑗 is the same matrix shown in 

Equation (5) for each of the outputs, taking into consideration that the unity constraint in each 𝑃𝑗 

should not be repeated more than once in 𝑃.  

Including the newly formed input matrix B shown in Equation (8) in the problem solving would 

allow us to design a different shaper for each of the inputs. The newly formed P matrix shown in 

Equation (11), which can be constructed from B and sub-system poles, would ensure that the 

designed shapers will suppress all modes of vibrations for all outputs. The shaper amplitudes vector 

𝒂 can be obtained from solving 𝒂 = 𝑷ϯ𝑾. 

As an example, for a two-input two-output system similar to the one in Equation (10) with two 

modes of vibration [17], the P matrix in Equation (11) becomes as shown in Equation (12). Where 

[(𝑤1, 𝜁1), (𝑤2, 𝜁2)]  and [(𝑤3, 𝜁3), (𝑤4, 𝜁4)] are the structural frequencies and damping ratios for the 

first and second output respectively. 𝑠1,2 = −𝜁1,2𝑤1,2 ∓ 𝑗𝑤𝑑 1,2 are system poles for the first output 

and  𝑠3,4 = −𝜁3,4𝑤3,4 ∓ 𝑗𝑤𝑑 3,4 are system poles for the second output.  

The generic P matrix in Equation (11) allows us to design a compensator for any MIMO system 

with multiple modes of vibration. However, as the number of inputs, outputs or modes of vibration 



 

increase, the P matrix size becomes larger, and solving for shaper impulses becomes more 

challenging. The determination of this complexity is one of the perspective works. In the next section, 

we will apply the proposed generalized MIMO input shaping technique to a three-input three-output 

system with three modes of vibrations. The multi-mode in this context refers to the dominant 

resonance frequencies for each output of the MIMO system. The three-input three-output with three 

modes of vibration is not three SISO systems but rather it is, in our approach, three Multi Input Single 

Output (MISO) systems. Each of the outputs is coupled with all inputs through the 𝑩𝑗 matrix [17]. 

We will explain the MIMO system simplification in detail. 

4. Applications to a 3-DOF Piezoelectric Actuator 

4.1. Presentation of the Experimental Setup 

In this section we apply the proposed multivariable input shaping control technique to reduce 

the vibrations in a piezoelectric actuator. The actuator to be characterized and controlled is a 

piezoelectric actuator having tubular structure, called piezoelectric tube or piezotube. Piezotubes 

exhibit badly damped oscillations in their responses to brusque or high frequency input signals.  

𝑃 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑏10
1 𝑏10

1 𝑒−𝑠1𝑇  … 𝑏10
1 𝑒−𝑠1𝑙𝑇

𝑏10
1 𝑏10

1 𝑒−𝑠1
∗𝑇  … 𝑏10

1 𝑒−𝑠1
∗𝑙𝑇 

… … …

 𝑏11
1 𝑏11

1 𝑒−𝑠1𝑇  … 𝑏11
1 𝑒−𝑠1𝑙𝑇  …

 𝑏11
1 𝑏11

1 𝑒−𝑠1
∗𝑇  … 𝑏11

1 𝑒−𝑠1
∗𝑙𝑇  …

… … …

 𝑏1𝑚
1 𝑏1𝑚

1 𝑒−𝑠1𝑇  … 𝑏1𝑚
1 𝑒−𝑠1𝑙𝑇

 𝑏1𝑚
1 𝑏1𝑚

1 𝑒−𝑠1
∗𝑇  … 𝑏1𝑚

1 𝑒−𝑠1
∗𝑙𝑇  

… … … 
 

𝑏10
𝑛 𝑏10

𝑛 𝑒−𝑠𝑛𝑇  … 𝑏10
𝑛 𝑒−𝑠𝑛𝑙𝑇

𝑏10
𝑛 𝑏10

𝑛 𝑒−𝑠𝑛
∗𝑇  … 𝑏10

𝑛 𝑒−𝑠𝑛
∗ 𝑙𝑇 

   

 𝑏11
𝑛 𝑏11

𝑛 𝑒−𝑠𝑛𝑇  … 𝑏11
𝑛 𝑒−𝑠𝑛𝑙𝑇  …

 𝑏11
𝑛 𝑏11

𝑛 𝑒−𝑠𝑛
∗𝑇  … 𝑏11

𝑛 𝑒−𝑠𝑛
∗ 𝑙𝑇  …

   

 𝑏1𝑚
𝑛 𝑏1𝑚

𝑛 𝑒−𝑠𝑛𝑇  … 𝑏1𝑚
𝑛 𝑒−𝑠𝑛𝑙𝑇

 𝑏1𝑚
𝑛 𝑏1𝑚

𝑛 𝑒−𝑠𝑛
∗𝑇  … 𝑏1𝑚

𝑛 𝑒−𝑠𝑛
∗ 𝑙𝑇  

   
𝑏20

1 𝑏20
1 𝑒−𝑠1𝑇  … 𝑏20

1 𝑒−𝑠1𝑙𝑇

𝑏20
1 𝑏20

1 𝑒−𝑠1
∗𝑇  … 𝑏20

1 𝑒−𝑠1
∗𝑙𝑇 

… … …

 𝑏21
1 𝑏21

1 𝑒−𝑠1𝑇  … 𝑏21
1 𝑒−𝑠1𝑙𝑇  …

 𝑏21
1 𝑏21

1 𝑒−𝑠1
∗𝑇  … 𝑏21

1 𝑒−𝑠1
∗𝑙𝑇  …

… … …

 𝑏2𝑚
1 𝑏2𝑚

1 𝑒−𝑠1𝑇  … 𝑏2𝑚
1 𝑒−𝑠1𝑙𝑇

 𝑏2𝑚
1 𝑏2𝑚

1 𝑒−𝑠1
∗𝑇  … 𝑏2𝑚

1 𝑒−𝑠1
∗𝑙𝑇 

… … … 
 

𝑏20
𝑛 𝑏20

𝑛 𝑒−𝑠𝑛𝑇  … 𝑏20
𝑛 𝑒−𝑠𝑛𝑙𝑇

𝑏20
𝑛 𝑏20

𝑛 𝑒−𝑠𝑛
∗𝑇  … 𝑏20

𝑛 𝑒−𝑠𝑛
∗ 𝑙𝑇 

   

 𝑏21
𝑛 𝑏21

𝑛 𝑒−𝑠𝑛𝑇  … 𝑏21
𝑛 𝑒−𝑠𝑛𝑙𝑇  …

 𝑏21
𝑛 𝑏21

𝑛 𝑒−𝑠𝑛
∗𝑇  … 𝑏21

𝑛 𝑒−𝑠𝑛
∗ 𝑙𝑇  …

   

 𝑏2𝑚
𝑛 𝑏2𝑚

𝑛 𝑒−𝑠𝑛𝑇  … 𝑏2𝑚
𝑛 𝑒−𝑠𝑛𝑙𝑇

 𝑏2𝑚
𝑛 𝑏2𝑚

𝑛 𝑒−𝑠𝑛
∗𝑇  … 𝑏2𝑚

𝑛 𝑒−𝑠𝑛
∗ 𝑙𝑇 

   ………………
………………
………………

𝑏𝑗0
1 𝑏𝑗0

1 𝑒−𝑠1𝑇  … 𝑏𝑗0
1 𝑒−𝑠1𝑙𝑇

𝑏𝑗0
1 𝑏𝑗0

1 𝑒−𝑠1
∗𝑇  … 𝑏𝑗0

1 𝑒−𝑠1
∗𝑙𝑇 

… … …

 𝑏𝑗1
1 𝑏𝑗1

1 𝑒−𝑠1𝑇  … 𝑏𝑗1
1 𝑒−𝑠1𝑙𝑇  …

 𝑏𝑗1
1 𝑏𝑗1

1 𝑒−𝑠1
∗𝑇  … 𝑏𝑗1

1 𝑒−𝑠1
∗𝑙𝑇  …

… … …

 𝑏𝑗𝑚
1 𝑏𝑗𝑚

1 𝑒−𝑠1𝑇  … 𝑏𝑗𝑚
1 𝑒−𝑠1𝑙𝑇

 𝑏𝑗𝑚
1 𝑏𝑗𝑚

1 𝑒−𝑠1
∗𝑇  … 𝑏𝑗𝑚

1 𝑒−𝑠1
∗𝑙𝑇 

… … … 
 

𝑏𝑗0
𝑛 𝑏𝑗0

𝑛 𝑒−𝑠𝑛𝑇  … 𝑏𝑗0
𝑛 𝑒−𝑠𝑛𝑙𝑇

𝑏𝑗0
𝑛 𝑏𝑗0

𝑛 𝑒−𝑠𝑛
∗𝑇  … 𝑏𝑗0

𝑛 𝑒−𝑠𝑛
∗ 𝑙𝑇 

   

 𝑏𝑗1
𝑛 𝑏𝑗1

𝑛 𝑒−𝑠𝑛𝑇  … 𝑏𝑗1
𝑛 𝑒−𝑠𝑛𝑙𝑇  …

 𝑏𝑗1
𝑛 𝑏𝑗1

𝑛 𝑒−𝑠𝑛
∗𝑇  … 𝑏𝑗1

𝑛 𝑒−𝑠𝑛
∗ 𝑙𝑇  …

   

 𝑏𝑗𝑚
𝑛 𝑏𝑗𝑚

𝑛 𝑒−𝑠𝑛𝑇  … 𝑏𝑗𝑚
𝑛 𝑒−𝑠𝑛𝑙𝑇

 𝑏𝑗𝑚
𝑛 𝑏𝑗𝑚

𝑛 𝑒−𝑠𝑛
∗𝑇  … 𝑏𝑗𝑚

𝑛 𝑒−𝑠𝑛
∗ 𝑙𝑇 

   ………………
………………
………………

𝑏𝐾0
1 𝑏𝐾0

1 𝑒−𝑠1𝑇  … 𝑏𝐾0
1 𝑒−𝑠1𝑙𝑇

𝑏𝐾0
1 𝑏𝐾0

1 𝑒−𝑠1
∗𝑇  … 𝑏𝐾0

1 𝑒−𝑠1
∗𝑙𝑇 

… … …

 𝑏𝐾1
1 𝑏𝐾1

1 𝑒−𝑠1𝑇  … 𝑏𝐾1
1 𝑒−𝑠1𝑙𝑇  …

 𝑏𝐾1
1 𝑏𝐾1

1 𝑒−𝑠1
∗𝑇  … 𝑏𝐾1

1 𝑒−𝑠1
∗𝑙𝑇  …

… … …

 𝑏𝐾𝑚
1 𝑏𝐾𝑚

1 𝑒−𝑠1𝑇  … 𝑏𝐾𝑚
1 𝑒−𝑠1𝑙𝑇

 𝑏𝐾𝑚
1 𝑏𝐾𝑚

1 𝑒−𝑠1
∗𝑇  … 𝑏𝐾𝑚

1 𝑒−𝑠1
∗𝑙𝑇 

… … … 
 

𝑏𝐾0
𝑛 𝑏𝐾0

𝑛 𝑒−𝑠𝑛𝑇  … 𝑏𝐾0
𝑛 𝑒−𝑠𝑛𝑙𝑇

𝑏𝐾0
𝑛 𝑏𝐾0

𝑛 𝑒−𝑠𝑛
∗𝑇  … 𝑏𝐾0

𝑛 𝑒−𝑠𝑛
∗ 𝑙𝑇 

   

 𝑏𝐾1
𝑛 𝑏𝐾1

𝑛 𝑒−𝑠𝑛𝑇  … 𝑏𝐾1
𝑛 𝑒−𝑠𝑛𝑙𝑇  …

 𝑏𝐾1
𝑛 𝑏𝐾1

𝑛 𝑒−𝑠𝑛
∗𝑇  … 𝑏𝐾1

𝑛 𝑒−𝑠𝑛
∗ 𝑙𝑇  …

   

 𝑏𝐾𝑚
𝑛 𝑏𝐾𝑚

𝑛 𝑒−𝑠𝑛𝑇  … 𝑏𝐾𝑚
𝑛 𝑒−𝑠𝑛𝑙𝑇

 𝑏𝐾𝑚
𝑛 𝑏𝐾𝑚

𝑛 𝑒−𝑠𝑛
∗𝑇  … 𝑏𝐾𝑚

𝑛 𝑒−𝑠𝑛
∗ 𝑙𝑇 

   
1  1  … 1   0  0  … 0   … 0  0  … 0

 
…  …  … …   …   …  … …   … …  …  … …

 
…  …  … …   …   …  … …   … …  …  … …

 
 0  0  … 0   0  0  … 0   … 1  1  … 1 

 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (11) 



 

𝒑 =  

[
 
 
 
 
 
 
 
 
 
 
 
𝑏10

1 𝑏10
1 𝑒−𝑠1𝑇 𝑏10

1 𝑒−𝑠12𝑇 𝑏10
1 𝑒−𝑠13𝑇 𝑏10

1 𝑒−𝑠14𝑇 𝑏11
1 𝑏11

1 𝑒−𝑠1𝑇 𝑏11
1 𝑒−𝑠12𝑇 𝑏11

1 𝑒−𝑠13𝑇 𝑏11
1 𝑒−𝑠14𝑇

𝑏10
1 𝑏10

1 𝑒−𝑠1
∗𝑇 𝑏10

1 𝑒−𝑠1
∗2𝑇 𝑏10

1 𝑒−𝑠1
∗3𝑇 𝑏10

1 𝑒−𝑠1
∗4𝑇 𝑏11

1 𝑏11
1 𝑒−𝑠1

∗𝑇 𝑏11
1 𝑒−𝑠1

∗2𝑇 𝑏11
1 𝑒−𝑠1

∗3𝑇 𝑏11
1 𝑒−𝑠1

∗4𝑇

𝑏10
2 𝑏10

2 𝑒−𝑠2𝑇 𝑏10
2 𝑒−𝑠22𝑇 𝑏10

2 𝑒−𝑠23𝑇 𝑏10
2 𝑒−𝑠24𝑇 𝑏11

2 𝑏11
2 𝑒−𝑠2𝑇 𝑏11

2 𝑒−𝑠22𝑇 𝑏11
2 𝑒−𝑠23𝑇 𝑏11

2 𝑒−𝑠24𝑇

𝑏10
2 𝑏10

2 𝑒−𝑠2
∗𝑇 𝑏10

2 𝑒−𝑠2
∗2𝑇 𝑏10

2 𝑒−𝑠2
∗3𝑇 𝑏10

2 𝑒−𝑠2
∗4𝑇 𝑏11

2 𝑏11
2 𝑒−𝑠2

∗𝑇 𝑏11
2 𝑒−𝑠2

∗2𝑇 𝑏11
2 𝑒−𝑠2

∗3𝑇 𝑏11
2 𝑒−𝑠2

∗4𝑇

𝑏20
1 𝑏20

1 𝑒−𝑠3𝑇 𝑏20
1 𝑒−𝑠32𝑇 𝑏20

1 𝑒−𝑠33𝑇 𝑏20
1 𝑒−𝑠34𝑇 𝑏21

1 𝑏21
1 𝑒−𝑠3𝑇 𝑏21

1 𝑒−𝑠32𝑇 𝑏21
1 𝑒−𝑠33𝑇 𝑏21

1 𝑒−𝑠34𝑇

𝑏20
1 𝑏20

1 𝑒−𝑠3
∗𝑇 𝑏20

1 𝑒−𝑠3
∗2𝑇 𝑏20

1 𝑒−𝑠3
∗3𝑇 𝑏20

1 𝑒−𝑠3
∗4𝑇 𝑏21

1 𝑏21
1 𝑒−𝑠3

∗𝑇 𝑏21
1 𝑒−𝑠3

∗2𝑇 𝑏21
1 𝑒−𝑠3

∗3𝑇 𝑏21
1 𝑒−𝑠3

∗4𝑇

𝑏20
2 𝑏20

2 𝑒−𝑠4𝑇 𝑏20
2 𝑒−𝑠42𝑇 𝑏20

2 𝑒−𝑠43𝑇 𝑏20
2 𝑒−𝑠44𝑇 𝑏21

2 𝑏21
2 𝑒−𝑠4𝑇 𝑏21

2 𝑒−𝑠42𝑇 𝑏21
2 𝑒−𝑠43𝑇 𝑏21

2 𝑒−𝑠44𝑇

𝑏20
2 𝑏20

2 𝑒−𝑠4
∗𝑇 𝑏20

2 𝑒−𝑠4
∗2𝑇 𝑏20

2 𝑒−𝑠4
∗3𝑇 𝑏20

2 𝑒−𝑠4
∗4𝑇 𝑏21

2 𝑏21
2 𝑒−𝑠4

∗𝑇 𝑏21
2 𝑒−𝑠4

∗2𝑇 𝑏21
2 𝑒−𝑠4

∗3𝑇 𝑏21
2 𝑒−𝑠4

∗4𝑇

1 1  1 1 1 0 0 0 0  0
0 0  0 0 0 1 1 1 1  1 ]

 
 
 
 
 
 
 
 
 
 
 

 (12) 

 

These oscillations, due to the high Q-factor and the cantilever structure nature, are undesirable 

since they increase the settling time of the actuators. Furthermore, the oscillations regrettably affect 

the final precision of the tasks. For instance, during an image scanning with an atomic force 

microscopy, the oscillations of the piezotube actuator introduce a deformation to the final image [18–

20]. Additionally, piezotubes also exhibit strong cross-couplings between the axes which contribute 

to more performances losses [27,28]. A novel multivariable input shaping control technique is 

therefore a good technique to damp the vibrations in such systems. 

 

The experimental setup, depicted in Figure 2, is composed of: 

 A piezoelectric actuator with a tubular structure, capable of deflecting along the x-axis, y-axis or 

z-axis when a voltage is applied to ux, uy or uz respectively. The piezotube (PT230.94 from 

PIceramic Company, Lederhosen, Germany) is 30 mm in length and has a 3.2 mm external 

diameter and can tolerate ±200 V voltages range. 

 Three inductive sensors (ECL202 from IBS company, Eindhoven, Netherlands) that are used to 

measure the displacements x, y and z. The sensors are tuned to have 40 nm of resolution, ±250 

μm of measurement range and 15 kHz of bandwidth. Notice that the sensors are only used to 

characterize the oscillations of the actuator and to verify the performances of the control 

technique, they are not used to make a feedback control. 

 A computer and a dSPACE data acquisition board, which are used to manage the different 

signals (voltages, reference input and measured output) and to implement the input shaping 

controller. The sampling time is set to 50 μs, which is largely sufficient to consider the dynamics 

of the actuator in our case. 

 Three high-voltage (HV) amplifiers used to amplify the control signals ux, uz and uz from the 

dSPACE board before supplying the piezoactuator. The amplifiers can provide up to ±200 V. 

 

Figure 2. The experimental setup and its diagram. 

4.2. Characterization and Modeling of the 3-DOF Piezoelectric Tube Actuator 

The piezotube under test (shown in Figure 2) was identified by firstly recording step responses 

for all of its three outputs when exciting each of x, y and z inputs separately , then plugging these 

recorded input and output traces to the MATLAB system identification toolkit to generate the best fit 



 

function that relates each output to each input. As a result, nine different transfer functions for the 

direct and cross couplings were derived. Thanks to the ARMAX (Auto Regressive Moving Average 

with eXternal inputs) system identification techniques [26]. To be able to use the design approach 

explained in this paper, all of these transfer functions need to be reduced to second order transfer 

functions by only retaining dominant pole approximation.  

4.3. Vibration Feedforward Controller Design  

The system input matrix B (shown in Equation (10)) and the resultant poles from the reduced 

transfer functions are required for the formulation of the P matrix (shown in its generic form in 

Equation (11)). Since our system under test is a three-input three-output system, we have nine 

transfer functions and nine poles with their conjugates, as listed below: 

S1x = −326.7763621 + 5736.019955i; 

S1xc = −326.7763621 − 5736.019955i; 

S2x = −302.1598020 + 5803.751059i; 

S2xc = −302.1598020 − 5803.751059i; 

S3x = −35.84556158 + 1222.586399i; 

S3xc = −35.84556158 − 1222.586399i; 

 

S1y = −238.7149106 + 5769.089347i; 

S1yc = −238.7149106 − 5769.089347i; 

S2y = −184.4922971 + 7461.789129i; 

S2yc = −184.4922971 − 7461.789129i; 

S3y = −3.945002797 + 456.1052076i; 

S3yc = −3.945002797 − 456.1052076i; 

 

S1z = −632.18957547 + 4379.5395930i; 

S1zc = −632.18957547 − 4379.5395930i; 

S2z = −96.57235885 + 7522.7038840i; 

S2zc = −96.57235885 − 7522.7038840i; 

S3z = −39.356673163 + 15967.113359i; 

S3zc = −39.356673163 − 15967.113359i; 

 

If we design all of the three input shapers with four impulses each, then vector 𝒂  will be 

composed of 12 impulse amplitudes as per the following form: 

𝒂 = [𝑎00  𝑎10 𝑎20 𝑎30 𝑎01 𝑎11  𝑎21 𝑎31 𝑎02 𝑎12 𝑎22  𝑎32]
𝑇 (13) 

These amplitudes can be calculated using Equation (7) which assumes that all impulses are 

evenly spaced and the spacing T between them (which is the same for all shapers) has to be selected 

such that it is the minimum value T to make all impulse amplitudes for all shapers positive. The goal 

is to make T as small as possible so the delay caused to the shaped (compensated) input is reduced. 

Solving Equation (7) yields an infinite number of solutions as a function of T. The desired one is the 

smallest value of T which satisfies the positive impulse condition. A simple MATLAB code was used 

to extract all of this information as shown in Figure 3. 

Figure 3 displays shaper impulse amplitudes versus T, if we design the shapers with four 

impulses each then the first value to make all impulse amplitudes positive is T = 0.00025 s (Figure 3, 

right-hand side) and as a result the calculated amplitude vector is: 

𝒂

= [ 0.01908 0.00552 0.01289 0.00913 0.06749 0.09380 0.09260 0.05213 0.05349 0.10609 0.09977 0.03557]𝑇 
(14) 

Other values of T for these four-impulse input shapers that satisfy the positive amplitudes 

condition are marked using square dots in Figure 3 (right-hand side): 0.300, 0.500, 0.550, 0.600 and 

0.650 ms.  

For comparison purposes discussed in the next section, we also calculated vector 𝒂 amplitudes 

when the shapers are designed with three impulses. As shown in Figure 3 (left-hand side), the first T 

to make all impulse amplitudes positive is T = 0.0005 s. For this T, the resultant impulse amplitudes 

vector is:  

𝒂 = [ 0.03177 0.04808 0.02057 0.22980 0.34972 0.19177 0.15366 0.03875 0.14772 ]𝑇 (15) 

Other values of T to satisfy the positive amplitudes condition for the three-impulse shapers are 

marked using square dots in Figure 3-left: 0.500, 0.550 and 0.600 ms.  



 

  

Figure 3. Shapers’ impulse amplitudes versus T for three-impulses (left) and four-impulses (right) 

schemes. 

4.4. Simulation Results and Discussion  

Once vector 𝒂  values are calculated, they can be plugged to the compensator design in 

SIMULINK to carry out the simulation. Figure 4 shows simulated uncompensated and compensated 

responses when shapers were designed with three and four impulses. Each column in the figure 

shows one direct transfer and two cross couplings when exciting only one of the inputs. These 

simulation results show that the proposed MIMO controller was greatly successful in reducing 

vibrations and bringing them close to zero in both the direct and the cross-couplings for all outputs. 

However, it was not successful in obtaining the zero steady state error which is beyond the scope of 

this paper. It is also worth mentioning that having steady state error could be beneficial to reducing 

the level of cross couplings between inputs and outputs. Additionally, the four impulses shapers did 

a better job than the three impulses shapers in removing more modes of vibrations which can be 

attributed to the fact that the higher the number of impulses is for a shaper, the more it becomes 

robust against model uncertainties and the more it is effective in suppressing multi modes of 

vibrations. Having T = 0.25 ms for the four-impulses shapers which is half of T = 0.5 ms for the three-

impulses shapers contributed to a shorter delay in the responses of the four-impulse shapers, 

although they have more impulses. Additionally, four-impulses shapers showed improved settling 

time over three-impulses shapers, as shown in Table 1 below. Nevertheless, increasing the number 

of impulses for shapers further made it very challenging to find the proper and small T value that 

would make all shaper impulse amplitudes positive and this can be considered as a limitation for this 

approach. For five-impulse shapers, the designed compensator was not able to find T that satisfies 

the positive impulse amplitudes condition.  

Table 1. Settling time for all responses. 

 When Exciting X Only When Exciting Y Only When Exciting Z Only 

Un-comp./3-imp./4-imp.(X) 12.68/09.25/04.45 35.00/21.53/18.85 11.20/04.39/02.75 

Un-comp./3-imp./4-imp.(Y) 19.13/09.92/06.57 17.00/09.00/04.00  08.00/05.00/04.00 

Un-comp./3-imp./4-imp.(Z) 10.00/02.00/07.00 30.00/24.00/13.00 30.00/02.50/08.00 
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Figure 4. Compensated and uncompensated output responses with different shaper designs—

simulation. 

A closer look at the simulated three and four impulse shaper responses is shown in Figure 5 

below. It is obvious that four-impulses shaper responses have less delay and better vibrations 

suppression in both direct and cross couplings. 

The vibrations suppression accomplished by the compensator can also be seen in the frequency 

domain, as shown in Figure 6 below. Our approach relies on picking the dominant poles for each 

output and including them in the problem solving, and this can be much affected by the way the 

system modeling is carried out. However, in our next work we intend to make the design robust to 

uncertainties in such frequencies so the suppression becomes much more effective when the 

compensator is augmented in the feedforward. 

 

Figure 5. Compensated output responses for three and four impulse shaper designs—simulation. 



 

 

Figure 6. Bode plots for the identified, reduced and compensated models—simulation. 

4.5. Experimental Results 

The designed compensator based on the four-impulses shaper is now applied to the 

experimental benchmark, composed of the 3-DOF piezoelectric actuator. First, a step input is applied 

to excite the x-axis by letting the excitation input along y and z axes be zero. The x-displacement is 

measured afterwards. We obtain the step response in Figure 7a which corresponds to the direct 

transfer along the x-axis. In the meantime, the displacements along the y and z axes are recorded and 

plotted. They are shown in Figure 7d (for the y axis) and Figure 7g (for the z axis). These two last 

responses correspond to the cross-couplings. The same procedure is applied for the y excitation (by 

letting the x and the z excitations zero) and for the z excitation (by letting the x and the y excitations 

zero). Figures 7(e) and 7(i) represent the direct transfers along the y and the z axes respectively. The 

remaining curves are the cross-couplings. The uncompensated responses are also pictured in the 

same figures. These figures clearly demonstrate that badly damped oscillations of the actuator are 

strongly reduced when applying the proposed compensator, both for the direct transfers and for the 

cross-couplings. As predicted by the simulation, the overshoots which reached 400% (see Figure 7h) 

were completely removed. 

 

Figure 7. Step responses for the uncompensated and four-impulse compensated responses—

experimental.  



 

5. Conclusion and Perspectives 

This paper generalized a feedforward vibration suppression technique for multiple-input 

multiple-output systems with multi modes of vibrations found in cantilever structured piezoelectric 

actuators. We proposed to extend the multi-input-single-output zero placement input shaping 

technique into multi-input-multi-output technique. The proposed approach permits us to reduce 

multi-modes vibrations in both the direct and cross-couplings transfers. The new approach only 

requires knowledge of the system input matrix and system poles information for the design of the 

compensator which makes it a straightforward and easy design approach. The new approach was 

afterwards applied to feedforward control of a 3-DOF piezoelectric tube actuator that exhibits strong 

vibrations and strong cross-couplings. The simulation and experimental results demonstrated its 

efficiency, permitting us to completely remove overshoots of the actuator, initially of 400%. The 

proposed MIMO feedforward control of vibrations is very promising for systems where using sensors 

is difficult or even impossible. The proposed results can also be used to ease the calculation of a 

feedback controller by firstly removing the vibrations. 

Acknowledgments: This work is supported by the National ANR-JCJC C-MUMS project (ANR-12-JS03007.01) 

and by the Labex-ACTION project (ANR-11- LABX-0001-01). 

Author Contributions: Both authors designed the controllers, implemented the experiments and wrote 

the paper. 

Conflicts of Interest: The authors declare no conflict of interest. 

 

References 

1. Abramovitch, D.Y.; Andersson, S.B.; Pao, L.Y.; Schitter, G. A tutorial on the mechanisms, dynamics, and 

control of Atomic Force Microscopes. In Proceedings of the American Control Conference, New York, NY, 

USA, 9–13 July 2007.  

2. Kuiper, S.; Schitter, G. Active damping of a piezoelectric tube scanner using self-sensing piezo actuation. 

Mechatronics 2010, 20, 656–665. 

3. Binnig, G.; Quate, C.F.; Gerber, C. Atomic Force Microscope. Phys. Rev. Lett. 1986, 56, 930–933. 

4. Agnus, J.; de Lit, P.; Chaillet, N. Micromanipulateur piézoélectrique notamment pour microrobotique. 

French Patent, FR0211934, 2002. 

5. Rakotondrabe, M.; Agnus, J.; Lutz, P. Feedforward and IMC-Feedback Control of a Nonlinear 2-DOF 

Piezoactuator Dedicated to Automated Micropositioning Tasks. In Proceedings of the IEEE-CASE, 

International Conference on Automation Science and Engineering, Trieste, Italy, 24–27 August 2011; pp. 

393–398. 

6. Rakotondrabe, M.; Clévy, C.; Lutz, P. Hysteresis and vibration compensation in a nonlinear unimorph 

piezocantilever. In Proceedings of the IEEE/RSJ-IROS International Conference on Intelligent Robots and 

Systems, Nice, France, 22–26 September 2008; pp. 558–563. 

7. Rakotondrabe, M. Bouc-Wen modeling and inverse multiplicative structure to compensate hysteresis 

nonlinearity in piezoelectric actuators. IEEE Robot. Autom. Soc. 2011, 8, 428–431. 

8. Croft, D.; Shed, G.; Devasia, S. Creep, hysteresis and vibration compensation for piezoactuators: Atomic 

force microscopy application. ASME J. Dyn. Syst. Meas. Control. 2001, 123, 35–43. 

9. Agnus, J.; Chaillet, N.; Clévy, C.; Dembélé, S.; Gauthier, M.; Haddab, Y.; Laurent, G.; Lutz, P.; Piat, N.; 

Rabenorosoa, K.; et al. Robotic Microassembly and Micromanipulation at FEMTO-ST. J. Micro-Bio. Robot. 

2013, 8, 91–106. 

10. Bhat, S.P.; Miu, D.K. Solutions to Point-to-Point Control Problems Using Laplace Transform Technique. 

ASME J. Dyn. Syst. Meas. Control 1991, 113, 425–431.  

11. Hyde, J.M.; Seering, W.P. Using Input Command Pre-Shaping to Suppress Multiple Mode Vibration. In 

Proceedings of the IEEE Robotics and Automation Conference, Sacramento, CA, USA, 9–11 April 1991; pp. 

2604–2609. 

12. Singer, N.; Seering, W.P. Preshaping Command Inputs to Reduce System Vibration. ASME J. Dyn. Syst. 

Meas. Control 1990, 12, 76–82.  



 

13. Rappole, B.W.; Singer, N.C.; Seering, W.P. Multiple-Mode Input Shaping Sequences for Reducing Residual 

Vibrations. In Proceedings of the 23rd Biennial Mechanisms Conference, Minneapolis, MN, USA, 11–14 

September 1994; pp. 11–16. 

14. Singh, T.; Vadali, S.R. Robust Time-Optimal Control: A Frequency Domain Approach. Proc. AZAA Guid. 

Navig. Control Conf. 1994, doi:10.2514/6.1994-3569. 

15. Tuttle, T.D.; Seering, W.P. A Zero-Placement Technique for Designing Shaped Inputs to Suppress Multiple-

mode Vibration. Proc. Am. Control Conf. 1994, 3, 2533–2537. 

16. Pao, L.Y. Multiple Input-Shaping Design for Vibration Reduction. Automatica 1999, 35, 81–89. 

17. Al Hamidi, Y.; Rakotondrabe, M. Multi-Mode Vibration Suppression in 2-DOF Piezoelectric Systems Using 

Zero Placement Input Shaping Technique. Proc. SPIE 2015, 9494, doi:10.1117/12.2185683. 

18. Santosh, D.; Evangelos, E.; Moheimani, S.O.R. A Survey of Control Issues in Nanopositioning. IEEE Trans. 

Control Syst. Technol. 2007, 15, 802–823. 

19. Das, S.K.; Pota, H.R.; Petersen, I.R. Resonant controller design for a piezoelectric tube scanner: A mixed 

negative-imaginary and small-gain approach. IEEE Trans. Control Syst. 2014, 

doi:10.1109/TCST.2013.2297375. 

20. Rakotondrabe, M. Smart Materials-Based Actuators at the Micro/Nano-Scale: Characterization, Control and 

Applications; Springer-Verlag: New York, NY, USA, 2013. 

21. Xie, H.; Rakotondrabe, M.; Régnier, S. Characterizing piezoscanner hysteresis and creep using optical 

levers and a reference nanopositioning stage. Rev. Sci. Instrum. 2009, 80, 046102, doi:10.1063/1.3115184.  

22. Rakotondrabe, M.; Haddab, Y.; Lutz, P. Development, Modeling, and Control of a Micro-/Nanopositioning 

2-DOF Stick–Slip Device. IEEE/ASME Trans. Mechatron. 2009, 14, 733–745. 

23. Rakotondrabe, M. Classical Prandtl-Ishlinskii modeling and inverse multiplicative structure to compensate 

hysteresis in piezoactuators. In Proceedings of the ACC American Control Conference, Montreal, QC, 

Canada, 27–29 June 2012; pp. 1646–1651. 

24. Rakotondrabe, M. Modeling and Compensation of Multivariable Creep in multi-DOF Piezoelectric 

Actuators. In Proceedings of the IEEE ICRA International Conference on Robotics and Automation, Saint 

Paul, MN, USA, 14–18 May 2012; pp. 4577–4581.  

25. Habineza, D.; Rakotondrabe, M.; Le Gorrec, Y. Simultaneous Suppression of Badly-Damped Vibrations 

and Cross-couplings in a 2-DoF piezoelectric actuator, by using Feedforward Standard H∞ approach. Proc. 

SPIE 2015, 9494, doi:10.1117/12.2192746. 

26. Ljung, L. System Identification Toolbox. The Matlab User’s Guide; MathWorks: Natick, MA, USA, 1995. 

27. Habineza, D.; Rakotondrabe, M.; Le Gorrec, Y. Bouc-Wen Modeling and Feedforward Control of 

multivariable Hysteresis in Piezoelectric Systems: Application to a 3-DoF Piezotube Scanner. IEEE Trans. 

Control Syst. Technol. 2015, 23, 1797–1806. 

28. Habineza, D.; Rakotondrabe, M.; Le Gorrec, Y. Characterization, Modeling and H∞ Control of n-DOF 

Piezoelectric Actuators: Application to a 3-DOF Precise Positioner. Asian J. Control 2016, 18, 1–20. 


