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Abstract

This article introduces the Parabolic Variance (PVAR), a wavelet variance similar to the Allan variance, based on the Linear
Regression (LR) of phase data. The companion article1 arXiv:1506.05009 [physics.ins-det] details the Ω frequency counter, which
implements the LR estimate.

The PVAR combines the advantages of AVAR and MVAR. PVAR is good for long-term analysis because the wavelet spans
over 2τ , the same of the AVAR wavelet; and good for short-term analysis because the response to white and flicker PM is 1/τ3

and 1/τ2, same as the MVAR.
After setting the theoretical framework, we study the degrees of freedom and the confidence interval for the most common

noise types. Then, we focus on the detection of a weak noise process at the transition – or corner – where a faster process
rolls off. This new perspective raises the question of which variance detects the weak process with the shortest data record. Our
simulations show that PVAR is a fortunate tradeoff. PVAR is superior to MVAR in all cases, exhibits the best ability to divide
between fast noise phenomena (up to flicker FM), and is almost as good as AVAR for the detection of random walk and drift.

I. INTRODUCTION

The Allan variance (AVAR) was the first of the wavelet-like variances used for the characterization of oscillators and
frequency standards [1]. After 50 years of research, AVAR is still unsurpassed at rendering the largest τ for a given time series
of experimental data. This feature is highly desired for monitoring the frequency standards used for timekeeping.

Unfortunately, AVAR is not a good choice in the region of fast noise processes. In fact, the AVAR response to white and
flicker PM noise is nearly the same, 1/τ2. For short-term analysis, other wavelet variances are preferred, chiefly the modified
Allan variance (MVAR) [2]–[4]. The MVAR response is 1/τ3 and 1/τ2 for white and flicker PM, respectively. However,
MVAR is poor for slow phenomena because the wavelet spans over 3τ instead of 2τ . Thus, for a data record of duration T ,
the absolute maximum τ is T/3 instead of T/2.

Speaking of ‘wavelet-like’ variances, we review the fundamentals. A wavelet ψ(t) is a shock with energy equal to one and
average equal to zero, whose energy is well confined in a time interval (see for example [5, p. 2]) called ‘support’ in proper
mathematical terms. In formula,

∫
R ψ

2(t) dt = 1,
∫
R ψ(t) dt = 0, and

∫ a/2
−a/2 ψ

2(t) dt = 1 − ε, with small ε > 0. It makes
sense to re-normalize the wavelet as 1

a

∫
R ψ

2(t) dt = 1, so that it is suitable to power-type signals (finite power) instead of
energy-type signals (energy finite). By obvious analogy, we use the terms ‘power-type wavelet’ and ‘energy-type wavelet’.
These two normalizations often go together in spectral analysis and telecom (see the classical books [6], [7]). For historical
reasons, in clock analysis we add a trivial coefficient that sets the response to a linear drift Dy to 1

2Dy
2, the same for all the

variances.
High resolution in the presence of white and flicker phase noise is mandatory for the measurement of short-term fluctuations

(µs to s), and useful for medium-term fluctuations (up to days). This is the case of optics and of the generation of pure
microwaves from optics. The same features are of paramount importance for radars, VLBI, geodesy, space communications,
etc. As a fringe benefit, extending the time-domain measurements to lower τ is useful to check on the consistency between
variances and phase noise spectra. MVAR is suitable to the analysis of fast fluctuations, at a moderate cost in terms of computing
power. Frequency counters specialized for MVAR are available as a niche product, chiefly intended for research labs [8].

A sampling rate of 1/τ is sufficient for the measurement of AVAR, while a rate of 1/τ0 = m/τ is needed for MVAR,
where the rejection of white phase noise is proportional to m. MVAR is based on the simple averaging of m fully-overlapped
(spaced by the sampling step τ0) frequency data, before evaluating σ2(τ).

The linear regression provides the lowest-energy (or lowest-power) fit of a data set, which is considered in most cases as
the optimal approximation, at least for white noise. For our purposes, the least-square fit finds an obvious application in the
estimation of frequency from a time series of phase data, and opens the way to improvements in fluctuation analysis. Besides,
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new digital hardware — like Field-Programmable Gate Arrays (FPGAs) and Systems on Chip (SoCs) — provides bandwidth
and computing power at an acceptable complexity, and makes possible least-square fitting in real-time.

We apply least-square estimation of frequency to fast time stamping. The simplest estimator in this family is the linear
regression (LR) on phase data. The LR can be interpreted as a weight function applied to the measured frequency fluctuations.
The shape of such weight function is parabolic. The corresponding instrument is called ‘Ω counter,’ described in the companion
article [9]. The name Ω comes from the graphical analogy of the parabola with the Greek letter, in the continuity of the Π
and Λ counters [10], [11]. The Ω estimator is similar to the Λ estimator, but exhibits higher rejection of the instrument noise,
chiefly of white phase noise. This is important in the measurement of fast phenomena, where the cutoff frequency fH is
necessarily high, and the white phase noise is integrated over the wide analog bandwidth that follows.

In the same way as the Π and Λ estimators yield the AVAR and the MVAR, respectively, we define a variance based on
the Ω estimator. Like in the AVAR and MVAR, the weight functions are similar to wavelets, but for the trivial difference that
they are normalized for power-type signals. A similar use of the LR was proposed independently by Benkler et al. [12] at the
IFCS, where we gave our first presentation on the Ω counter and on our standpoint about the PVAR. In a private discussion,
we agreed on the name PVAR (Parabolic VARiance) for this variance, superseding earlier terms [13].

We stress that the wavelet variances are mathematical tools to describe the frequency stability of an oscillator (or the
fluctuation of any physical quantity). Albeit they have similar properties, none of them should be taken as “the stability” of
an oscillator. For the same reason, MVAR and PVAR should not be mistaken as ‘estimators’ of the AVAR. To this extent, the
only privilege of AVAR is the emphasis it is given in standard documents [14].

After setting the theoretical framework of the PVAR, we provide the response to noise described by the usual polynomial
spectrum. Then we calculate the degrees of freedom and confidence intervals, checking on the analytical results against extensive
simulations. Finally, we compare the performance of AVAR, MVAR and PVAR for the detection of noise types, using the
value of τ where σ2(τ) changes law as an indicator. In most practical cases PVAR turns out to be the fastest, to the extent
that it enables such detection with the shortest data record.

II. STATEMENT OF THE PROBLEM

The clock signal is usually written as

v(t) = V0 sin[2πν0t+ ϕ(t)]

where V0 is the amplitude, ν0 is the nominal frequency, and ϕ(t) is the random phase fluctuation. Notice that ϕ(t) is allowed
to exceed ±π. Alternatively, randomness is ascribed to the frequency fluctuation (∆ν)(t) = 2πϕ̇(t).

We introduce the normalized quantities

x(t) = t+ x(t)

y(t) = 1 + y(t)

where x(t) = ϕ(t)/2πν0, and y(t) = ẋ(t). The quantity x(t) is the clock readout, which is equal to the time t plus the random
fluctuation x(t). Accordingly, the clock signal reads

v(t) = V0 sin[2πν0x(t)]

= V0 sin[2πν0t+ 2πν0x(t)]

For the layman, x is the time displayed by a watch, t is the ‘exact’ time from a radio broadcast, and x the watch error. The error
x is positive (negative) when the watch leads (lags). Similarly, y is the normalized frequency of the watch’s internal quartz,
and y its fractional error. For example, if y = +10 ppm (constant), the watch leads uniformly by 1.15 s/day. For the scientist,
x(t) is the random time fluctuation, often referred to as ‘phase time’ (fluctuation), and y(t) is the random fractional-frequency
fluctuation. The quantities x(t) and y(t) match exactly x(t) and y(t) used in the general literature of time and frequency
[14]–[16]

The main point of this article is explained in Fig. 1. We use the linear regression of phase data to get a sequence {ŷ} of
data averaged on contiguous time intervals of duration τ , and in turn the sequence {ŷ} of fractional-frequency fluctuation data.
Two contiguous elements of {ŷ} and {ŷ} are shown in Fig. 1, from which we get one value of 1

2 (y2− y1)2 for the estimation
of the variance.

Most of the concepts below are expressed in both the continuous and the discrete settings with common notations without risk
of confusion. For example, the same expression x = t+ x maps into xk = tk + xk in the discrete case, and into x(t) = t+ x(t)
in the continuous case. The notations 〈 . 〉, (., .) and || . || represent the average, the scalar product and the norm. They are
defined as 〈x〉 = 1

n

∑
k xk, (x, y) = 1

n

∑
k xkyk, ||x|| = (x, x)1/2 where n is the number of terms of the sum in the discrete

case, and as 〈x〉 = 1
T

∫
x(t) dt, (x, y) = 1

T

∫
x(t)y(t) dt, ||x|| = (x, x)1/2 where T is the length of the interval of integration in

the continuous case. The span of the sum and the integral will be made precise in each case of application. The mathematical
expectation and the variance of random variables are denoted by E{ . } and V{ . }.
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Fig. 1. Principle of two-sample linear regression measurement, and notation.

The linear regression problem consists in searching the optimum value ŷ of the slope η (dummy variable) that minimizes
the norm of the error x − x0 − ηt, i.e., ŷ = arg minη ||x − x0 − ηt||2. Since we are not interessed in x0, which only reflects
choice of the origin of x, the solution is the random variable

ŷ =
(x− 〈x〉 , t− 〈t〉)
||t− 〈t〉 ||2 .

We recall some useful properties of ŷ as an estimator of the slope of x. For the sake of simplicity, with no loss of generality,
we refer to a time sequence is centered at zero, i.e., 〈t〉 = 0.

1) The estimator ŷ can be simplified as

ŷ =
(x, t)

||t||2 .

2) If the component xk (or the values x(t)) are independent, the estimator variance is

V{ŷ} =
σ2
x

||t||2
The assumption of independent continuous random process is rather usual in theoretical works. However this is done to
simplify some proofs, the results can be used in their discrete form.

3) Sampling uniformly at the interval τ0, the discrete time is tk = (k + 1
2 )τ0 for k ∈ {−p, ..., p}, m = 2p and τ = mτ0.

For large m, we get

ŷ ≈ 1 +
12 (x, t)

mτ2
and V{ŷ} ≈ 12σ2

x

mτ2
.

4) With a signal that is continuous over a symmetric time interval (− τ2 , τ2 ), we get

ŷ = 1 +
12 (x, t)

τ3
. (1)

The continuous form of the estimator ŷ can be expressed as a weighted average of x or y. For this purpose, it is useful to take
ŷ as a time dependent function defined over t ∈ (0, τ)

ŷ(t) =
12

τ3

∫ τ/2

−τ/2
s x(t− τ/2 + s) ds

=
12

τ3

∫ 0

−τ
(s+ τ/2) x(t+ s) ds

=
12

τ3

∫ τ

0

(τ/2− s) x(t− s) ds. (2)

III. TIME DOMAIN REPRESENTATION

A. Generic Wavelet Variance

Let us denote with T the duration of the data run, with τ0 the sampling interval, with N the number of samples, and with
n the ratio T/τ . Thus, T = Nτ0, and N = mn. We consider the series {ŷi}i=1,..,n of frequency deviation estimates. In this
section we denote with σ2(τ) a generic wavelet variance, either AVAR, MVAR, PVAR, etc.
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In the case of uncorrelated frequency fluctuations (white FM), an unbiased estimator of the variance V {ŷ} is

S2
n−1 =

1

n− 1

n∑
i=1

(
ŷi −

1

n

n∑
j=1

ŷj
)2
,

so
V {ŷ} = E

{
S2
n−1
}
.

After Allan [1], we replace the estimator S2
n−1 with a two-sample variance by setting n = 2. Then, the variance V {ŷ} = E

{
S2
1

}
is

σ2(τ) =
1

2
E
{

(ŷ1 − ŷ2)
2
}
, (3)

and its estimator averaged over the n− 1 terms

σ̂2(τ) =
1

2

〈
(ŷi − ŷi+1)

2
〉
. (4)

Notice that two-sample variance is generally written as σ2
y (τ), and that we drop the subscript y.

Following the Lesage-Audoin approach [17], we define the point variance estimates

αi =
1√
2

(
ŷi − ŷi+1

)
(5)

and the estimated variance

σ̂2(τ) =
1

M

M∑
i=1

α2
i . (6)

The relationship between the αi and the N individual x(kτ0) measures depends on the type of counter (Π, Λ, Ω).

B. Continuous-Time Formulation of PVAR

In the case of continuous time, the difference between contiguous measures is

ŷ(t+ τ)− ŷ(t) =
12

τ3

[∫ τ

0

(τ
2
− s
)
x(t+ τ − s) ds−

∫ τ

0

(τ
2
− s
)
x(t− s) ds

]
=

12

τ3

∫ τ

−τ

(
|s| − τ

2

)
x(t− s) ds

=
12

τ3

∫ τ

−τ

(
|t− s| − τ

2

)
x(s) ds.

Accordingly, the two-sample variance (3) is written as

σ2
P (τ) =

1

2
E
{(

ŷ(t+ τ)− ŷ(t)
)2}

,

and notice the subscript P for PVAR. Such variance is independent of t, and it can be expressed as the running average

σ2
P (τ) = E

{(∫ +τ

−τ
x(s)wx(s− t) ds

)2}
, (7)

where

wx(t) =
6
√

2

τ3

(
|t| − τ

2

)
χ(−τ,τ)(t)

is the even weight function, and

χ(−τ,τ)(t) =

{
1 t ∈ (−τ, τ)

0 elsewhere

is the indicator function (or characteristic function).
From (7), we see that PVAR can also be written as a convolution product

σ2
P (τ) = E

{(∫ +∞

−∞
x(s) hx(t− s) ds

)2}
= E

{(
x(t) ∗ hx(t)

)2}
,

where h(t) is the convolution kernel which applies to x(t). The kernel h(t) is related to the weight function w(t) by the general
property that h(t) = w(−t). However, since wx(t), is even function, it holds that hx(t) = wx(t).
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Fig. 2. Convolution kernels of PVAR from phase data (above) or frequency deviations (below) for τ = 8τ0.

Similarly, the estimator (4) is written as

σ2
P (τ) = E

{
1

T

∫ T

0

[
y(t) ∗ hy(t)

]2
dt

}
, (8)

where

hy(t) =
3
√

2 t

τ3
(|t| − τ)χ(−τ,τ)(t) (9)

is the convolution kernel which applies to y(t).
Thanks to the fact that y(t) = ẋ(t), σ2

P (τ) can also be expressed as the running average

σ2
P (τ) = E

{(∫
R
y(s)wy(s− t) ds

)2}
,

where

wy(t) = −3
√

2 t

τ3

(
|t| − τ

)
χ(−τ,τ)(t)

is the weight function. Since wy(t) is odd function, it hold that hy(t) = −wy(t). Moreover, the parabolic shape of the PVAR
wavelet comes from the t · |t| factor in wy(t) and hy(t).

For the purpose of operation with the Fourier transform, it is convenient to restate these expression in terms of filter or
convolution

σ2
P (τ) = E{(y ∗ hy)2} = E{(x ∗ hx)2} (10)

The weight functions wx(t) and wy(t), and also the kernels hx(t) and hy(t), match the definition of power-type wavelet given
in the introduction. As a consequence of the property y(t) = ẋ(t), it holds that hx(t) = ḣy(t). Figure 2 shows the convolution
kernels associated to PVAR.

It is worth pointing out that our formulation is is general, as it applies to AVAR, MVAR, PVAR, and to other similar
variances as well. Of course, the wavelet depends on the counter (Fig 3).
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Fig. 3. The wavelets associated to AVAR, MVAR, and PVAR.

C. Practical Evaluation of PVAR

Denoting the discrete time with xi = x(iτ0), the estimate of the two-sample variance is [17]

αi =
1√
2 τ

(
−xi + 2xi+m − xi+2m

)
(11)

for AVAR, with M = N − 2m, and

αi =
1√

2mτ

m−1∑
k=0

(
−xi+k + 2xi+m+k − xi+2m+k

)
(12)

for MVAR, with M = N − 3m+ 1.
Now we calculate αi for PVAR. First, the discrete form of ŷ can be obtained from (2) by replacing the time integral with

a sum with a time increment equal to τ0. Accordingly, τ is replaced with mτ0, s with kτ0, t with iτ0, and x(t) with xi

ŷi =
12

m3τ30

m−1∑
k=0

(
(m− 1)τ0

2
− kτ0

)
xi−kτ0

=
12

m2τ

m−1∑
k=0

(
m− 1

2
− k
)
xi−k

Similarly,

ŷi+1 =
12

m2τ

m−1∑
k=0

(
m− 1

2
− k
)
xi+m−k

and consequently

ŷi − ŷi+1 =
12

m2τ

m−1∑
k=0

(
m− 1

2
− k
)(

xi−k − xi+m−k
)
.
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Second, we recall that xi is defined for i ≥ 0. Hence, we have to shift the origin by m − 1, so that also ŷi is defined with
i = 0

ŷi − ŷi+1 =
12

m2τ

m−1∑
k=0

(
m− 1

2
− k
)(

xi+m−1−k − xi+2m−1−k
)
.

Third, since the coefficient (m − 1)/2 − k is symmetrical for k and for m − 1 − k, we interchange i + m − 1 − k with
i+m− 1− (m− 1− k) = i+ k, and i+ 2m− 1− k with i+ 2m− 1− (m− 1− k) = i+m+ k

ŷi − ŷi+1 =
12

m2τ

m−1∑
k=0

(
m− 1

2
− k
)(

xi+k − xi+m+k

)
.

Finally, it comes

αi =
6
√

2

m2τ

m−1∑
k=0

(
m− 1

2
− k
)(

xi+k − xi+m+k

)
for m ≥ 2 (13)

M = N − 2m+ 2.

For consistency with AVAR and MVAR, we require σ2
P (τ0) = σ2

A(τ0) = σ2
M (τ0), i.e. all variances are equal at sampling time

τ0. Since (13) gives αi = 0 for m = 1, we redefine

αi =
1√
2τ0

(
−xi + 2xi+1 − xi+2

)
for m = 1 (14)

M = N − 2

Having N samples {xi} taken at the interval τ , the estimate σ̂2
P (τ) can be computed using (6) and (13) as

σ̂2
P (τ) =

72

Mm4τ2

M−1∑
i=0

[
m−1∑
k=0

(
m− 1

2
− k
)(

xi+k − xi+m+k

)]2
. (15)

D. Time-Domain Response

From (15) it comes

σ2
P (τ) = E

{
σ̂2
P (τ)

}
=

72

m4τ2
E

{
1

M

M−1∑
i=0

[
m−1∑
k=0

(
m− 1

2
− k
)

(xi+k − xi+m+k)

]

×
[
m−1∑
l=0

(
m− 1

2
− l
)(

xi+l − xi+m+l

)]}

=
72

m4τ2

m−1∑
k=0

m−1∑
l=0

(
m− 1

2
− k
)(

m− 1

2
− l
)

×
[
Rx((k − l)τ0)−Rx((k −m− l)τ0)−Rx((m+ k − l)τ0) +Rx((k − l)τ0)

]
(16)

where Rx(θ) = E {x(t)x(t+ θ)} is the autocorrelation function of x(t). The autocorrelation function is detailed in Section
V-D. Whereas Rx(τ) depends on fL and fH , these parameters cancel in the derivation of PVAR.

IV. FREQUENCY DOMAIN REPRESENTATION

A. Transfer Function

The transfer function HP (f) of PVAR is the Fourier transform of the kernel hy(t). The square of its modulus is given by

|HP (f)|2 =
9
[
2 sin2(πτf)− πτf sin(2πτf)

]2
2(πτf)6

. (17)

Figure 4 shows |HP (f)|2, together with the transfer function of AVAR and MVAR. All are bandpass functions with approxi-
mately one octave bandwidth. However, PVAR exhibits significantly smaller side lobes because the weight function is smoother.
This is well known with the taper (window) functions used in the digital Fourier transform [18].
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Fig. 4. PVAR transfer function, compared to AVAR and MVAR, for integration time is τ = 1 s and sampling interval τ0 = τ/4 = 250 ms.

This can be proved as follows. The transfer function is obtained after Fourier transformation, using the property that hy is
odd function

Hy(f) =

∫
R
hy(t)e

−2iπftdt

=
12i√
2τ3
=
{∫ τ

0

t (t− τ) e−2iπft dt

}
.

The primitive is calculated by parts integration∫ τ

0

t (t− τ) e−2iπftdt =
1

4π3f3

(
πτf − ie−2iπτf + πτfe−2iπτf + i

)
.

Then,
HP (f) =

3i√
2π3τ3f3

[
1− cos (2πτf)− πτf sin (2πτf)

]
.

Finally, using 1− cos (2πτf) = 2 sin2 (πτf), we get

HP (f) =
3i√

2π3τ3f3

[
2 sin2 (πτf)− πτf sin (2πτf)

]
,

and
|HP (f)|2 =

9

2π6τ6f6

[
1− cos (2πτf)− πτf sin (2πτf)

]2
.

B. Convergence Properties
For small f , it holds that

sin(πτf) ≈ πτf − 1

6
π3τ3f3 +O(f5)

sin(2πτf) ≈ 2πτf − 4

3
π3τ3f3 +O(f5)

so

2 sin2 (πτf)− πτf sin (2πτf) ≈ 2

(
πτf − 1

6
π3τ3f3

)2

− πτf
(

2πτf − 4

3
π3τ3f3

)
+ f5O(f)

≈ 1

18
π4τ4f4

(
π2τ2f2 + 12

)
+ f5O(f)

then, at low frequency,
HP (f) ≈

√
2iπτf.

We conclude that

|HP (f)|2 ≈ 2π2τ2f2 at low frequency,

thus PVAR converges for 1/f2 FM noise. Similarly

|HP (f)|2 ∝ (πτf)−4 at high frequency,

therefore PVAR converges for f2 FM noise.
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TABLE I
RESPONSE OF AVAR, MVAR AND PVAR TO THE COMMON NOISE TYPES, AND TO DRIFT.

Noise Sy(f) AVAR σ2
A(τ) MVAR σ2

M (τ) PVAR σ2
P (τ)

σ2
P (τ)

σ2
M (τ)

type

White h2f2
3h2

8π2τ0τ2
3h2

8π2τ3
3h2

2π2τ3
4

PM

Flicker h1f1
[1.038 + 3 ln(πτ/τ0)] h1

4π2τ2
[24 ln(2)− 9 ln(3)] h1

8π2τ2
3 [ln(16)− 1] h1

2π2τ2
3.2

PM

White h0f0
h0

2τ

h0

4τ

3h0

5τ
2.4

FM

Flicker h−1f−1 2 ln(2)h−1
[27 ln(3)− 32 ln(2)] h−1

8

2 [7− ln(16)] h−1

5
1.8

FM

Random h−2f−2 2π2h−2τ

3

11π2h−2τ

20

26π2h−2τ

35
1.4

walk FM

Drift y(t) = Dyt
1

2
D2

y τ
2 1

2
D2

y τ
2 1

2
D2

y τ
2 1

The lowpass cutoff frequency fH , needed for AVAR, is set to 1/2τ0 (Nyquist frequency)

Fig. 5. Response of PVAR to the polynomial-law noise types, and to linear drift.

C. Calculation of PVAR from Spectral Data

Given the Power Spectral Density (PSD) Sx(f), PVAR evaluated as

σ2
P (τ) =

∫ ∞
0

|HP (f)|2 Sy(f) df. (18)
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Replacing Sy(f) with the components of the polynomial law, from h−2f−2 (random walk FM) to h2f2 (white PM), we get the
response of shown on Table I, together with AVAR and MVAR. Figure 5 shows the response of PVAR to the polynomial-law
noise types as a function of the integration time τ .

For comparison, σ2
P (τ) can also be calculated in the time domain using (16), and also with Monte-Carlo simulations (see

Section V-E). Time domain, frequency domain and Monte-Carlo simulations give fully consistent results.

V. DEGREES OF FREEDOM AND CONFIDENCE INTERVAL

A. Equivalent Degrees of Freedom (EDF)

We consider the estimates of a generic variance σ2(τ), assumed kχ2
ν-distributed, k ∈ R+. The EDF ν depend on the

integration time τ , and of course on the noise type. The mean and variance (the variance of the variance) are

E
{
σ̂2(τ)

}
= kE

{
χ2
ν

}
= kν

V
{
σ̂2(τ)

}
= k2V

{
χ2
ν

}
= 2k2ν.

Accordingly, the degrees of freedom ν are given by

ν =
2E
{
σ̂2(τ)

}2
V {σ̂2(τ)} . (19)

Thus, the knowledge of ν enables to define a confidence interval around E
{
σ̂2(τ)

}
with given confidence p. For applying this

result to PVAR, we have then to calculate the variance of PVAR.

B. Variance of PVAR

The variance of the estimate σ̂2(τ) is given by

V
{
σ̂2(τ)

}
= E

{[
σ̂2(τ)− E

{
σ̂2(τ)

}]2}
= E

{[
1

M

M−1∑
i=0

α2
i − E

{
1

M

M−1∑
i=0

α2
i

}]2}
. (20)

Expanding (20) yields

V
{
σ̂2(τ)

}
=

1

M2

M−1∑
i=0

M−1∑
j=0

[
E
{
α2
iα

2
j

}
− E

{
α2
i

}
E
{
α2
j

}]
.

The Isserlis’s theorem [19]–[21] states that, for centered and jointly Gaussian random variables z and w

E
{
z2w2

}
− E

{
z2
}
− E

{
w2
}

= 2 [E {zw}]2 .
Assuming that x is a Gaussian process and that αi, αj are two centered jointly Gaussian random variables, it comes

V
{
σ̂2(τ)

}
=

2

M2

M−1∑
i=0

M−1∑
j=0

[
E {αiαj}

]2
. (21)

The derivation of E {αiαj} is given in the next Section.

C. Equivalent Degrees of Freedom of PVAR

From (13), we can calculate

E {αiαj} =
72

m4τ2
E

{[
m−1∑
k=0

(
m− 1

2
− k
)(

xi+k − xi+m+k

)]

×
[
m−1∑
l=0

(
m− 1

2
− l
)(

xj+l − xj+m+l

)]}
which expands as

E {αiαj} =
72

m4τ2

m−1∑
k=0

m−1∑
l=0

(
m− 1

2
− k
)(

m− 1

2
− l
){

2Rx[(i+ k − j − l)τ0]

−Rx[(i+ k − j −m− l)τ0]−Rx[(i+m+ k − j − l)τ0]
}
. (22)



11

TABLE II
AUTOCORRELATION FUNCTION OF THE PHASE-TIME FLUCTUATION.

Sx(f) Rx(0) Rx(τ) (for τ 6= 0)
k0 k0fH 0

k−1f−1 k−1

[
1

2
+ ln(fH/fL)

]
k−1

[
cos(2πfLτ)− 1 + 2πfLτ sin(2πfLτ)

(2πfLτ)2

+Ci(2πτfH)− Ci(2πτfL)

]

k−2f−2 k−2

[
1

fL
−

1

fH

]
k−2

{
cos(2πfLτ)

fL
−

cos(2πfHτ)

fH

+2πτ
[
Si(2πfLτ)− Si(2πfHτ)

]}

k−3f−3 k−3

2

[
1

f2L
−

1

f2H

]
k−3

{
cos(2πfLτ)

2f2L
−

cos(2πfHτ)

2f2H

+2π2τ2
[
Ci(2πfLτ)− Ci(2πfHτ)

]
+πτ

[
sin(2πfHτ)

fH
−

sin(2πfLτ)

fL

]}

k−4f−4 k−4

3

[
1

f3L
−

1

f3H

]
k−4

{
(2π2f2Hτ

2 − 1) cos(2πfHτ) + πfHτ sin(2πfHτ)

3f3H

−
(2π2f2Lτ

2 − 1) cos(2πfLτ) + πfLτ sin(2πfLτ)

3f3L

+
4π3τ3

3
[Si(2πfHτ)− Si(2πfLτ)]

}
fL and fH are the highpass and lowpass cutoff frequencies which set the process bandwidth
Ci(x) and Si(x) are the Cosine and Sine Integral functions

Thanks to (21) and (22), we can calculate the variance of PVAR from the autocorrelation function Rx(τ). For example, in the
case of white PM noise we find

V
{
σ̂2
P (τ)

}
=

9h22
70π4τ6

[
23
m

M
− 12

(m
M

)2
− 175

m

M2

]
(23)

and
ν =

35

23m/M − 12(m/M)2 − 175m/M2
. (24)

D. Numerical Evaluation of the EDF

The EDF can be evaluated by substituting (22) into (21), and then (21) into (19). In turn, thanks to the Wiener Khinchin
theorem, stationary ergodic processes states that Rx(τ) can be obtained as the inverse Fourier transform of the Power Spectral
Density (PSD). Since the PSD is real and even [22], [23], we get

Rx(τ) =

∫ +∞

0

Sx(f) cos(2πτf) df. (25)

Replacing Sx(f) with the polynomial law from white PM to random walk FM (f−4 PM), we get the results shown in Table II.
The derivation is rather mechanical, and done by a symbolic algebra application (Wolfram Mathematica). For numerical
evaluation — unless the reader understanding the computer code in depth — we recommend the approximations lim→0 Ci(x) =
C + ln(x)− x2/96, where C ≈ 0.5772 is the Euler-Mascheroni constant, limx→∞Ci(x) = 0, limx→0 Si(x) = x− x3/9, and
limx→∞ Si(x) = π/2.

As an example, we take a data record of N = 2048, τ0 = 1 s, high cut-off frequency fH = 1
2τ0

(equal to the Nyquist
frequency), low cut-off frequency fL = 1

256Nτ0
(see [23] for the physical meaning of fL) and τ ∈ {τ0, 2τ0, 4τ0, . . . , 1024τ0}.

Figure 6 shows the EDF for the common noise types. Zooming in (Fig. 6 right), we see that the plots do not overlap.

E. Monte-Carlo simulations

Another way to assess the EDF is by simulated time series. We generated 10 000 sequences of N = 2048 samples for each
type of noise using the “bruiteur” noise simulator [24], which is based on filtered white noise. This code is a part of the
SigmaTheta software package, available on the URL given by [24]. It has been validated by more than 20 years of intensive
use at the Observatory of Besancon. Again, the EDF are calculated using (19).
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Fig. 6. Numerical computation of the PVAR EDF for the common noise types. The right hand plot is a crop of the left one.

Fig. 7. Comparison of the EDF calculated analytically (24), by numerical computation (Sec. V-D), and assessed by Monte-Carlo simulation (Sec. V-E).

In the end, we compared three methods, the autocorrelation function Rx(τ) with (21) and (22), the Monte-Carlo simulation
with bruiteur code, and the analytical solution (24), the latter only with white noise. Figure 7 compares the EDF obtained with
these three methods. The results match well, with a discrepancy of a few percent affecting only the first two points (τ ≤ 2τ0).
The reason is that, with such a small τ/τ0 ratio, the wy weight function is a poor approximation of the parabola of the Ω
counter (see [9]).

Table III and Fig. 8 compare the EDF of PVAR to AVAR and MVAR. MVAR is limited to τ = 682 because the wavelet
support (span) is 3τ instead of 2τ .

VI. DETECTION OF NOISE PROCESSES

Running an experiment, we accumulate a progressively larger number N of samples xk. As N gets larger, we fill up the
σ̂2
y (τ) plot adding new points at larger τ . Besides, at smaller τ the error bars shrink because the number of degrees of freedom

increases. Looking at the log-log plot, we find the fast processes on the left and the slow processes on the right. This is due to
the nearly-polynomial law τk of Table I. Having said that, we address the question of which variance is the most efficient tool
at detecting a slower process ‘SP’ in the presence of a faster process ‘FP’ as illustrated in Fig. 9. The criterion we choose is
the lowest level of the SP that can be detected
• with a probability of 97.5% (i.e., two sigma upper bound)
• in the presence of the faster process FP of given level,
• using a data record of given length N .

Our question about the most efficient tool relates to relevant practical cases detailed underneath.
Our comparison is based on a simulation with N = 2048 samples uniformly spaced by τ0 = 1 s. So, the lowest τ is equal

to 1 s, and the largest τ is equal to Nτ0/2 = 1024 s for AVAR and PVAR, and to Nτ0/3 = 682 s for MVAR.
For fair comparison, we re-normalize the variances for the same response to the SP process. For example, the response

to white FM noise Sy(f) = h0 is h0/2τ for the AVAR, h0/4τ for the MVAR, and 3h0/5τ for the PVAR. Accordingly, a
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TABLE III
COMPARISON OF THE EDF OF AVAR, MVAR AND PVAR FOR THE COMMON NOISE TYPES.

τ/τ0 1 2 4 8 16 32 64 128 256 512 682 1024
White PM (f+2 FM)
AVAR 892 1060 1020 1010 955 953 922 896 811 652 0.981
MVAR 891 970 685 355 173 82.5 38.9 17.3 7.48 2.88 1.02
PVAR 892 1150 824 419 202 99.1 46.9 22.0 10.0 4.13 1.03
Flicker PM (f+1 FM)
AVAR 1090 1140 984 728 523 340 209 127 69.5 33.8 0.930
MVAR 1090 1020 544 258 126 62.1 29.3 13.9 5.73 2.09 1.04
PVAR 1090 1300 701 329 165 79.4 38.2 18.4 8.42 3.36 1.05
White FM (f0 FM)
AVAR 1380 1200 716 372 186 91.7 45.3 21.8 10.2 4.07 1.01
MVAR 1380 1060 505 247 119 58.4 28.6 13.2 5.71 1.87 1.04
PVAR 1380 1390 680 319 157 76.7 37.5 18.2 8.43 3.32 1.01
Flicker FM (f−1 FM)
AVAR 1780 1200 595 299 150 72.8 36.1 17.1 7.58 3.05 1.02
MVAR 1780 1030 484 241 120 57.9 28.5 12.9 5.32 1.58 1.02
PVAR 1780 1470 648 319 159 77.8 38.2 18.2 8.01 3.16 1.02
Random walk FM (f−2 FM)
AVAR 1990 1020 480 238 117 57.9 28.1 13.3 5.93 2.29 1.01
MVAR 1990 861 398 197 96.5 47.1 22.6 10.3 4.26 1.31 1.02
PVAR 1990 1290 548 266 131 64.3 31.2 14.8 6.53 2.49 1.02

Fig. 8. Comparison of the Equivalent Degrees of Freedom of AVAR, MVAR and PVAR for the different types of noise. All noise sequences were simulated
with a unity coefficient noise, 2048 samples and a sampling frequency of 1 Hz.
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Fig. 9. Concept of noise process detection. The process SP is barely visible in A (≈50% probability), detected with a probability of 97.5% in C (threshold
of nearly certain detection), and detected with >97.5% probability in B.

coefficient of 2, 4, or 5/3 is applied, respectively. Of course, this re-normalization makes sense only for comparison, and should
not be used otherwise.

The results are shown in Fig. 10, and discussed in Sections VI-A to VI-C. Each simulation is averaged on 104 runs. All
plots show AVAR (blue), MVAR (green) and PVAR (red) for the FP process, with the two-sigma uncertainty bars, and the SP
process (grey). We set the reference value of the SP process at the lowest level that PVAR can detect with a probability of
97.5%, i.e., at the upper point of the two-sigma uncertainty bar at τ = 1024 s. This is highlighted by a grey circle at τ = 1024
s.

A. Noise detection in the presence of white PM noise (Fig. 10 A-B)

White PM noise is a limiting factor in the detection of other noise processes because it is the dominant process in the
front end of most instruments used to assess the frequency stability. We show the effect of white PM in two opposite cases,
white FM noise and frequency drift. The former is present in all atomic standards, while the latter is present in all oscillators
and standards, except in the primary standards. Frequency drift is a severe limitation in cavity stabilized lasers, and in other
precision oscillators based on the mechanical properties of an artifact.

The classical AVAR is clearly a poor option because of its τ−2 response to white PM, versus the τ−3 of the other variances.
This is confirmed in our simulations.

It is seen on Fig. 10 A-B that in both cases MVAR cannot detect the slow process. The lowest value of MVAR (green plot)
at 97.5% confidence (grey circle at τ = 682 s) exceeds the reference grey line.

The conclusion is that PVAR exhibits the highest detection sensitivity in the in the presence of white PM noise.

B. Detection of flicker FM noise in the presence of white FM noise (Fig. 10 C)

The detection of frequency flicker in the presence of white FM noise is a typical problem of passive atomic standards. Such
standards show white FM noise originated from the signal to noise ratio, and in turn from beam intensity, optical contrast,
or other parameters depending on the physics of the standard. Generally, after the white FM noise rolls off, σ2

y (τ) hits the
flicker floor. Cs clocks are a special case because they do not suffer from random walk and drift. So, flicker of frequency is
the ultimate limitation to long-term stability, and in turn to timekeeping accuracy. In commercial standards, flicker FM exceeds
the white FM at approximately 1 day integration time. Thus, fast detection of flicker enables early estimation of the long term
behavior, and provides a useful diagnostic.

We see on Figure 10 C that the three variances show similar performances, with a small superiority of AVAR and PVAR.
Again, MVAR suffers from the wider support of the wavelet, 3τ instead of 2τ . AVAR has a distinguished history of beeing
the favorite tool of time keepers.

C. Detection of slow phenomena (Fig. 10 D-E-F)

It is often useful to detect the corner where random walk or drift exceed the flicker floor, or where the drift exceeds the
random walk. This problem is typical of Rb clocks and H masers, and also of precision oscillators based on mechanical
properties of a resonator. Our simulation shows that AVAR is superior, but PVAR has a detection capability close to AVAR.
Conversely, MVAR is the poorest choice.
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A. White FM in white PM B. Drift in white PM

C. Flicker FM in white FM

E. Drift in flicker FM

D. Random walk in flicker FM

F. Drift in random walk

Fig. 10. Corner detection for the most common noise types (grey circles). The 97.5 % upper bounds of the confidence intervals over the variance estimates
are figured by dashed lines (blue for AVAR, green for MVAR and red for PVAR). The lowest detected noise or drift by PVAR is represented as a solid black
line.

VII. DISCUSSION AND CONCLUSION

PVAR is wavelet-like variance broadly similar to AVAR and MVAR, and intended for similar purposes. It derives from
AVAR and MVAR after replacing the Π and Λ counter with the Ω counter, in turn based on the linear regression on phase
data [9].

On closer examination, we notice that AVAR and MVAR address different problems. In the presence of white PM noise,
MVAR has a dependence as 1/τ3 instead of 1/τ2. This is a good choice in microwave photonics and in other applications
where the measurement of short term stability is important. The problem with MVAR is that the wavelet spans over 3τ instead
of 2τ . Hence, AVAR is preferred for the measurement of long term stability and in timekeeping, where the largest value of τ
on the plot is severely limited by the length of the available data record. PVAR on the other hand is a candidate replacement
for both because it features the 1/τ3 dependence of MVAR and the 2τ measurement time of AVAR.

PVAR compares favorably to MVAR because it provides larger EDF, and in turn a smaller confidence interval. The objection
that PVAR gives a larger response to the same noise level (right hand column of Table I) is irrelevant because the response is
just a matter of normalization. It is only in the region of fast processes that AVAR has higher EDF than PVAR (Fig. 8), but
this happens where AVAR is certainly not the preferred option.

The best of PVAR is its power to detect and identify weak noise processes with the shortest data record. We have seen in
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Sec. VI that PVAR is superior to MVAR in all cases, and also superior to AVAR for all short-term and medium-term processes,
up to flicker FM included. AVAR is just a little better with random walk and drift.

In conclusion, theory and simulation suggest that PVAR is an improved replacement for MVAR in all cases, provided the
computing overhead can be accepted. Whether or not AVAR is preferable to PVAR for timekeeping is a matter of discussion.
AVAR renders the largest τ with a given data record. This is the case of random walk and drift. By contrast, PVAR is superior
at detecting the frequency flicker floor, which is the critical parameter of the primary frequency standards used in timekeeping.
These standards are supposed to be free from random walk and drift. Otherwise, when rendering the largest τ is less critical,
PVAR is until now the best option.
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