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Summary 
Autofocus is an important issue in electron microscopy, particularly at high magnification. It 
consists in searching for sharp image of a specimen, i.e. corresponding to the peak of focus. 
The paper presents a machine learning solution to this issue. From 7 focus measures, 
support vector machines (SVM) fitting is used to compute the peak with an initial guess 
obtained from a gradient ascent search, i.e. search in the direction of higher gradient of focus. 
The solution is implemented on a Carl Zeiss Auriga FE-SEM with a 3 benchmark specimen 
and magnification ranging from x300 to x160000. Based on regularized non-linear least 
squares optimization, the solution overtakes the literature non-regularized search and 
Fibonacci search methods: accuracy improvement ranges from 1.25 to 8 times, fidelity 
improvement ranges from 1.6 to 28 times, and speed improvement ranges from 1.5 to 4 
times. Moreover the solution is practical by requiring only an off-line easy automatic train with 
cross-validation of the SVM. 
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I. INTRODUCTION 
The scanning electron microscope (SEM) and the transmission electron microscope (TEM) are 
reference instruments for the microanalysis of materials: they are widely used in material as well as 
life sciences. The autofocus brings to them a significant ease of use especially at high magnifications, 
its study started two decades ago and led to significant results. It is seen as a problem of optimization: 
assuming an unimodal model of the focus with respect to the focal length, it comes to search for the 
position (focal length) of the maximum of focus (peak). Two types of autofocus can be distinguished. 

In the first type, people assume an explicit model and use a fitting method to estimate the peak. 
Nicolls, de Jager & Sewell (1997) published one of the first work of this type. Assuming a gaussian 
model, they computed the peak from two linear equations derived from the ratio of 3 focus 
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measurements (first, intermediate, last). They also showed that the result was better when the 
intermediate position is close to the peak. Clearly, for practical issue, this method requires an initial 
estimation of the peak. Moreover, based on approximated relations, it leads to low accurate results. 
Rudnaya, ter Morsche, Maubach, & Mattheij. (2012) assumed a quadratic model and used linear least 
squares fitting to compute the peak from at least 3 measurements around its initial estimation which 
was obtained manually. Unfortunately standard least squares optimization is known to be sensitive to 
outliers that come with noise. Nishi, Moriyama, Yoshida, Kajimura, Mogaki, Ozawa & Isakozawa. 
(2013) assumed a quasi-gaussian model and used non-regularized non-linear least squares fitting to 
estimate the peak from 5 measurements. Initial peak and model parameter guesses were estimated 
manually. The method is similar to our method, unfortunately it is not robust to outliers, particularly 
because of the little number of measurements (sparse data): it fails to give accurate value as soon as 
one measurement is far from the model. However we decided to use this method as a benchmark for 
comparison with our solution. 

In the second type of autofocus, people search for the peak of focus without considering any explicit 
model. In order to have a reasonable speed, they adopt the coarse-to-fine approach: the peak is 
searched with lower to higher accuracy. Ong, Phang & Thong (1998a, 1998b) modified hill climbing 
search by progressively decreasing the sweeping step from far to close to the peak. Batten (2000) 
implemented a coarse-to-fine approach based on Fibonacci search: coarse and fine searches were 
performed at x200 and final magnification (x410; x970; x1350; x26000) respectively. Naresh, 
Tamadazte, Dembélé & Piat. (2013) published a gradient ascent search method that progressively 
drives the SEM directly to the peak. These three methods are fast enough but they lack accuracy 
which is particularly sensitive at high magnifications as in the case of our experiments, up to x160000. 

 

This review cannot be ended without considering autofocus in the cases of photon microscope and 
digital camera. He, Zhou & Hong (2003) modified the standard hill climbing search to a coarse-to-fine 
search: adaptive big sweeping steps were used to find coarsely the peak where as a constant small 
step was used to determine it finely. This is somewhat similar to the approach of Ong, Phang & Thong 
(1998a, 1998b) except that they used square of gradient as focus measure instead of auto-correlation. 
Wu, Wang & Zhou (2012) used the standard hill climbing search to get the initial estimation of the 
peak. They assumed an exponential model of the focus left and right of that point (quasi-Laplace 
model), and used linear least squares regression to find the both models. The peak was then 
computed accurately by the intersection of the both exponentials. The weaknesses of the method are 
the lack of robustness to outliers, however it is used as benchmark for comparison with our method. 
Mir, Xu, Chen & van Beek (2015), unlike above publications, considered the case of multimodal model 
and implemented a machine learning-based coarse-to-fine search to find all the peaks, typically the 
foreground and background. This method does not fall with the scope of this study which is the 
unimodality of the model, indeed our specimens are such they can be imaged at one time by the 
SEM. 

 

This paper investigates autofocus of the scanning electron microscope, precisely a Zeiss Auriga FE-
SEM. The developed solution combines the advantage of coarse-to-fine search, i.e. speed, with those 
of machine learning fitting search (support vector machines or SVM), i.e. accuracy and fidelity. 
Gradient ascent search, a native coarse-to-fine search, known for its speed, is chosen to find the 
initial guess of the focus maximum position. It overtakes the methods presented above (Ong, Phang 
& Thong (1998a, 1998b), Batten (2000), Wu, Wang & Zhou (2012)) in term of speed, and of starting 
point that can be far from the peak. Support vector machines (SVM) are chosen for fitting search. Its 
advantages include accuracy like least squares (Nicolls, de Jager & Sewell (1997), Rudnaya, ter 
Morsche, Maubach, & Mattheij. (2012), Wu, Wang & Zhou (2012), Nishi, Moriyama, Yoshida, 
Kajimura, Mogaki, Ozawa & Isakozawa. (2013)) but it overtakes the latter in term of robustness to 
outliers coming from noise. Indeed, it uses a regularization parameter C that limits the values of the 
model parameters and more particularly the slack parameter ϵ that tunes the acceptable variations of 
the data (Bishop (2006)). It is easier to implement than the method of Mir, Xu, Chen & van Beek 



(2015) since it is just a regression and only requires an off-line automatic training to determine its 
parameters. Finally, the solution is an efficient autofocus method that works well at low and high 
magnifications. 

 

II. PROBLEM STATEMENT 
The setup consists of a Zeiss Auriga FE-SEM (Oberkochen, Germany) along with its 
computer (SEM computer) and a remote computer (Figure 1). The SEM features Schottky 
field emission Gemini electron column and two SE detectors (Everhart-Thornley in the 
chamber and Inlens in the column. The remote computer runs C++ client applications while 
the SEM computer runs C# server applications. The autofocus is implemented as a client 
application and is based on OpenCV (Bradski, G. (2000)) and particularly the Machine 
Learning Library which includes the Support Vector Machines implementation of Chang & Lin 
(2001). 
 

The focusing in this SEM consists of the direct control of the focal length F. The literature 
(Batten (2000), Rudnaya, Mattheij & Maubach (2010), Marturi, Tamadazte, Dembélé & Piat 
(2013) demonstrates the superiority of variance over others focus measures (gradient, auto-
correlation, …) in terms of speed, accuracy and fidelity. Then we chose normalized variance 
as focus measure (Figure 2). Let I(u, v) be the image intensity at the pixel (u, v), the focus 
measure S may be written: 

𝑆 =
1

𝑊𝐻µ
∑ ∑(𝐼(𝑢, 𝑣) − µ)2

𝐻𝑊

 

(eq. 1) 

with W, H and µ the width, height and mean intensity of the image I, respectively. 

Assuming the specimen is installed inside the SEM at an unknown position with the settings 
(brightness, contrast, astigmatism, scan speed) defined, the problem is how to drive the 
instrument to the peak of focus. The expected properties are accuracy, robustness to outliers 
coming with noise and flexibility. 
Three benchmark specimens were used to validate the solution: a gold-coated gripper over 
20 µm polymere balls on aluminium substrate, tin-on-carbon (5-30 µm particles) and gold-
on-carbon (5-150 nm particles) test specimens (Figure 3). 
 

III. DEVELOPED SOLUTION 
The block diagram of the solution is depicted in Figure 4. The main stages include coarse-to-
fine search for the initial guess of peak position, by means of the gradient ascent search and 
ultra-fine search, for the final peak position, by means of SVM fitting. Both the stages are 
performed at predefined lower region of interest, magnification and scan speed, and at the 
end, the original settings are restored. 
The gradient ascent search method formerly described and applied to a thermo-SEM working 
at low magnifications by Marturi, Tamadazte, Dembélé & Piat (2013) is revisited. It consists 
in moving the SEM to the peak of focus by steps relative to the focus: the step is great far 
from the peak and decreases progressively when approaching the peak. 
Let Sk and 𝛥k be the focus and the step at the iteration k. 𝛥k is written as: 

𝛥𝑘 = 𝛤𝑘𝛬𝑘 

(eq. 2) 



with Γk the direction of motion, 

𝛤𝑘 =
𝛻𝑆𝑘

||𝛻𝑆𝑘||
 

and Λk the decreasing factor, 

𝛬𝑘 = {𝛼 (
𝑆0

𝑆𝑘
)

2

𝑖𝑓

𝛼𝑒𝑙𝑠𝑒

(
𝑆0

𝑆𝑘
) < 1 

The parameter α enables to tune the speed of focusing: the highest is this parameter the 
fastest is the autofocusing but the highest will be the level of instability. The value of α is 
empirically chosen as the 3/2 of the depth of field. 
From the current focal length Fk, the next focal length Fk+1 is defined by: 

𝐹𝑘+1 = 𝐹𝑘 + 𝛥𝑘 

(eq. 3) 

The control is stopped when the peak of variance is reached, which is detected by the zero-
crossing of its derivative with respect to focal length (Figure 5). That value defines the initial 
guess of the peak position, i.e. it is used for the SVM fitting. 
SVM is a convex optimization method to estimate a linear model, Smola & Scholkopf (2004), 
Bishop (2006): 

𝑦(𝑥) = 𝜔𝑇𝛷(𝑥) + 𝑏 

(eq. 4) 

with y the output or labelled data, x the input or training data, ω the vector of model 
parameters, b the bias parameter and Φ the vector of kernel functions. 
A regularized error function is minimized: 

𝐶 ∑ 𝐸𝜖(𝑦(𝑥𝑘) − 𝑡𝑘) +
1

2
||𝜔||2

𝑁

𝑘=1

 

(eq. 5) 

with C the regularization parameter, tk the target value of y(xk), ϵ the slack parameter, N the 
number of samples and Eϵ the ϵ–insensitive error function:  

𝐸𝜖(𝑦(𝑥𝑘) − 𝑡𝑘) = {
0𝑖𝑓|𝑦(𝑥𝑘) − 𝑡𝑘| < 𝜖

|𝑦(𝑥𝑘) − 𝑡𝑘|𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(eq. 6) 
The problem is solved from Lagrangian multipliers ak and âk: 

𝜔 = (… ; 𝑎𝑘 − 𝑎𝑘; … ); 𝑏 =
1

𝑁
∑ 𝑡𝑘 − 𝜖 − 𝜔𝑇𝛷(x𝑘)

𝑘

 

(eq. 7) 

The regularization parameter C avoids over-fitting, i.e. avoid the values of the model 
parameters to reach large values. The slack parameter ϵ determines the admitted variations 
in the values of the input data with respect to the model. The both parameters, C and ϵ, 
explain the robustness of SVM, Bishop (2006) over non regularized least squares.  



SVM is known to fit sparse training data i.e. the estimation of new inputs only depends on the 
kernel to be evaluated at few training points. We use the ϵ-Support Vector Regression (ϵ-
SVR) with a RBF (Radial Basis Function) kernel: 

𝛷𝑖(x𝑘 , z𝑘) = 𝑒−𝛾∥x𝑘−z𝑘∥2
 

(eq. 8) 

The 3 parameters, C, ϵ and γ, have to be estimated accurately, for that a gradient ascent 
search is first performed to get peak position, several images (301) are acquired around that 
position from which training (position) and labels (focus) data are generated. Following the 
references Smola & Scholkopf (2004), Chang & Lin (2001), an automatic train including a 
cross-validation is performed to get the parameter values. 
With the values of C, γ and ϵ the SVM is trained from the data of 7 images to compute the 
model from which the peak position (best focal length) is derived. 
In addition to our solution, four benchmark solutions were considered. The first was an expert 
of the microscope who daily used it. The second method was the Zeiss solution that comes 
with their application development kit. It main stages comprises coarse autofocus by 
searching from 0 to 20 mm (full focal length range) to find the initial guess of peak, and fine 
autofocus around that position by Fibonacci searches over increasing magnifications. The 
third solution was that of Nishi, Moriyama, Yoshida, Kajimura, Mogaki, Ozawa & Isakozawa. 
(2013). They manually estimated the initial guess of the peak, and assuming a quasi-

gaussian model (𝑎 exp (− 
|𝑥−𝑏|1.3

𝑑
) + 𝑐) they used non-regularized non- linear least squares 

search to find the peak.  The last benchmark was the solution of Wu, Wang & Zhou (2012). 
They used hill climbing search for initial guess. Assuming an exponential model at the left of 

the peak (𝑎𝑙𝑒
𝑏𝑙𝑥), and at the right of the peak (𝑎𝑟𝑒𝑏𝑟𝑥) they used non-regularized non- linear 

least squares search to find both models and to compute the peak by their intersection. 
We replaced manual and hill climbing of the last two methods, respectively, by our gradient 
ascent search and only implemented the fitting stages.  

The results of the four methods are compared with our solution, called FEMTO in the tables. 

 
IV. RESULTS 
 
The first experiment was performed with the gold-coated gripper over 20 µm polymere balls 
on an aluminium substrate, the final objective was the handling of the balls. The following 
stable settings were used: secondary electron detector, 3kV voltage, 60 µm aperture, 49.8% 
brightness (i.e. the ratio of image intensity mean with respect to 255) and 19.6% contrast (i.e. 
the ratio of the higher image intensity with respect to the lower intensity). 
In order to evaluate the accuracy of the method, the autofocus was performed at x300 and 
the magnification was switched to x900, x1200, x1500 and x2100, respectively, and at each 
magnification the scan speed took the value 155.5 ns/pixel (noisy images), 480.5 ns/pixel 
and 1780 ns/pixel (sharp images), respectively. In every case the focus was computed. The 
results are summarized in Table 1. Except low magnification (x300), our method gives high 
focus images than any other method. Assuming the accuracy is defined by the value of the 
focus, these results show that our method overtakes all the other methods. It is slightly better 
than Zeiss method, 2 times, 1.5 time, 1.25 time better than Wu method, Nishi method, and 
Expert, respectively. 
To evaluate the fidelity of the focal length obtained, we changed the starting point of the 
autofocus to 10 mm, 9mm, 8 mm, 7 mm and 6 mm, respectively. The results are summarized 
in Table 2 where it can be seen that our method has a standard deviation in the measurement 



of the focal length of 0.025 mm vs. 0.021 mm for Nishi method. Unfortunately the latter fails 
in some cases, e.g. 8 mm. The method is 1.44 time better than the Wu’s method. 
For a starting point of 8 mm, the speed of the autofocus were 11 s, 33 s, 40 s (+ eventually 
10 s for extra fine autofocus) for our method, Expert and Zeiss, respectively: our method is 
the fastest. 
 
The second experiment was performed with the tin-on-carbon test specimen. The stable 
settings were: secondary electron detector, 3kV voltage, 60 µm aperture, 50.4% brightness 
and 22.3% contrast. 
For accuracy evaluation the autofocus was performed at x300 and the magnification was 
switched to x3000, x9000, x30000, x60000, x90000, x120000 and x160000, respectively, 
and the scan speed was switched to 155.5 ns/pixel (noisy images), 480.5 ns/pixel and 1780 
ns/pixel (sharp images), respectively. The results are summarized in Table 3. Our method is 
slightly less better than Zeiss method, but 3 times and 8 times better than Wu method and 
Nishi method, respectively. 
For fidelity evaluation, the starting point was changed to 8 mm, 7mm, 6 mm and 4 mm, 
respectively. The results are summarized in Table 4.  Our method has the same standard 
deviation of Zeiss method, i.e. 0.014, that is 6 times better than Wu and Nishi methods. 
For a starting point of 10 mm, the speed of the autofocus were 13 s, 30 s, 40 s (+ eventually 
10 s for extra fine autofocus) for our method, Expert and Zeiss, respectively: our method 
overtakes all the other methods. 
 
The third experiment was performed with the gold-on-carbon test specimen. The same 
procedure was used as the previous experiment. 
Table 5 summarized the accuracy of the methods. Our method overtakes all the other 
method: it is 6 times, 6.5 times and 1.6 time better than Wu’s method, Nishi’s method and 
Zeiss’s method respectively. 
Table 6 summarized the fidelity of the methods. Our method overtakes all the other methods: 
it is 28 times, 14 times, 1.6 time better than Wu’s method, Nishi’s method and Zeiss’s method 
respectively. 
For a starting point of 7 mm our method overtakes the other methods with a speed of 10 s, 
15 s, 40 s (+ eventually 10 s for extra fine autofocus) for our method, Expert and Zeiss, 
respectively. 
 
Above results can be easily explained. If the model is close to the trained points, the 3 
methods (our method, Wu’s method and Nishi’ method) find the peak with high accuracy 
(Figures 6 and 7). This is normal because the 3 methods are based on non-linear least 
squares optimization. In the other cases, i.e. presence of outliers Nishi’s method gives 
inaccurate peak (Figure 8) or fails to find the peak (Figure 9). Wu’s method also gives 
inaccurate peak (Figure 10), but does not failed. 
 Finally, our method out-performs all the other methods with respect to accuracy and fidelity 
of measurements. 
 
VI. CONCLUSION 
The paper has investigated the problem of autofocus in scanning electron microscopy. A 
solution is developed that combines gradient ascent search, a native coarse-to-fine search 
approach, to find the peak of focus, with the machine learning SVM fitting, a regularized and 
non-linear least squares optimization method, of 7 focus data to compute the peak. It has 
been applied to a Carl Zeiss Auriga FE-SEM with 3 specimen, a gold-coated gripper over 20 



µm polymere balls on an aluminium substrate, a tin-on-carbon test specimen with 5-30 µm 
particles and a gold-on-carbon test specimen with 5-150 nm particles. 
The results have shown an improvement of accuracy with respect to literature non-
regularized optimization methods and Fibonacci search method ranging from 1.25 to 8 times. 
The improvement of fidelity ranged from 1.6 to 28 times, that of speed from 1.5 to 4 times. 
 
Finally the work led to a practical and efficient autofocus method for electron microscopes 
and probably for other imaging systems. The main drawback of this solution is the gradient 
ascent search, which gives the initial guess of peak, it sometimes gets stuck at local maxima. 
An improvement would come with the use of a robust method like Newton's method. 
 
Autofocus is interesting for standard SEM use: analysis of specimen from two-dimension 
images. It becomes essential for the real-time depth estimation during robotic handling of 
specimen, Fatikow, Wich, Hülsen, Sievers & Jähnisch (2007), and more particularly for the 
reconstruction of three-dimension images by means of the structure-from-motion approach: 
rotation of the specimen under the electron column, acquisition of focused images, 
processing of images and reconstruction of the three-dimension mode, Kratochvil, Dong, 
Zhang & Nelson (2010). At high magnification the focus can get lost during image acquisition 
and it is required to perform an autofocus. 
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TABLES 

 

Table 1: Comparison of method accuracy with the gripper over 20 µm polymere balls on 
aluminium substrate (x means the data were not available). 
 

Magnification 
Scan 
Speed 

Focus 

  (ns/pixel) FEMTO WU NISHI ZEISS EXPERT 

  155,5 2,697 2,394 2,559 3,040 2,519 

300 480,5 2,912 2,326 2,710 3,271 2,636 

  1780 3,169 2,292 2,911 3,536 2,878 

  155,5 4,928 2,935 3,519 4,615 3,768 

900 480,5 6,203 2,974 4,344 5,537 4,901 

  1780 6,430 2,977 4,258 5,652 4,936 

  155,5 7,175 3,767 5,002 6,507 5,468 

1200 480,5 9,130 4,025 6,397 7,801 7,299 

  1780 9,447 4,081 6,077 7,976 7,213 

  155,5 8,868 4,450 6,369 9,074 6,927 

1500 480,5 10,877 4,800 7,569 10,305 8,644 

  1780 10,756 4,898 7,008 10,264 8,252 

  155,5 11,632 x x 11,521 9,152 

2100 480,5 13,909 x x 13,553 11,453 

  1780 15,565 x x 15,285 12,706 

 Average 8,247 3,493 4,894 7,862 6,583 

 
 
Table 2: Comparison of method fidelity with the gripper over 20 µm polymere balls on 
aluminium substrate (x means the data were not available). 
 

Starting 
point 

Peak position /Focal length (mm) 

(mm) FEMTO WU NISHI ZEISS EXPERT 

10 11,059 11,034 11,080 x x 

9 11,017 11,105 11,037 x x 

8 11,079 11,089 failed x x 

7 11,068 11,127 11,078 11,057 x 

6 11,075 11,115 11,078 x 11,058 

Average 11,059 11,094 11,068 x x 

Std 
Deviation 0,025 0,036 0,021 x x 

 

  



 
Table 3: Comparison of method accuracy with the tin-on-carbon specimen. 
 

Magnification 
Scan 
Speed 

Focus 

  (ns/pixel) FEMTO WU NISHI ZEISS 

  155,5 12,231 8,376 3,585 12,332 

3000 480,5 12,845 7,82 2,806 13,102 

  1780 12,864 7,442 2,398 13,195 

  155,5 16,548 10,47 2,552 17,128 

9000 480,5 16,598 9,698 1,735 17,492 

  1780 16,392 9,307 1,324 17,388 

  155,5 9,582 1,968 1,418 9,934 

30000 480,5 9,124 1,158 0,638 9,505 

  1780 8,734 0,753 0,245 9,127 

  155,5 11,319 1,69 1,406 11,546 

60000 480,5 10,781 0,89 0,627 11,063 

  1780 10,405 0,481 0,234 10,723 

  155,5 9,143 1,584 1,406 9,218 

90000 480,5 8,474 0,787 0,624 8,6 

  1780 8,097 0,379 0,229 8,216 

  155,5 6,589 1,516 1,399 7,741 

120000 480,5 5,814 0,717 0,621 7,155 

  1780 5,402 0,311 0,227 6,786 

  155,5 4,455 1,471 1,395 6,69 

160000 480,5 3,524 0,675 0,619 6,039 

  1780 3,095 0,27 0,226 5,659 

 Average 9,620 3,227 1,224 10,411 

 
Table 4: Comparison of method fidelity with the tin-on-carbon specimen balls (x means the 
data were not available). 
 

Starting 
point 

Peak position /Focal length (mm) 

(mm) FEMTO WU NISHI ZEISS EXPERT 

8 9,278 9,274 9,278 9,261   

7 9,288 9,291 failed 9,244 9,291 

6 9,255 9,462 8,037 9,261 x 

4 9,273 9,332 failed 9,278 x 

Average 9,274 9,340 8,657 9,261 x 

Std 
Deviation 0,014 0,085 0,877 0,014 x 

 
  



 

Table 5: Comparison of method accuracy with the gold-on-carbon specimen. 
 

Magnification Scan Speed Focus 

  (ns/pixel) FEMTO WU NISHI ZEISS 

  155,5 3,899 1,863 1,806 3,348 

3000 480,5 5,402 0,925 0,868 4,164 

  1780 6,437 0,440 0,378 4,683 

  155,5 7,032 1,852 1,828 5,203 

9000 480,5 10,030 0,920 0,884 6,643 

  1780 12,155 0,429 0,389 7,619 

  155,5 6,681 1,928 1,887 4,788 

30000 480,5 7,622 0,991 0,959 4,776 

  1780 7,676 0,500 0,470 4,519 

  155,5 6,474 1,811 1,782 4,075 

60000 480,5 6,476 0,882 0,858 3,502 

  1780 6,095 0,398 0,378 3,061 

  155,5 6,168 1,814 1,721 3,662 

90000 480,5 5,755 0,889 0,803 2,935 

  1780 5,305 0,409 0,327 2,490 

  155,5 6,227 1,840 1,691 3,746 

120000 480,5 5,604 0,918 0,781 2,962 

  1780 5,166 0,435 0,305 2,535 

  155,5 6,141 1,866 1,692 3,949 

160000 480,5 5,451 0,946 0,781 3,160 

  1780 4,984 0,465 0,305 2,722 

 Average 6,513 1,072 0,995 4,026 

 

Table 6: Comparison of method fidelity with the gold-on-carbon specimen balls (x means the 
data were not available). 
 

Starting 
point 

Peak position /Focal length (mm) 

(mm) FEMTO WU NISHI ZEISS EXPERT 

7 8,946 8,993 9,035 8,945 8,953 

6 8,943 8,858 8,948 x x 

5 8,951 9,057 8,947 8,955 x 

4 8,947 9,053 8,924 8,954 x 

Average 8,947 8,990 8,964 8,951 x 

Std 
Deviation 0,0033 0,0929 0,0489 0,0055 x 

 

  



 
FIGURES 

 
 
Figure 1: The setup with the Zeiss Auriga FE-SEM and the associated PC. 
 



 
 
Figure 2: Illustration of the normalized variance as focus with the tin-on-carbon specimen at 
x300 : the image with the maximum of focus is shown completely, the others are shown 
partially (cropping of an region-of-interest). 



 

 

Figure 3: Experimental benchmark specimens. 



 



Figure 4: Block diagram of the developed solution. 

 

Figure 5: Gradient ascent search illustration with the gold-on-carbon specimen at x300. 
 



 

Figure 6: Our method vs. Nishi’s method when the trained points were closed to the model, 
both methods located the peak at 9.278 mm. 



 

Figure 7: Our method vs. Wu’s method when the trained points were closed to the model, our 
method and Wu’s method located the peak at 9.278 mm and 9.274, respectively, i.e. an error 
of 0.4%. 



 
Figure 8: Our method vs. Nishi’s method when one trained point was far from the model, i.e. 
an outlier, our method and Nishi’s method located the peak at 11.059 mm and 11.080 mm, 
respectively, i.e. an error of 2% of Nishi’s method to locate the peak. 



 

Figure 9: Our method vs. Nishi’s method when two trained points were far from the model, 
our method located the peak at 11.079 and Nishi’s method failed. 



 

Figure 10: Our method vs. Wu’s method when the trained points were not symmetric with 
respect to the peak guess, our method and Wu’s method located the peak at 9.255 mm and 
9.462 mm, respectively, i.e. an error of 2%. 
 


