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Abstract

Continuum robots have shown astounding abilities to assist surgeons reaching confined spaces
in the human body. Thus, accurate control of these manipulators, and particularly concentric tube
robots, is required in order to achieve intracorporeal microrobotic interventions. We present hereby
an improvement of this kinematic structure based on embedded soft micro-actuators. Two models
for single and double direction curvature control are introduced. We demonstrate that kinematics
are enhanced with respect to the standard approach in terms of holonomy, actuation redundancy
and workspace covering. Further kinematic analysis enables the detection of singular configura-
tions. The number of the end-effector pose occurrences that can be reached in a given volume (one
cubic millimeter) are computed as well. Finally, the advantages of the novel structures are proven
using performance indices.

Keywords: Continuum robot, kinematics, holonomy, redundancy, soft micro-actuators,
intracorporeal microrobotics.

1. Introduction

Observing the wondrous abilities of some natural creatures has always been motivating as well
as inspiring, particularly for researchers. Concerning soft structures, one of the most fascinating is
the elephant’s trunk. Notwithstanding its flexibility, which would trivially mean its weakness, that
appendage is able at one moment to show great strength and power when lifting heavy loads as
tree trunks. It can also present delicacy and precision when eating or interacting with their calves.
Figure 1 shows elephants at almost the same trunk configuration performing different tasks with
varied effort and stiffness requirements.

1.1. Continuum robots
One can distinguish the continuum robots from the ”traditional” hard robots with the absence

of rigid links and joints for the latter. Typically, the former presents a distributed deformation
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a) b)

Figure 1: Almost the same position and shape of an elephant trunk a) wresting a tree branch, which requires high
forces (Michael Poliza / Caters News Agency c©2011), and b) picking a mango with the appropriate delicacy (Josh
Urich / Canva Photographers c©2015).

performed by scattered actuators throughout the structure. Trivedi et al. (2008) suggested a differ-
ent approach, classifying them into a subset of hyper-redundant robots. However, the difference
between hyper-redundant and continuum manipulators is subtle. Thus, it is challenging to pro-
vide a clear classification. Hyper-redundancy implies the presence of discrete elements within
the backbone. The continuity of the robot shape, regardless of its structure, is not necessarily
the suitable criterion to consider a robot as continuum. For instance, early prototypes including
snake-like robots developed by Hirose (1993) and elephant trunk robots developed by Walker and
Hannan (1999) present a continuous shape but they are considered hyper-redundant robots. These
robots are considered as bio-inspired as they mimic animal parts or movements. Observing the
abilities and the performances of hydroskeletons and muscular hydrostats, other bio-inspired pro-
totypes have been developed later. One can cite the starfish-like gel robot developed by Otake et al.
(2002), octopus-like robot (OctArm) developed by Jones and Walker (2006b), elephant trunk-like
robot developed by Wolf et al. (2003), and snake-like robot developed by Simaan et al. (2004). The
latter brought an enthralling classification. It is based, notably, on the actuation technique, whether
it is continuous or discrete. In order to actuate continuum robots, different techniques have been
used, such as

• cables along the backbone, equally distributed around the tubular robot diameter as proposed
by Anderson and Horn (1967) depicted in Figure 2a, Ciéslak and Morecki (1999); Hannan
and Walker (2003); Gravagne et al. (2003) and Camarillo et al. (2008) depicted in Figure 2b
or elastic rods to raise the rigidity of the robot to permit transmission of compressive forces
as used by Simaan et al. (2004); Xu and Simaan (2008); Rone and Ben-Tzvi (2014),

• fluidic (pneumatic and hydraulic) actuators by Bailly and Amirat (2005); Chen (2005); Jones
and Walker (2006a,b); Ikeuchi and Ikuta (2009); Cianchetti et al. (2013),
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• Shape Memory Alloy (SMA) based actuators by Ikuta et al. (1988); Lee et al. (2002); Lan-
gelaar and van Keulen (2004); Haga et al. (2010),

• Electro-Active Polymer (EAP) based actuators by Bar-Cohen (2001); Choi et al. (2002);
Kim and Tadokoro (2007); Shoa et al. (2008); Lee et al. (2009), and

• concentric tube robots depicted in Figure 2c by Webster III et al. (2009, 2013); Dupont et al.
(2010, 2012b).

a) b)

/0 = 3.8mm

c)

Figure 2: a) The Tensor Arm of Anderson and Horn (1967), considered as the continuum robot ancestor. b) The Hansen
Medical Sensei R© system described mechanically and kinematically by Camarillo et al. (2008). c) The concentric tube
robot developed by Webster III et al. (2009).

1.2. Modeling continuum robots
Modeling continuum robots is slightly more challenging than modeling traditional robots due

to the lack of rigid links. For the latter, link lengths and joint angles are substantially used to
register the pose of the robot and define its kinematics. Consequently, for the former, a wide
diversity of models, formalisms, and coordinate frame choices have been proposed during the
last 50 years. They vary from the early work of Anderson and Horn (1967)– considered as the first
example of hyper-redundant robot – to the following developments outlined in several reviews such
as those introduced by Hirose (1993); Robinson and Davies (1999); Webster III and Jones (2010).
In order to predict the behavior of continuum manipulators, models are typically based on elasticity
considerations. To summarize, two major models were introduced. One is the Theory of Cosserat
rod, introduced within this topic by Jones et al. (2009); Rucker and Webster III (2011); Dehghani
and Moosavian (2011). While it provides precise modeling of continuum robots using differential
equations, this method lacks stability concerning the dynamic model and does not provide a closed-
form formulation, Dehghani and Moosavian (2013). The other method is based on piece-wise
constant curvature assumption and can alleviate many of these concerns. It provides direct and
inverse kinematic modeling, with closed-form solutions. Chirikjian (1993) drew the foundations
for kinematic theory of hyper-redundant robots which led later to the work of Gravagne and Walker.
Gravagne and Walker (2000b) started modeling the kinematics of planar continuum manipulators
for one section with one degree of freedom (DoF), then Gravagne and Walker (2000a) extended
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it to two sections. Further developments by Gravagne and Walker (2001, 2002) led to kinematic
Jacobian computation, with manipulability and force analysis. A modified Denavit-Hartenberg-
type approach was introduced by Jones and Walker (2005) to model a two-sections continuum
robot with six degrees of mobility. Other derivations were also used as Frenet-Serret frames by
Hannan and Walker (2003), integral formulation by Chirikjian and Burdick (1994), and exponential
coordinates by Sears and Dupont (2006); Webster III et al. (2006a). These diverse formalisms
converge to the same final result under the constant curvature assumption, as demonstrated by
Webster III and Jones (2010).

1.3. Concentric tube robots
Our interest is brought on concentric tube robots for surgical applications due to their high

miniaturization potential and their ability to describe miscellaneous shapes. Their significant mo-
bility permits to navigate through complex anatomy and perform surgical tasks. They are consti-
tuted of several curved and concentric telescopic tubes that can either translate or rotate along their
principal axes. Thus, they can be steered along a curved path through the tube depending on elastic
interactions, and house tools within their lumen in order to achieve diagnosis or intervention.

Concentric tube robots promise astounding abilities, particularly in medical applications under
strong dimensional constraints (diameter below few millimeters). Potential or under-development
applications include endonasal skull base surgery introduced by Burgner et al. (2011), intracere-
bral hemorrhage evacuation by Burgner et al. (2013), surgical resection of the hippocampus by
Comber et al. (2012), transurethral laser prostate surgery by Hendrick et al. (2014), surgery in
otolaryngology by Schneider et al. (2013), bronchoscopy operations by Torres et al. (2012), all de-
veloped within R. J. Webster’s research group; neurosurgery and endoscopy by Anor et al. (2011);
Butler et al. (2012); Dupont et al. (2012a); Bergeles and Dupont (2013), beating-heart closure of
atrial septal defects by Bedell et al. (2011), and suturing needle by Sears and Dupont (2006) all
developed within P. Dupont’s research group.

1.4. Proposed embedded micro-actuation for concentric tube robots
The major target of this work is to improve this promising technique of concentric tubes by

adding variable and controlled curvature to the tubes using embedded micro-actuation based on
active soft materials, namely Electro-Active Polymers (EAP). Indeed, significant results have been
demonstrated by Shoa et al. (2008) using the conjugated ionic polymer PolyPyrrole (PPy). Adding
to its biocompatibility, PPy is distinguished by its lightweight and the very low activation voltages
required (less than one volt) without any additional heating, in contrast with SMA and Piezoelec-
tric materials. Furthermore, it provides high curvature control and may be grafted on very small
diameters (down to 1mm). These features are summarized in Table 1.
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Table 1: Qualitative comparison of different actuation techniques
Material Shape Memory Alloys Piezoelectric Electro-Active Polymers
Biocompatibility high low high
Size small small very small (∼ 10−40µm)
Strain average low average (∼ 20%)
Activation voltage high very high very low (<2V )
Dynamics average high average (∼ 5seconds)

The embedded actuators are developed as thin antagonistic electrodes coated around the tube
as described in Figure 3a,b for single and double bending direction respectively. The actuation
of every couple of electrodes with opposed voltages (of less than one volt for PPy) produces a
bending moment around the transversal axis as shown in Figure 3c described in details by Shoa
et al. (2010), among others.

a) b)

Polymer

Electrolyte

Porous

substrate

Expansion

Contraction

c)

Figure 3: Design of PPy-based micro-actuators of approximately 30µm patterned on a 1mm diameter tube as: a) one
pair of antagonistic electrodes permitting one bending direction, and b) two pairs of antagonistic electrodes enabling
double bending direction. The insets display a cross-sectional view showing the thinness of the PPy layer. c) Actuation
principle of the PPy layers: a strain is produced when the antagonistic electrodes are electrically activated with opposite
voltages. The expansion of the positive electrode faces the contraction of the negative one due to the insertion and the
removal of ions respectively.

Adding to that, using four electrodes (cf. Figure 3b) is potentially useful to decrease the actua-
tion unit volume, knowing the consequent size of the rotation modules used in both Webster’s (cf.
Figure 4a) and Dupont’s works. In contrast, the PPy-based actuators to use are only about 30µm
in thickness, as proposed by Shoa et al. (2008). This induces a dimensional increase of only 3%
for a 1mm tube diameter for instance. The actuators used by Shoa et al. (2008) produced enough
force to bend a catheter of 15mm to 100m−1 curvature (approximately 90◦ bending angle). Alici

5



and Huynh (2007) reported a force generation of up to 1.6mN on a planar micro-gripper. A design
of our proposed structure is displayed in Figure 4b.

a) b)

Figure 4: a) Actuation unit for three concentric tubes used by Burgner et al. (2011), b) CAD design of the embedded
actuation principle presented by Chikhaoui et al. (2014b).

The main contribution of this paper is to develop geometric and kinematic models of concentric
tube configurations with embedded PPy soft micro-actuation allowing curvature control. It extends
the previous work introduced by Chikhaoui et al. (2014a). Further developments are carried out
for generic continuum robot models with single and double direction curvature control and with
more intense performance analysis. It is shown that this novel concept enables better conditioning
of the kinematic Jacobian matrices and enhances manipulability. It provides also holonomy to the
system and is able to produce redundancy. The concentric tube robotic structure is studied hereby
for medical applications. We present a contactless scheme covering a wide range of medical appli-
cations whether for (i) diagnosis with housing a miniaturized camera, an optical bench (cf. Figure
4b), or an OCT probe or for (ii) intervention purpose with embedding a laser tool as demonstrated
in Andreff and Tamadazte (2015) for laser micro-phonosurgery.

This article is organized as follows. The next section presents the developed geometric and
kinematic models followed by their analysis. In order to demonstrate the enhancements produced
by such a manipulator, the third section treats several numerical results concerning the workspace
covered as well as the provided performances. Finally, the last section contains our conclusions
and perspectives.

2. Modeling

In this section, the standard approach for modeling concentric tube robots under constant cur-
vature assumption (CCM) is recalled. It describes the geometric model, as well as the indepen-
dent and the specific kinematic Jacobian matrices. Furthermore, we will introduce the specific
kinematic Jacobian matrices for two novel configurations: variable curvature (VCM) and double
direction variable curvature (DDVCM). Afterwards, these models will be compared and analyzed
in order to select the most theoretically reliable configuration.

2.1. Standard approach
The standard approach, detailed by Webster III (2007), assumes that for a concentric tube

robot made of n overlapping tubes, one can decompose the final assembly into m successive links.
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Each link is assimilated to an arc of a circle. That arc can be perfectly described in the 3D space
by three parameters. These parameters are consistent with the Denavit-Hartenberg formalism,
Hannan and Walker (2003). The continuum robot joint parameters are called configuration space
of arc parameters (κ,φ , `) where κ is the curvature, φ is the arc equilibrium plane angle, and ` is
the arc length. The relationship θ = κ` defines the bending angle of the arc. It can be introduced
as an additional component that can be used for the parameterization. These parameters can be
visualized in Figure 5 where the different frames that will be used later are defined.

Figure 5: Schematic description of the configuration space parameters where the z j- axis is defined as the current arc
principal axis and φ j describes the equilibrium plane angle of a link located in its x− z plane. r j designates the arc
radius where κ j = 1/r j. {x j−1,y j−1,z j−1} is the reference frame, located at the previous link end-effector.

2.1.1. Geometric modeling
A link is defined whenever the number of the overlapping tubes is modified or the shape of a

tube is different (straight or curved). For example, if one curved tube (L1) is interacting with a
second tube with smaller diameters constituted of a straight part (L2) and a curved part (C2), two
links can be defined: the first for L2 inside C1, and the second for C2 inside C1. Considering Figure
6, a concentric tube robot with n = 3 tubes is sketched. Each tube, of a diameter Di, consists of a
straight proximal part Li and a curved distal part Ci. Considering the shape of the interacting parts
of the tubes, m = 6 sections can be defined, as sketched in Figure 6.
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Straight part L
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Figure 6: Definition of the m = 6 sections when n = 3 tubes are in interaction. A new section must be considered
when the shape (Li or Ci) or the diameter Di of a tube is different. Each tube can be translated by ρi and rotated about
its central axis by αi.

The model studied in this paper assumes three perfectly curved (κi 6= 0) concentric tubes i (with
i ∈ {1..n},n = 3), the three links j (with j ∈ {1..m},m = 3) can be described in Figure 7.

Figure 7: Schematic description of the link distribution and parameters in the presence of three totally curved concen-
tric tubes (outer tube in blue, middle tube in brown, and inner tube in green). The general fixed frame {x0,y0,z0} is
attached to the outer tube basis. The z-axis denotes the robot principal axis. A configuration frame is related to each
link distal vertex (first in light green, second in dark blue, and third in red).
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The resultant shape of the robot stems from the balancing constant moments applied to the
overlapping tubes, based on the Euler-Bernoulli beam theory. This assumption was theoretically
proposed and experimentally validated in several works led by Sears and Dupont (2006, 2007);
Webster III et al. (2006b, 2008, 2009); Rucker et al. (2010b), among others. The piece-wise con-
stant curvature was validated by Gravagne et al. (2003) when a constant moment is applied along
a beam. These results were also validated by a finite element model by Baek et al. (2015). Thus,
depending on the number of the n component tubes, the shape of the jth link results from their in-
teraction. This interaction is illustrated by the resultant curvature in equation 1 and the equilibrium
plane angle in equation 2. The inserted angle αi of the ith tube about the jth link frame z-axis and
the intrinsic curvature κi, j of the portion of the tube involved in the jth link are taken into account
as follows:

κ j =
√

κ2
x j
+κ2

y j
with κx j =

∑
n
i=1 EiIiκi, j cosαi

∑
n
i=1 EiIi

,κy j =
∑

n
i=1 EiIiκi, j sinαi

∑
n
i=1 EiIi

(1)

where κx and κy are the decomposition of the main curvature along the x and y axes respectively,
Ei is the elastic modulus, Ii is the cross sectional moment of inertia, and:

φ j = arctan2(κy j ,κx j) (2)

Considering the initial pose of the robot where all the tubes are withdrawn, the link lengths are
such that ` j = 0,∀ j = {1..3} at t = 0. Whenever t > 0, the tubes are deployed so that the link
lengths are written as `1 = ρ1, `2 = ρ2−ρ1, and `3 = ρ3−ρ2 such that ρ3 ≥ ρ2 ≥ ρ1.

Three spaces were specified by Jones and Walker (2005) and later by Webster III and Jones
(2010). The Cartesian task space SE(3) and the actuator space q ∈ R2n are linked by an in-
termediary space: the configuration space χ ∈ R2m of the aforementioned arc parameters, where
χ = [χ1 . . . χm]

T and χ j =
[
κ j φ j ` j

]T for j ∈ {1..m}. Two space transformations are thus defined:

1. The specific mapping (SM) from the actuator space to the configuration space (actuator dy-
namics) denoted χ = SM(q). This mapping totally depends on the actuation of the tubes.
Hence, it can be adapted to the technological solution,.

2. The independent mapping from the configuration space to the task space based on forward
kinematic modeling (FKM) denoted 0Tm = FKM(χ). This mapping is the same for all the
concentric tube configurations, satisfying the assumption of constant curvature links and can
be generically modeled.

As mentioned above, forward kinematics can be accomplished in a variety of ways. Despite
the diversity of formalisms, frame choices and symbols employed, we obtain the same result for
the transformation matrix. Indeed, the transformation j−1T j from link j−1 to link j decomposes
into a rotation of center r j = [1/κ j,0,0]T about the y axis by θ j and a rotation about the z axis by
φ j:

j−1T j =

[
Rz(φ j) 0

0 1

][
Ry(θ j) p j

0 1

]
(3)

where θ j = κ j` j and p j = [r j(1− cosθ j),0,r j sinθ j]
T .
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2.1.2. Independent kinematic Jacobian matrix
The independent kinematic Jacobian computation relies substantially on the forward kinematic

derivation. Consequently, as derived by Webster III and Jones (2010), the velocity of the jth link
is defined according to the j−1th one. Thus, V j is defined regardless of the configurations of the
other sections (bending plane, curvature, or length).

V j =



cos∆φ j(cos(κ j` j)−1)/κ2
j 0 0

sin∆φ j(cos(κ j` j)−1)/κ2
j 0 0

−(sin(κ j` j)−κ j` j)/κ2
j 0 1

−` j sin∆φ j 0 −κ j sin∆φ j
` j cos∆φ j 0 κ j cos∆φ j

0 1 0


 κ̇ j

∆φ̇ j
˙̀j

= Jindep j

 κ̇ j
∆φ̇ j

˙̀j

 (4)

where ∆φ j = φ j−φ j−1 and ∆φ1 = φ1.
Using the adjoint transformation introduced by Murray et al. (1994), the full independent kine-

matic Jacobian can be deduced from the individual ones:

Jindep =
[
Jindep1 Ad(0T1)Jindep2 Ad(0T2)Jindep3 . . . Ad(0T1(m−1))Jindepm

]
(5)

where Jindep ∈ R6×3m and 0T j =
0 T1

1T2 . . .k−1 T j is the jth transformation matrix at the jth link

according to the robot base, for k ∈ {1.. j}. Ad(T) =
[

R R[t]×
0 R

]
where R and t are the rotation

and translation components of T respectively, and [t]× the skew-symmetric matrix associated to
the vector cross-product by t. This leads the robot end-effector velocity expression:

V = Jindepχ̇ (6)

Thus, determining the number of links in a configuration is a preliminary task to obtain the dimen-
sion of the full kinematic Jacobian matrix. In all the cases studied in the following subsections,
we assume a continuum robot with three concentric tubes that are totally curved. Thus, the struc-
ture can be decomposed into three links as previously described in Figure 7. Consequently, we
obtain Jindep ∈ R6×9. The following models are developed according to this assumption (n = 3
and m = 3).

2.2. Forward kinematic models and specific kinematic Jacobian matrices
As the specific mapping depends essentially on the actuator technology, structure, and distribu-

tion along the continuum robot, geometric and kinematic models will be different from each other.
Nevertheless, for the clarity of the paper, we use hereby the same formalisms and derivations in or-
der to obtain results as homogeneous as possible. The derivatives of the curvature and equilibrium
angle have the same structure in all cases (constant curvature model, variable curvature model,
double direction variable curvature model). Differentiating (1) and (2) with respect to κx and κy
yields:

κ̇ j =
1√

κ2
x j
+κ2

y j

[
κx j κy j

][κ̇x j

κ̇y j

]
(7)
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and

φ̇ j =
1

κ2
x j
+κ2

y j

[
−κy j κx j

][κ̇x j

κ̇y j

]
(8)

where κ̇x j and κ̇y j are respectively the derivatives of κx j and κy j with respect to the actuators used
in each case. This yields the curvature and the equilibrium angle derivatives of the jth link:

[
κ̇ j
φ̇ j

]
=

 1√
κ2

x j
+κ2

y j

[
κx j κy j

]
1

κ2
x j
+κ2

y j

[
−κy j κx j

]
[κ̇x j

κ̇y j

]
= A j

[
κ̇x j

κ̇y j

]
(9)

where A j =

[ 1
κ j

[
κx j κy j

]
1

κ2
j

[
−κy j κx j

]]. The link length derivatives are defined as ˙̀1 = ρ̇1, ˙̀2 = ρ̇2− ρ̇1,

and ˙̀3 = ρ̇3− ρ̇2.
Although the first configuration is studied in the literature, the explicit development of a specific

Jacobian matrix is performed hereby for the first time to the best of our knowledge. We choose a
development formalism in accordance with the two novel configuration models in order to perform
a coherent comparison subsequently.

2.2.1. Constant curvature model (CCM)
The robot configuration of the constant curvature model discussed hereby was previously de-

rived in the literature (e.g. Webster III et al. (2006b); Sears and Dupont (2006)).
The actuator space is {qi = αi,ρi|i ∈ {1..n}} where αi and ρi are the insertion angle and length
of the ith tube respectively. In order to permit a generic modeling, the formalism used hereby is
the matrix notation. In the following, the curvature components of each link will be differentiated
according to the actuator derivatives:[

κ̇x j

κ̇y j

]
= B j

[
α̇ j . . . α̇m

]T (10)

Explicit examples of the following developments are detailed in the Appendix (cf. equation 40)
Differentiating the curvature components of the third link leads to:[

κ̇x3

κ̇y3

]
=

[
−κi,3 sinα3
κi,3 cosα3

]
α̇3 = B3α̇3 (11)

resulting into the third link curvature and equilibrium angle derivatives:[
κ̇3
φ̇3

]
= A3B3α̇3. (12)

Similarly, for the second link, the curvature component derivatives are:[
κ̇x2

κ̇y2

]
= B2

[
α̇2
α̇3

]
(13)
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with B2 = 1
E2I2+E3I3

[
−E2I2κi,2 sinα2 −E3I3κi,3 sinα3
E2I2κi,2 cosα2 E3I3κi,3 cosα3

]
, yielding the second link curvature and

equilibrium angle derivatives: [
κ̇2
φ̇2

]
= A2B2

[
α̇2
α̇3

]
(14)

For the first link, the curvature component derivatives can be written:[
κ̇x1

κ̇y1

]
= B1

[
α̇1 α̇2 α̇3

]T (15)

with B1 =
1

E1I1+E2I2+E3I3

[
−E1I1κi,1 sinα1 −E2I2κi,2 sinα2 −E3I3κi,3 sinα3
E1I1κi,1 cosα1 E2I2κi,2 cosα2 E3I3κi,3 cosα3

]
, providing the first

link curvature and equilibrium angle derivatives:[
κ̇1
φ̇1

]
= A1B1

[
α̇1 α̇2 α̇3

]T (16)

To summarize, after adding the link length derivatives, the final arc parameter derivatives for the
constant curvature configuration is:

χ̇ =


X1 02×3

02×1 X2 02×3
02×2 X3 02×3
0 0 0 1 0 0
0 0 0 −1 1 0
0 0 0 0 −1 1

 q̇CCM = JCCM
spec q̇CCM (17)

where χ̇ =
[
κ̇1 φ̇1 κ̇2 φ̇2 κ̇3 φ̇3 ˙̀1 ˙̀2 ˙̀3

]T , q̇CCM = [α̇1 α̇2 α̇3 ρ̇1 ρ̇2 ρ̇3]
T , and JCCM

spec ∈ R9×6 is the
specific kinematic Jacobian for the constant curvature model (CCM), with X1 = A1B1, X2 =
A2B2, and X3 = A3B3.

2.2.2. Variable curvature model (VCM)
This configuration was previously developed in details by Chikhaoui et al. (2014a). A different

formalism, which is coherent with the other developed models, is presented hereby. The actuator
space in this case is {qi = vi,αi,ρi|i ∈ {1..n}}. vi is the applied voltage to the ith tube (cf. equation
18), αi and ρi are the insertion angle and length of the ith tube respectively. The tube curvature,
which was previously a passive variable of the system, is now accessible. One can express the
inserted curvature κins,i of the ith tube in terms of the applied voltage vi as follows:

κins,i =CPPyivi (18)

where the PPy constant CPPyi , related to the ith tube, is given by:

CPPyi =
32
3π

EpλCv[a3
i − (ai +2tp)

3]

Eib4
i −Ep(ai +2tp)4−Eia4

i +Epa4
i

(19)
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Ei and Ep are the Young’s moduli of the ith tube and the PPy respectively, ai and bi are the outer and
inner diameters of the ith tube respectively, and tp represents the thickness of the PPy electrodes,
λ is an empirically determined strain to volumetric charge ratio, Cv is the volumetric capacitance
of the polymer, and vi is the applied voltage.

Similarly as for the previous model (CCM), details of an example of link parameter derivations
is introduced in the Appendix (cf. equation 41). Differentiation of the curvature components of the
third link is carried out and gives:[

κ̇x3

κ̇y3

]
= C3

[
0 0 v̇3 0 0 α̇3

]T (20)

where C3 =

[
0 0 cosα3CPPy3 0 0 −κi,3 sinα3
0 0 sinα3CPPy3 0 0 κi,3 cosα3

]
, yielding the third link curvature and equi-

librium angle derivatives: [
κ̇3
φ̇3

]
= A3C3

[
0 0 v̇3 0 0 α̇3

]T (21)

Similarly, derivatives of the second link curvature components can be established:[
κ̇x2

κ̇y2

]
= C2

[
0 v̇2 v̇3 0 α̇2 α̇3

]T (22)

where C2 =
1

E2I2+E3I3
C′2 with

C′2 =

[
0 E2I2 cosα2CPPy2 E3I3 cosα3CPPy3 0 −E2I2κi,2 sinα2 −E3I3κi,3 sinα3
0 E2I2 sinα2CPPy2 E3I3 sinα3CPPy3 0 E2I2κi,2 cosα2 E3I3κi,3 cosα3

]
, giving the

second link curvature and equilibrium angle derivatives:[
κ̇2
φ̇2

]
= A2C2

[
0 v̇2 v̇3 0 α̇2 α̇3

]T (23)

Finally, for the first link, the curvature component derivatives are:[
κ̇x1

κ̇y1

]
= C1

[
v̇1 v̇2 v̇3 α̇1 α̇2 α̇3

]T (24)

where C1 =
1

E1I1+E2I2+E3I3
C′1 with

C′1 =
[

E1I1 cosα1CPPy1 E2I2 cosα2CPPy2 E3I3 cosα3CPPy3 −E1I1κi,1 sinα1 −E2I2κi,2 sinα2 −E3I3κi,3 sinα3
E1I1 sinα1CPPy1 E2I2 sinα2CPPy2 E3I3 sinα3CPPy3 E1I1κi,1 cosα1 E2I2κi,2 cosα2 E3I3κi,3 cosα3

]
producing

the first link curvature and equilibrium angle derivatives:[
κ̇1
φ̇1

]
= A1C1

[
v̇1 v̇2 v̇3 α̇1 α̇2 α̇3

]T (25)
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To summarize, the final arc parameter derivatives for this case, when adding the link length deriva-
tive, produces:

χ̇ =


Y1 02×3
Y2 02×3
Y3 02×3

01×6 1 0 0
01×6 −1 1 0
01×6 0 −1 1

 q̇VCM = JVCM
spec q̇VCM (26)

where χ̇ =
[
κ̇1 φ̇1 κ̇2 φ̇2 κ̇3 φ̇3 ˙̀1 ˙̀2 ˙̀3

]T , q̇VCM = [v̇1 v̇2 v̇3 α̇1 α̇2 α̇3 ρ̇1 ρ̇2 ρ̇3]
T , and JVCM

spec ∈R9×9

is the specific kinematic Jacobian matrix for the variable curvature model (VCM), with Y1 =
A1C1, Y2 = A2C2, and Y3 = A3C3.

2.2.3. Double direction variable curvature model (DDVCM)
As a further development of the configuration modeled in the previous subsection, controlling

the curvature of the tubes in a continuum robot may enlarge the actuator space. The advantages
of such improvements will be discussed in the next section. This configuration aims to offer two
orthogonal bending directions for each tube. The electrodes coated around the tubes will be shaped
into two couples in order to obtain one couple of antagonistic electrodes for each bending direction
(c.f. Figure 3b). We suggest that the effect will be directly noticeable on the two components of
the resultant curvature: κx jins

= CPPy jvx, j and κy jins
= CPPy jvy, j. Noting that vx, j and vy, j are the

voltages applied to the first and second electrode couples of the ith tube, creating bending according
to x and y axes, respectively, and CPPy j as defined in equation 19. It denotes that the intrinsic
curvature of each tube is now accessible, not only in its resultant value as demonstrated in the
previous subsection, but also on its own x and y axis curvature components.

In this case, we define the suitable specific mapping with the new actuator space qi for every
tube with

{
qi = vx,i,vy,i,ρi|i ∈ {1..n}

}
. vx,i and, vy,i are the applied voltages as defined previously,

and ρi is the insertion length of the ith tube. An example of detailed computation of the derivations
is given in the Appendix (cf. equation 42). The curvature components for the third link can be
written as follows:

κx3ins
=CPPy3vx,3 and κy3ins

=CPPy3vy,3 (27)

Similarly, for the second link curvature components, we obtain:

κx2 =
E2I2κ2ins cosφ2ins +E3I3κ3ins cosφ3ins

E2I2 +E3I3
and κy2 =

E2I2κ2ins sinφ2ins +E3I3κ3ins sinφ3ins

E2I2 +E3I3
(28)

Finally, for the first link, the curvature components are:

κx1 =
E1I1κ1ins cosφ1ins +E2I2κ2ins cosφ2ins +E3I3κ3ins cosφ3ins

E1I1 +E2I2 +E3I3

and κy2 =
E1I1κ1ins sinφ1ins +E2I2κ2ins sinφ2ins +E3I3κ3ins sinφ3ins

E1I1 +E2I2 +E3I3

(29)
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Let d jκ and d jφ denote respectively: d jκ =
CPPy j√
κ2

x j
+κ2

y j

[
κx j κy j

]
and d jφ =

CPPy j
κ2

x j
+κ2

y j

[
−κy j κx j

]
, for

j ∈ {1..3}. Similarly, differentiating equations 7 and 8, taking into account equation 27 yields, for
the third link: [

κ̇3
φ̇3

]
= A3

[
κ̇x,3
κ̇y,3

]
(30)

while [
κ̇x,3
κ̇y,3

]
= D3

[
v̇x,3
v̇y,3

]
(31)

where D3 =

[
cosφ3 −κ3ins sinφ3
sinφ3 κ3ins cosφ3

][
d3κ

d3φ

]
.

The second link curvature and equilibrium angle can be written as follows: yielding the second
link curvature and equilibrium angle derivatives:[

κ̇2
φ̇2

]
= A2D2

[
v̇x,2 v̇y,2 v̇x,3 v̇y,3

]T (32)

where D2 =
1

E2I2+E3I3

[
E2I2 cosφ2 −E2I2κ2ins E3I3 cosφ3 −E3I3κ3ins

E2I2 sinφ2 E2I2 cosφ2 E3I3 sinφ3 E3I3 cosφ3

]
d2κ

01×2
d2φ

01×2
01×2 d3κ

01×2 d3φ

.

Similarly, the inserted curvature derivatives of the tubes interacting in the first link:κ̇1ins

κ̇2ins

κ̇3ins

=

 d1κ
01×2 01×2

01×2 d2κ
01×2

01×2 01×2 d1κ

[v̇x,1 v̇y,1 v̇x,2 v̇y,2 v̇x,3 v̇y,3
]T (33)

yielding the first link curvature and equilibrium angle derivatives:[
κ̇1
φ̇1

]
= A1D1

[
v̇x,1 v̇y,1 v̇x,2 v̇y,2 v̇x,3 v̇y,3

]T (34)

where

D1 =
1

E1I1 +E2I2 +E3I3[
E1I1 cosφ1 −E1I1κ1ins E2I2 cosφ2 −E2I2κ2ins E3I3 cosφ3 −E3I3κ3ins

E1I1 sinφ1 E1I1 cosφ1 E2I2 sinφ2 E2I2 cosφ2 E3I3 sinφ3 E3I3 cosφ3

]


d1κ
01×2 01×2

d1φ
01×2 01×2

01×2 d2κ
01×2

01×2 d2φ
01×2

01×2 01×2 d3κ

01×2 01×2 d3φ

 .
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To summarize, the arc parameter derivatives for the double direction variable curvature case can
be expressed:

χ̇ =


Z1 02×3

02×2 Z2 02×3
02×4 Z3 02×3

0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 −1 1 0
0 0 0 0 0 0 0 −1 1

 q̇DDVCM = JDDVCM
spec q̇DDVCM (35)

where χ̇ =
[
κ̇1 φ̇1 κ̇2 φ̇2 κ̇3 φ̇3 ˙̀1 ˙̀2 ˙̀3

]T , q̇DDVCM =
[
v̇x,1 v̇y,1 v̇x,2 v̇y,2 v̇x,3 v̇y,3 ρ̇1 ρ̇2 ρ̇3

]T , and
JDDVCM

spec ∈R9×9 is the specific kinematic Jacobian for the double direction variable curvature model
(DDVCM), where Z1 = A1D1 ∈ R2×6, Z2 = A2D2 ∈ R2×4, and Z3 = A3D3 ∈ R2×2.

2.3. Interim conclusions on modeling
Observing the specific kinematic Jacobian matrices obtained in every case, the JCCM

spec is a 6×9
matrix, in contrast with JVCM

spec and JDDVCM
spec that are 9× 9 square matrices. Thus, the specific

kinematic Jacobian matrix for the standard concentric tubes can never have a full rank (yielding
a non-holonomic constraint) where the arc parameters (9) are controlled with less actuators (6).
Whereas, the kinematic Jacobian matrices of both proposed models are of full size. This means
that each link of the robot is holonomic and so is to the entire system, regarding the configuration
space parameters. In contrast with the CCM, all the velocity directions for each link of VCM and
DDVCM are available. This is potentially useful when performing a linear sweeping movement
for instance. The sweeping direction that is prevented in a CCM configuration can be achieved by
the new holonomic manipulators, as will be shown further.
Furthermore, when comparing the two developed models VCM and DDVCM, as its kinematic
Jacobian matrix is full (JDDVCM

spec ∈ R9×9), all the configuration space is accessible for the latter
without controlling the insertion angle αi. Consequently, one can get rid of the rotation actuators
(controlling αi) when adding the double direction curvature control (cf. Figure 4). This is poten-
tially helpful for a quick Operating Room (OR) introduction due to the small size of the actuators.

3. Numerical results

In order to validate the aforementioned models developed herein, let us carry out numerical
simulations concerning the workspace in terms of volume covered as well as pose occurrences that
might ensue. The specifications of the robot used in numerical simulations are detailed in Table 2.
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Table 2: Tube specifications
Tube number 1 (outer) 2 (middle) 3 (inner)
Outer diameter (mm) 5 1.8 0.6
Inner diameter (mm) 2 1.5 0.4
Total length (mm) 15 30 45
Curvature (m−1) 20 50 80
Cross-sectional moment of inertia (m4) ' 2.9910−11 ' 2.6710−13 ' 5.1110−15

Shape Totally curved
Young Modulus (GPa) 0.7

Numerical simulations concern also the kinematic performances of the system. This is de-
scribed by analyzing the different full kinematic Jacobian matrices in terms of characteristic pa-
rameters. For each model, the robot kinematic Jacobian is defined as follows:

JCCM
Robot = Jindep JCCM

spec , JVCM
Robot = Jindep JVCM

spec , and JDDVCM
Robot = Jindep JDDVCM

spec (36)

Note that Jindep is rearranged in order to conform with the arc parameter derivatives χ̇ used in
equations 17, 26, and 35. Doing so, we enable singularity detection using singular value decom-
position. Finally, a further step of analysis examines the performance indices to provide us with a
quantitative meaning.

3.1. Workspace
3.1.1. Covering

In order to have homogeneous workspace point clouds, a set of 262.144 points denoted Γ was
generated. The discretization is performed on this basis for the three models analyzed. Also,
the ranges of the insertion angles for CCM and VCM are the same; while the ranges of the tube
curvatures are the same for the three models (varying between 0 and ±20m−1 for the first tube,
±50m−1 for the second tube, and ±80m−1 for the third tube). The sampling is performed with 8
steps for the inserted lengths and angles for CCM. For VCM and DDVCM, 4 steps are used for
the inserted lengths, angles, and the variable curvatures. Inside the principal loop of the inserted
lengths for all the models, the secondary loop of the inserted angles is followed for CCM and
VCM. For the latter, a last loop of the variable curvatures is crossed afterward, while the principal
loop is performed for DDVCM and followed by the double variable curvature loop.
Figure 8 displays the CCM, VCM and DDVCM reachable workspaces. Increasing the curvatures
(κ1, κ2, and κ3) of about 25% impacts the covered workspaces. This increase is of approximately
36% for VCM and for DDVCM compared to the previous workspaces. Projected views of the
three studied workspaces are displayed on Figure 9 and the covered volumes of the workspaces are
summarized in Table 3.
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Figure 8: a) Workspace covering of CCM with tube lengths ρi ∈ [0;15mm] and insertion angles θi ∈ [0;3π/2]. b)
Workspace covering of VCM with tube lengths ρi ∈ [0;15mm], insertion angles θi ∈ [0;3π/2], and tube curvatures
κ1 ∈ [−25;25m−1], κ2 ∈ [−62.5;62.5m−1], and κ3 ∈ [−100;100m−1]. c) Workspace covering of DDVCM with tube
lengths ρi ∈ [0;15mm] and tube curvature components κ1x,y ∈ [−17.7;17.7m−1], κ2x,y ∈ [−44.2;44.2m−1], and κ3x,y ∈
[−70.7;70.7m−1].
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Figure 9: Workspace covering projections of Figure 8 of a) CCM, b) VCM, and c) DDVCM on the x−z, y−z, and x−y
planes respectively from left to right. The transparent plots of b) and c) are those of VCM and DDVCM respectively,
and the dark plot is that of CCM.
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Table 3: Comparison of the workspace covered volume
Model Initial volume ϑ (cm3) Curvature increase Final volume ϑ ′ (cm3)
CCM ∼ 35 not possible after tube assembly ∼ 35
VCM ∼ 35 25% ∼ 48
DDVCM ∼ 35 25% ∼ 48

3.1.2. Pose occurrences
In a given volume (e.g. 1mm3) of the workspace, a pose occurrence is defined as the cluster

of the robot end-effector poses that fall into this volume with less than a given degree (e.g. 10◦)
difference from a central orientation. Detecting pose occurrences among all the achievable poses
of the robot is important in two aspects: (i) to determine the actuation and the orientation options
that an operator can have in order to reach a target point and (ii) to distinguish the different paths
that the manipulator may follow while navigating into the human body. The numerical simulations
are carried out for each model as follows:

a) b) c)

Figure 10: Pose occurrences at three random points of L> 30mm (to ensure three tube extension) among the workspace
subset Γsub at R = 1mm distance and δ = 10◦ deviation yielding a) 86 occurrences for CCM, b) 136 occurrences for
VCM, and d) 229 occurrences for DDVCM. The insets are zoomed views of the end-effectors and the transparent
spheres denote the random reference point neighborhood (R = 1mm).

- the workspace point cloud Γ is loaded (end-effector positions and orientations) as well as the
respective arc parameters χ (curvatures, equilibrium angles, and insertion lengths),
- a random reference point Pre f is chosen among the subset of the workspace Γsub as the robot total
length L is higher than 30mm. This is useful to analyze the configurations in which the three tubes
of the robots are deployed (3 links are obtained),
- the point cloud is scanned in order to find all the reachable points Pk ∈ Γsub in a defined neighbor-
hood R of that reference such that ‖Pk−Pre f ‖ ≤ R (e.g. at R = 1mm distance from the reference),
- among these points, the end-effector orientations Ok are clustered to find the similar ones ‖Ok−
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Ore f ‖ ≤ δ (e.g. absolute angle difference lower than δ = 10◦),
- the arc parameters χ of these poses are saved and reinserted in the direct geometric model to
display the robot pose.

An example of such numerical simulations is depicted in Figure 10. The superimposition of
the robot poses are plotted when the end-effector reaches a neighborhood (R) of a random target
position (Pre f ) among the workspace subset point cloud Γsub.
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Figure 11: Position and pose occurrences at 500 random points of Γsub at L > 30mm (to ensure three tube extension)
among the workspace and at R = 1mm distance and δ = 10◦ deviation a) for CCM, b) for VCM, and c) for DDVCM.
The solid red line denotes the mean of position occurrences and the dashed green line denotes the mean of pose
occurrences.
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The tests are performed 500 times to demonstrate the number of occurrences that appear in the
studied models. Results are displayed in Figure 11 showing the number of occurrences in terms of
positions. It shows as well the occurrences in terms of orientations among the position occurrences,
designated by pose occurrences.

Figure 11 shows that position occurrences are identified more often in VCM and DDVCM
than in CCM. The mean amounts are almost two to three times as many than that of CCM. The
same analysis is valid for the full pose occurrences. The latter are three to four times higher for
VCM and DDVCM than for CCM. It ensues that a target point can be reached with different poses.
Moreover, the continuum robot with embedded soft micro-actuation can reach almost a same pose
cluster with several actuator configurations more often than CCM. It permits to describe different
admissible paths and different robot configurations while aiming the same point and apprehending
with the same orientation. Consequently, a reconfigurability is provided to the system. It might
also refer to a redundancy ability or a sort of density in terms of pose completion.

3.2. Performance analysis
3.2.1. Kinematic Jacobian matrices and singular configurations

For the workspace studied herein, singular configurations are detected for the three models in
different proportions. Analyzing Table 4, CCM and VCM appear to present the most numerous
singular poses with a kinematic Jacobian matrix rank varying mostly between 5 and 6. In contrast,
the DDVCM presents more than 92% of non-singular configurations out of 262.144 poses. A
threshold of 10−5 is set onto the singular values used by Matlab in order to calculate the matrix
rank.

Table 4: Percentages of kinematic Jacobian rank values according to the models.
rank(JRobot) 1 2 3 4 5 6
CCM 0 0 0 ' 1.5% ' 14.3% ' 84.1%
VCM 0 0 0 ' 4.1% ' 59.8% ' 36.1%
DDVCM 0 0 0 ' 1.5% ' 6.2% ' 92.2%

3.2.2. Performance indices
In order to obtain a different meaning of the kinematics of the discussed models, let us assume

that JRobot can be decomposed into a translation velocity kinematic Jacobian Jv and a rotation
velocity kinematic Jacobian Jω such that:

JRobot =

[
Jv
Jω

]
(37)

Following the decomposition of the kinematic Jacobian of equation 37, the singular value decom-
position (SVD) is performed to Jv and Jω separately such that σ t

i correspond to Jv singular values
and σ r

i to those of Jω , where i= 1,2,3. The translation performances can be illustrated through the
manipulability vectors which lengths correspond to sqrt(σ v

i ). These vectors describe the ability
(or easiness) of the manipulator to move along each direction as shown in Figure 12. The rotation
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performances are described in terms of arcs of circles which lengths are proportional to sqrt(σω
i ).

The arc lengths are thus proportional to the ability of the robot to rotate around every different di-
rection. The illustration of this manipulability is depicted in Figure 13 for an arbitrary end-effector
position of the robot considering the three models studied in this paper.

a) b) c)

d) e) f)

Figure 12: Representation of translational manipulabilities at a same arbitrary end-effector position of the robot for a)
CCM, b) VCM, and c) DDVCM. The zoomed figures for d) CCM, e) VCM, and f) DDVCM display the robot in blue
and the translation manipulabilities in red vectors.

Figures 12c,f prove that the DDVCM presents the most isotopic behavior with vectors of almost
the same length. The robot presents nearly the similar easiness to move along the three different
directions presented hereby, in contrast with the disproportionate vectors of CCM and VCM (Fig-
ure 12d,c). Figure 13 displays the manipulability in terms of rotation abilities of the manipulator at
the same position. Although the CCM shows two rotation directions of almost the same rate (c.f.
Figures 13a,d), DDVCM displays the highest rate on two rotation directions (c.f. Figures 13c,f).
One can note that one rotational direction is almost forbidden in all the cases, which is due to the
robot construction that prevents the rotation in that particular direction.

In order to strengthen the results discussed above, performance indices are employed. Their
definitions and computations were introduced, among others, by Yoshikawa (1985a,b); Klein and
Blaho (1987); Angeles and López-Cajún (1992). The performance indices ensue from the SVD
of the full kinematic Jacobian JRobot . The three most significant performance indices, namely
manipulability (M), isotropy (Iso), and condition number inverse (CNI), are defined as follows:

M=
√

∏
i

σi, Iso=
∏i σi

∑i σi
, and CNI=

σmin

σmax
(38)

where σi are the singular values of the robot kinematic Jacobian JRobot , M denotes the manipulabil-
ity, I the isotropy, and CNI the condition number inverse. For each performance index, only singular
values corresponding to the maximum rank will be taken into account (e.g. if rank(JRobot) = 5,
only the first 5 singular values will be employed in the calculus).
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a) b) c)

d) e) f)

Figure 13: Representation of rotational manipulabilities at a same arbitrary end-effector position of the robot for a)
CCM, b) VCM, and c) DDVCM. The zoomed figures for d) CCM, e) VCM, and f) DDVCM display the robot in blue
and the rotation manipulabilities in black vectors with the proportionate circle arrow sizes.

Performance indices are depicted in Figures 14, 15, and 16 for CCM, VCM, and DDVCM
respectively. Following the same sampling explained in the workspace generation (cf. section 3.1),
the performance indices are computed at each point of the cluster (denoted pose index). In terms
of increasing pose index, the first values are related to the nearest points to the robot base while the
last values correspond to those where the robot is totally deployed. The highest ”periodic” values
on Figures 14–16 are associated to the configurations of maximum insertion angles for CCM, and
maximum curvatures for VCM and DDVCM.
We assume that the global performance indices can be written as follows:

GM =

∫
M

ϑ
, GIso =

∫
Iso
ϑ

, GCNI =
∫

CNI
ϑ

(39)

where GM is the global manipulability, GIso is the global isotropy, GCNI denotes the global
condition number inverse, and ϑ is the covered volume. The red lines in Figures 14,15, and 16
display these values.
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a) b) c)

Figure 14: CCM performance index variation with respect to the pose index in the workspace: a) manipulability, b)
isotropy, and c) condition number inverse.

a) b) c)

Figure 15: VCM performance index variation with respect to the pose index in the workspace: a) manipulability, b)
isotropy, and c) condition number inverse.

a) b) c)

Figure 16: DDVCM performance index variation with respect to the pose index in the workspace: a) manipulability,
b) isotropy, and c) condition number inverse.

The performance indices are clearly higher for DDVCM than for CCM and VCM. The ma-
nipulability of DDVCM is twice higher than that of CCM. The former is able to translate and
rotate along different directions with an enhanced homogeneity. The kinematic Jacobian JDDVCM
is significantly better conditioned than JCCM and JVCM. Hence fewer singular configurations are
detected for DDVCM than for CCM. Thus, these results induce a higher level of safety of the
system with DDVCM.

4. Conclusion

4.1. Contributions summary
A homogeneous formalism was developed to describe three models of concentric tube robots

with constant curvature (CCM) and with variable curvature according one and two directions

25



(VCM and DDVCM respectively). This generic modeling is useful to clearly identify the advan-
tages of embedding micro-actuation on concentric tubes. In particular, the DDVCM should enable
a control of all the arc parameters. The use of the rotation motors can be avoided. Thus, the actua-
tor sizes can be decreased to permit a higher integrability in the OR. It is also expected to provide
an additional ease to include the developed robot in a classical endoscopic device as an auxiliary
tool. Concerning the kinematics of the studied structures, holonomy is provided when using the
VCM and DDVCM as all the arc parameter components can be controlled. Besides, redundancy is
brought when using more than three tubes for VCM and DDVCM. In a dimensional purpose, the
numerical results prove that the workspace is broadened when bending the tubes beyond a certain
value. That is possible with the usage of the embedded micro-actuation in VCM and DDVCM. In
terms of position occurrences, the VCM and DDVCM provide more robot configurations to reach
the target volume. Added to that, redundancy is provided to the system. In fact, more numerous
actuator configurations and robot postures permit the VCM and DDVCM to describe a particular
pose than for CCM. Using performance indices, we prove that the homogeneity of the translation
and rotation velocity vectors provide the DDVCM with the most isotropic behavior compared to
CCM and VCM. In fact, the global performance indices show that DDVCM presents the best con-
ditioned Jacobian matrix and the best manipulability. Thus, the level of safety of the manipulator
is improved with the DDVCM. All in all, the DDVCM shows the best features in terms of safety,
redundancy and pose occurrences compared to CCM and VCM.

4.2. Future works
Many topics related to continuum manipulators need further investigations. The experimental

validation of the EAP-based embedded micro-actuators is under development. Additional efforts
demand to be supplied to find the best balance between accurate modeling and short computation
time. Moreover, including supplementary mechanical constraints as torsion and friction permits
an exhaustive description. However, a full mechanically compliant model would slow down the
computation speed. For real time environment, we might develop numerical solutions to account
for the model complexity while performing on-line control. Our efforts are also focused on the
development of a control strategy that includes the novel embedded micro-actuation for concentric
tube robots. Finally, all these developments should take into account the medical environment
constraints. One major concern is to account for the external loads on the robot body to permit a
conformation with the realistic conditions, namely the contact with the surrounding tissue. Such
models were introduced for the standard concentric tube robots by Lock et al. (2010); Rucker
et al. (2010a) with forces applied at the end-effector of the robot and by Ha et al. (2015) for
distributed forces/moments along one or several tubes of robot. These effects should be addressed
in future works for the concentric tube robots with embedded actuation to enhance the accuracy
of the model. Another important concern is related to the safety that should be maintained when
designing and controlling this novel robotic manipulator.

Appendix

A brief development of an example of each developed model (CCM, VCM, and DDVCM) is
introduced in this section. The developments are based on equation 7 concerning the curvature
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components κx and κy. One example of the differentiation of the CCM is carried out here to elu-
cidate the matrix formalism used. For the second link, the active actuators regarding the curvature
and the equilibrium angle of the second and third tube involved are α2 and α3. Thus, the curvature
component derivatives are:

κ̇x2 =
1

E2I2 +E3I3
(−E2I2κi,2 sinα2α̇2−E3I3κi,3 sinα3α̇3)

κ̇y2 =
1

E2I2 +E3I3
(E2I2κi,2 cosα2α̇2 +E3I3κi,3 cosα3α̇3)

(40)

We obtain B2 in equation 13. B1 and B3 are developed in the same way taking into account the
number of tubes in each link and their actuators αi.

Similarly, for the VCM, and for the second link and taking into account equation 7, v2, v3, α2
and α3 are the active actuators for the second and third tube curvatures and equilibrium angles.
Thus, the curvature component derivatives are given by:

κ̇x2 =
1

E2I2 +E3I3
(E2I2 cosα2κ̇ins,2 +E3I3 cosα3κ̇ins,3−E2I2κi,2 sinα2α̇2−E3I3κi,3 sinα3α̇3)

κ̇y2 =
1

E2I2 +E3I3
(E2I2 sinα2κ̇ins,2 +E3I3 sinα3κ̇ins,3 +E2I2κi,2 cosα2α̇2 +E3I3κi,3 cosα3α̇3)

(41)
And knowing that κ̇ins,2 =CPPy2 v̇2 and κ̇ins,3 =CPPy3 v̇3 from equation 18, this leads to the matrix
notation C2 in equation 22. The same derivations were performed for the third and first link, only
the number of the involved tubes and their associated actuators change and thus the dimensions of
C1 and C3.

Concerning the DDVCM, the curvature components κx and κy can be directly controlled re-
spectively by the actuators vx and vy. After obtaining the curvature components for each tube due
to the actuation (e.g. equation 27), one must inject these values into the curvature component
expressions that ensue from the tube interactions (cf. equation 1). The example of the curvature
component derivatives of the second link is developed hereby:

κ̇x2 =
1

E2I2 +E3I3
(E2I2 cosα2κ̇2ins +E3I3 cosα3κ̇3ins−E2I2κ2ins φ̇2ins−E3I3κ3ins φ̇3ins)

κ̇y2 =
1

E2I2 +E3I3
(E2I2 sinα2κ̇2ins +E3I3 sinα3κ̇3ins +E2I2 cosφ2φ̇2ins +E3I3 cosφ3φ̇3ins)

(42)

where κ̇2ins =
CPPy2√

κ2
x2ins

+κ2
y2ins

κx2ins
v̇x,2 +

CPPy2√
κ2

x2ins
+κ2

y2ins

κy2ins
v̇y,2,

κ̇3ins =
CPPy3√

κ2
x3ins

+κ2
y3ins

κx3ins
v̇x,3 +

CPPy3√
κ2

x3ins
+κ2

y3ins

κy3ins
v̇y,3,

φ̇2ins =−
CPPy2

1+κ2
y2ins

κy2ins
v̇x,2 +

CPPy2
1+κ2

y2ins

κx2ins
v̇y,2, and

φ̇3ins =−
CPPy3

1+κ2
y3ins

κy3ins
v̇x,3 +

CPPy3
1+κ2

y3ins

κx3ins
v̇y,3.

The matrix notation related to these derivations is denoted D2 as presented in equation 32.
Taking into account the suitable actuators for the tubes interacting in the other links, we can develop
the two other matrices D1 and D3.
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Robot Kinematics. Springer International Publishing, pp. 457–465.

Chikhaoui, M. T., Rabenorosoa, K., Andreff, N., December 2014b. Towards clinical application
of continuum active micro-endoscope robot based on EAP actuation. In: Surgetica. Chambéry,
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