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Image-Guided Nanopositioning Scheme for SEM
Naresh Marturi, Brahim Tamadazte, Sounkalo Dembélé and Nadine Piat

Abstract—Positioning of micro-nanoobjects inside a scanning
electron microscope (SEM) for manipulation is a key and chal-
lenging task to perform. Often it is performed by skilled operators
via teleoperation, which is tedious and lacks repeatability. In
this paper, rendering this task as an image-guided problem, we
present a frequency domain scheme for automatic control of
positioning platform movements. The designed controller uses
the relative global image motion computed using the frequency
spectral information of the images as visual signal and can pro-
vide control upto 5 degrees of freedom. The proposed approach
is validated in simulations as well as experimentally using a
high resolution piezo-positioning platform mounted inside SEM
vacuum chamber. The obtained results quantify the performance
of proposed nanopositioning scheme.

Note to Practitioners—The main motivation behind this paper
comes from the very need for automatic positioning of objects
inside a SEM to perform dynamic analysis and structural char-
acterization. Mostly, the positioning tasks are exhibited by skilled
operators via teleoperation. Nevertheless, it is still a difficult
task to repeat and hence automatic strategies are indispensable.
This can be tackled upto an extent using microscopic vision
information. However, the regular vision-guided strategies with
integrated feature tracking are hard to use with SEM due to
multiple instabilities associated with the imaging process. To
address this issue, this paper presents an image frequency-
based positioning stage controller that does not require any
visual tracking and is capable of dealing with electronic images
provided by SEM for automatic nanopositioning. The presented
results illustrate the capability of the method in handling various
perturbations and demonstrate its performance in terms of
accuracy, robustness and repeatability. Due to the existence
of orthographic projection, the proposed method is limited to
control depth displacements. This can be resolved by combining
it with visual servoing-based autofocus methods.

Index Terms—Scanning electron microscope (SEM), Nanopo-
sitioning, visual control, Fourier transform, motion control.

I. INTRODUCTION

W ITH a rapid development in micro-nanoscale tech-

nologies in the last couple of decades, nanomanip-

ulation has gained a significant research interest. It has a

variety of applications in various industrial and biomedical

domains and also used in different scientific works to perform

dynamic analysis and characterization of object’s structural,

mechanical, electrical or optical properties [1]–[3]. Besides,

manipulation of nanometric objects also benefit in building

complex nanoelectromechanical systems (NEMS) [4]. The

consequence of this strong demand is the emergence of an
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active research area concerning the development of automatic

technologies within the micro-nanoscale.

So far, a great progress has already been realized in the

development of nanomanipulation systems [5], microgrip-

pers [6], nanopositioning systems [7] as well as robust control

strategies [8]–[10]. However, the major concern is about the

repeatability and accuracy of the tasks being performed. Since

human handling is not a feasible option at this small scale,

more robust automatic handling tools and techniques are indis-

pensable. In order to perform an automatic nanomanipulation

task, the basic operations include identification, positioning

and handling of the objects with nanometric resolution. Out

of all, positioning is more challenging at this particular scale

mainly due to the lack of accurate and effective feedback

information. This problem can be resolved by considering an

imaging system like SEM, which is capable of producing near

real-time images with high resolution and at high magnifica-

tions [11]. Most of the nanopositioning tasks using a SEM

are performed by skilled operators who use a joystick device

to control the positioning platform’s movement. However, due

to the presence of random image noise, drift and instabilities

in the SEM electron column, it is always a difficult and

tiresome task to perform [12]–[14]. This can be tackled up to

an extent by automating the positioning process using visual
servoing strategies, which are based on minimizing the error

between tracked current and reference image features (e.g.,

edges, corners) [15]. This tracking process plays a vital role

in the development of visual control laws.

Previously, computer vision techniques such as active con-

tours and cross-correlation-based template matching have

been successfully demonstrated for tracking stationary micro-

objects in semi-automated positioning tasks inside a SEM [11],

[16]. However, they are affected by heavy deformations and

large displacements observed with SEM imaging. A new po-

sition tracking system that controls the SEM scanning system

has been demonstrated in [17]. It determines an object’s

position using few line scans instead of acquiring a global

image. A comparison of different tracking frameworks for

SEM was presented in [18]. Besides 2D tracking, a 3D model-

based approach for tracking the micro-objects within a region

of interest was proposed in [19]. Nevertheless, acquiring

images to use them with visual servoing inside a SEM is

always a challenging task due to the addition of random noise

during various stages of image acquisition (especially with

fast raster rates) and instability in contrast and brightness

levels. Moreover, the pixels are acquired one at a time slowing

down the overall acquisition rate. However, the latter can be

dealt by considering latency estimation schemes with regular

visual controllers [9]. Apart from this, when the objects are

in motion, the images either contain multiple occurrences

of the object or discontinued edges due to the sequential



2

Fig. 1. Secondary electron images of a microgripper fingers obtained when
the gripper is in motion. Multiple occurrences of the object and discontinued
edges can be seen. Used scan speed is 180 ns/pixel.

raster scanning of the surface (see Fig. 1). This phenomenon

emanates the difficulty in applying visual tracking algorithms.

To this extent, we develop a tracker-less nanopositioning

scheme in this work. Recent developments have shown that

the usage of global image information like pixel gray level

intensities [20], image histograms [21], spatial sampling ker-

nels [22], etc., for visual servoing can increase the robustness

in minimizing the task error, due to the redundant information.

Relying on this concept, we develop a new vision-guided

nanopositioning scheme that uses image frequency spectral

information. In contrast to the available global information-

based techniques, which are of type image-based visual ser-

voing, our approach is a position-based visual servoing scheme

that relies on the relative image motion. Based on this,

we realize an automatic nanopositioning task inside a SEM,

which circumvents the feature tracking step. Mostly, Fourier-

based methods are widely used for planar image registrations

due their robustness to local image variations and various

disturbances [23]. The main basis of these methods is the

phase correlation function, which enables to estimate the

transformation between two images. Previously, with SEM

imaging, such type of methods were used to compensate the

time-varying distortion, drift [14], [24]. Recently in [25], we

have demonstrated how a simple Fourier-based method can be

used to control 2 degrees of freedom of a positioning platform,

where we have also compared its performance with the avail-

able direct visual servoing technique [20]. In this paper, we

extend our previous work in many ways. First, the method has

been enhanced to perform a 5 degrees of freedom positioning

task. The translation motion estimation has been improved by

moving the relative shift computation from pixel level to sub-

pixels. Moreover, we integrate a two-way rotation estimation

to augment the capabilities of the approach. Also, by using an

optimised control law, the convergence of the final task error

has been improved. Entirely, new experiments are reported

to demonstrate the performance of proposed method at chal-

lenging conditions like, variable image intensities, artificial

and high quality images as desired images and using samples

with repetitive patterns. Furthermore, we also demonstrate the

method’s performance in terms of computational efficiency in

comparison with the regular spatial processing methods.

In this paper, we render the nanopositioning task as a pure

image dependent problem and develop a closed loop scheme

for controlling the positioning platform’s degrees of freedom

inside a SEM. We first analytically develop the Fourier-based

control law in Section II. The underlying idea is to use the

image motion obtained using the Fourier spectral information.

A two stage method has been presented for computing the

rotations. In the first stage, the rotation around Z has been

computed and the second stage includes the computation

of out-of-plane rotations (around X and Y ) using spherical

Fourier transformations. 2D translations with sub-pixel ac-

curacy are computed using the normalized phase correlation

technique. Due to the existence of orthographic projection,

the proposed method cannot control Z displacements. Nev-

ertheless, this can be accomplished using visual servoing-

based autofocus shown in [28]. Used experimental set-up is

described in Section III and the experiments performed at

various experimental conditions are reported in Section IV.

We also provide a supplementary video illustrating positioning

results inside SEM. An additional advantage associated with

the method is that the positioning errors are corrected in real-

time, which also corrects the induced drift distortions.

II. FOURIER-BASED VISUAL CONTROL FOR

NANOPOSITIONING

In this section we present a new Fourier-based visual

servoing scheme for nanopositioning that does not require

any locally obtained image measurements. One reason for

choosing frequency domain is that with SEM imaging, the

brightness and contrast are not constant and it has been known

that Fourier domain techniques are robust to these variations

and noise [23]. Here, we first present the motion estimation in

images, which is then used to design positioning controller.

A. Motion Estimation Basics

Let f(x) and g(x) with x
.
= [x y z]

�
and z = 1 be two

different images of same scene with size M × N . These are

related by

g(x) = f (R (x) +Δx) (1)

where, R(α,β,γ)(x) = Rx(α)Ry(β)Rz(γ) ∈ SO(3) is the

rotation matrix and Δx = (Δx,Δy,Δz) ∈ R
3 is the

translation vector. Since z is constant in this case i.e., Δz = 0
and we assume image dimensions are equal i.e., M = N
(square image), the 2D Fourier transforms (FT) of images can

be written as

F(k) =

M−1∑
x=0

N−1∑
y=0

f(x)e−j2π{kx
M } (2)

where, k = [u v]
�

are the frequency domain coordinates. To

estimate the motion, it is required to compute the relation

between Fourier transforms. If we apply the transformation

shown in (1) to (2) i.e., if the image f(x) is translated and

rotated, we get

F(k) =

M−1∑
x=0

N−1∑
y=0

f (R (x) +Δx) e−j2π{kR(x)+kΔx
M }

=

(
M−1∑
x=0

N−1∑
y=0

g(x)e−j2π{kR(x)
M }

)
e−j2π{kΔx

M } (3)
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As R is rotational matrix, i.e., orthogonal i.e., R� = R−1,

one can write (3) as

F(k) =

(
M−1∑
x=0

N−1∑
y=0

g(x)e
−j2π

{
k(R−1)

�
(x)

M

})
e−j2π{kΔx

M } (4)

Now, if we apply rotation to the Fourier transform, we get

F(Rk) =

(
M−1∑
x=0

N−1∑
y=0

g(x)e−j2π{kx
M }
)
e−j2π{kΔx

M } (5)

Finally, using (5), the relation between the Fourier transforms

can be deduced as

G(k) = F(Rk) ej2π{kΔx
M } (6)

It can be seen from (5), the exponential term outside the

brackets contains translation component Δx independent of

the original spatial image information x and the rotation in

spatial domain is commuted to the frequency domain as seen in

(6). Such a kind of relation helps in decoupling translation and

rotation motions, which can be accomplished by computing

magnitude and phase spectra of images i.e.,

magnitude: | G(k) | =| F(Rk) |
phase: ∠G(k) = ∠F(k)− 2π

{
kΔx

M

}
(7)

An important point to be noted is that the DFT assumes

the original image is periodic. This affects in producing

discontinuities especially at the image boundaries, which in

turn leads to unwanted artifacts in the Fourier spectrum. In

order to minimize this effect, in this work, the input images

are pre-processed using a Hann window. Following the general

rule, we first compute the rotation and then estimate the

translation.

B. Rotation Estimation

Generally, rotations in a space can be represented using the

axis of rotation u = (ux, uy, uz) and an angle θ, from which

R can be written as

R = I cos θ + sin θ[u]× + (1− cos θ)u⊗ u (8)

whose eigenvalues are λ1 = 1, λ2 = eiθ and λ3 = e−iθ and

I is the identity matrix. Up on computing the eigen-vector ν
corresponding to the real eigenvalue λ1, axis of rotation can be

computed as ν
|ν| and simultaneously the angle can be deduced

using λ2 and λ3. In our case, there are two possible stages of

rotations: planar (yaw) and out-of-plane (roll and pitch). We

first start by computing the planar rotation as its deduction

is straight forward and can be directly estimated using the

magnitude spectra.

Fig. 2. Log-polar magnitudes for (a) reference image (b) rotated around Z (c)
and (d) rotated around X and Y , respectively. In any case the angle of rotation
is 3◦. The magnitude difference between the reference and tilted images is
very small and is not effective for angle estimation.

1) Estimating Planar Rotations: As in [26], planar rotations

can be obtained by re-sampling the image magnitude spectra

onto rectangular log-polar coordinates. If g(x, y) is rotated by

γ0 (around Z) of f(x, y), then their Fourier transforms are

related by

G(u, v) = F(u cos γ0 + v sin γ0,−u sin γ0 + v cos γ0) (9)

Let ξ1 =| F | and ξ2 =| G | be the magnitude spectra, then

from (7)

ξ2(u, v) = ξ1(u cos γ0 + v sin γ0,−u sin γ0 + v cos γ0) (10)

Now, the angle of rotation can be obtained by representing

the magnitude spectra in log-polar form as shown in (11).

ξ2(ρ, γ0) = ξ1(ρ, γ − γ0) (11)

where, ρ and γ are the radius and angle in polar coordinates.

From (11) it can be seen that, rotation in spatial domain is a

pure translational displacement in polar representation. Now,

by computing the global correlation between ξ2(ρ, γ0) and

ξ1(ρ, γ−γ0) provides a peak in the correlation surface, which

corresponds to an estimate γ̂ ∈ [0, π] to the angle of rotation.

γ̂ = argmax {corr(ξ1, ξ2)} (12)

2) Estimating Out-of-Plane Rotations: By analysis (Fig. 2),

the platform tilt angles have a minimal effect on the image

magnitudes and are difficult to determine from log-polar mag-

nitude correlation. Moreover, the existence of the orthographic

projection in SEM [19] makes this process more challenging.

In this case, the tilt angles can be coarsely estimated using

image defocus information and spherical Fourier transform.

For this purpose we assume that: 1) the primary beam tilt

angle is 0◦; 2) the positioning platform tilts around a common

origin; 3) device working magnification is high (> 2000×) i.e.,
the depth-of-focus (DOF) is minimum enough1 (< 300nm).

1This value has been computed for the used experimental SEM and may
differ with other devices.
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Since the DOF is small, any tilt in the platform results in

the images with focus differences, which is the main basis

of our method. The underlying idea is to obtain point cloud

images using focus information, which are then represented as

extended Gaussian images2 (EGI) [27]. First, to build the point

cloud, it is required to measure the depth of each image point,

which is a time consuming process. To solve this, we divide the

image into equal sized kernels. Making use of the projection

model, depth for each individual kernel is estimated by linking

the position corresponding to maximum focus that is computed

using the visual servoing technique described in [28] with the

SEM working distance. The defocus information S(K) has

been computed using the normalized variance of kernel (with

size k × k) and is given by

S(K) =
1

k2
1

μ

x+( k+1
2 )∑

x=x−( k−1
2 )

y+( k+1
2 )∑

y=y−( k−1
2 )

(I(x, y)− μ)
2

(13)

where, K = 1 . . . κ are defined kernels, μ is the local kernel

pixels mean, I is the gray level intensity of the pixel at (x, y).
Once the point cloud is computed for the kernel image, the

local point normal are computed to construct the EGI. In this

work, we use tools from PCL library [29] to perform this step.

Once the EGI is constructed, spherical harmonics are used to

estimate the rotations, which are performed in a single step.

The spherical harmonics function Yml : S
2 → C with S

2 is

unit 2D sphere and C is complex number set is given by [30]

Yml(θ, φ) =

√
2l + 1

4π

[
(l −m)!

(l +m)!

]
Plm(cos θ)e(imφ) (14)

where, (θ, φ) are spherical coordinates, Plm is Legendre

polynomial, l > 0 and | m |< l are integers with l being the

degree of spherical harmonics. Any square integrate function

f(ω) ∈ L2 lying on the unit sphere can be represented as the

linear sum of the spherical Fourier transforms and spherical

harmonics, and is given by

f(ω) =
∑
l∈N

l∑
m=−l

FmlYml(ω) (15)

where, Fml are spherical Fourier transforms. Now the goal is

to obtain R between two spherical harmonics of images, which

can be determined by spherical correlation. As explained, we

choose Euler zyz convention for angles i.e., R(α, β, γ) ∈
SO(3). Let f(ω) and g(ω) are two functions on sphere with

g(ω) = Rf(ω). The maximum value of spherical correlation

of these functions provide an estimate to R. This correlation

C(R) can be given by

C(R) =
∑
l∈N

l∑
m=−l

l∑
p=−l

FmlGplD
(l)
mpl(R) (16)

where, D
(l)
mpl(R) is the complex conjugate of the Wigner D-

function D
(l)
mpl(R) given by

D
(l)
mpl(R) = e(−imγ)P (l)

mp(cosβ)e
−ipα. (17)

2EGIs can be represented as the surface orientation (spherical) histograms
that are created by computing the normal of each point lying on the point
cloud.

In (16), F and G are the spherical orthogonal Fourier

transforms (SOFT) [30]. A more detailed derivations for (16)

and (17) can be found in [30] and a library to compute these

SOFT can be found from [31].

C. Translation Estimation

Once the rotation is computed, translation can be estimated

using phase spectra as shown in (7). From (6), a shift in

the spatial domain can be seen as multiplication in Fourier

domain by a complex exponential function that contains the

shift. The correlation between the spectra can be determined

by performing the cross power spectrum Ψ(k) given by

Ψ(k) =
F(k)G(k)

| F(k)G(k) | = e−j2π{kΔx
M } (18)

In (18), G(k) is the complex conjugate of G(k). Here, the

cross power spectrum is normalized in order to compensate

the intensity variations. Now, (18) can be solved for overall

translation Δx = (Δx,Δy) in two ways. The first one is to

solve directly in the Fourier domain using a coordinate system

containing two frequency axes and one phase difference axis.

The slopes produced by kΔx
M = 0 provides (Δx,Δy). How-

ever, it is computationally complex. The other method that is

used in this work is to find the inverse FT of (18) that results

in a Dirac delta function given by

D(Δx) = F−1(Ψ(k)) (19)

The obtained function contains a peak at the point of

motion, whose coordinates provide an estimate to the displace-

ment

Δ̂x = argmax {D(Δx)} (20)

where, Δ̂x is the estimated translation vector.

Nevertheless, when dealing with discrete images, the max-

imum value of the peak is the closest estimate of the integer

displacement i.e., the estimated translations are at pixel resolu-

tion. In order to improve the accuracy of the positioning task,

it is highly required to estimate these translations with sub-

pixel accuracy. To do this, we first down-sample the images

by factors d1 and d2 along X and Y axes, respectively as

explained in [23]. Let fd(x) and gd(x) are down-sampled

images where, gd(x, y) = fd(x−Δsx, y−Δsy) with Δsx and

Δsy being sub-pixel displacements. In this case, the Dirichlet

function i.e., the inverse FT of the cross power spectrum is

D(Δsx,Δsy) =
1

M2

(
sin {π(d1 +Δsx)}
sin
{

π
M (d1 +Δsx)

})(
sin {π(d2 +Δsy)}
sin
{

π
M (d2 +Δsy)

}) (21)

The peak position of the above function (21) provides

translations (Δ̂sx, Δ̂sx) in sub-pixels.

(Δ̂sx, Δ̂sy) = argmax {D(Δsx,Δsy)} (22)
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Finally, from the obtained translations, the centered trans-

lations providing the direction of the motion are calculated

using (23) and (24).

τx =

{
M
2 − Δ̂sx if Δ̂sx > M

2

Δ̂sx elsewhere
(23)

τy =

{
M
2 − Δ̂sy if Δ̂sy > M

2

Δ̂sy elsewhere
(24)

Similarly, the translation along Z can also be estimated

using Fourier transforms. However, we constrain this motion

in this work, as it cannot be controlled due to the orthographic

projection. A visual servoing method for Z control is presented

in [32].

D. Analysis of Blur and Noise

In practical scenarios with SEM, image acquisition process

is affected by different degradations such as the addition of

random noise, blur, intensity variations, etc. Previously in [12],

we show that the dominant amount of secondary electron

image noise follows Gaussian statistics and can be filtered

during image recording process. However, it is worth analysing

the effect of noise on motion estimation. Let f(x) is degraded

by blur and random noise n(x). It can be modelled as

f ′(x) = f(x) ∗ h(x) + n(x) (25)

where, f ′(x) is degraded image, h(x) is a point spread

function (PSF) indicating blur and ∗ is spatial convolution

operator. We start by analysing the noise, which is generally

associated with the high frequency components. Since the

main basis of our motion estimation is component correlation,

the amount of correlated noise can be negligible for images

with considerable level of signal to noise ratio (SNR). How-

ever, if the SNR is low, there might be a significant affect on

the observed correlation peak. This has been analysed visually

using artificially generated images with varying noise and is

illustrated in Fig. 3. From analysis it can be seen that the size

of the peak reduced for correlation of noisy images (Fig. 3(d))

when compared with the noise free one (Fig. 3(b)). This

phenomenon can be reduced by filtering the images in spatial

domain. In this work, we monitor the image SNR at the time of

acquisition using our quality estimation method shown in [12].

The images with low SNR (< 15 dB) are subsequently filtered

using a Gaussian filter of size 5× 5. Moreover, to reduce the

noise added due to charge accumulation, the sample surface

is connected to the mounting plate by means of a conductive

tape.

Now, by neglecting the noise term in (25), the corresponding

Fourier transform is given by

F ′(k) = F(k).H(k) (26)

It is worth noting that the convolution now becomes simple

multiplication. The phasor form of (26) is

F ′(k) =| F(k) | e{−j2π{kx
M }} (27)

Fig. 3. Images illustrating the affect of noise. (a) and (c) are artificially
generated images with varying noise. (a) is noise-free image and (c) is
degraded by a Gaussian noise of σ = 0.5. (c) and (d) are Fourier spectra
of (a) and (c), respectively. (e) is the phase correlation peak obtained in case
of noise-free images and (f) is for noisy images with σ = 0.5. One of the
images is translated by 10 pixels along X and 20 pixels along Y to perform
correlation.

Here after, for simplicity we represent the exponential part

with Φf ′(k). By normalizing (27) we will be left out with the

phase part i.e.,

F ′(k)
| F(k) | = e−jΦf′ (k) = e−j{Φf (k)+Φh(k)} (28)

If we assume that the PSF is centrally symmetric, H(k) will

be real with two probable values of its phase being {0 ∨ π}.

Now using the periodicity property3, for any integer a we can

write[
e−jΦf′ (k)

]2a
= e−j2aΦf (k).e−j2aΦh(k) =

[
e−jΦf (k)

]2a
(29)

From (29), it can be noted that the image Fourier transform

with even power i.e., e−jΦ(k)2a is invariant to the centrally

symmetric blur (convolved with the original signal).

Apart from that, as the correlation peak is due to the phase

difference at each component, its location is not affected by

the low bandwidth noise. This enhances that the method is not

affected by the contrast variations, since the image contrast

3Periodic property: e−j 2π
N (k+N

2 ) = e−j 2π
N

ke−jπ = e−j 2π
N

k
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information is associated with the low frequency components

(dc-component) and thus represent narrow bandwidth varia-

tions.

E. Control Scheme

For positioning the platform, a control scheme has been

designed considering the translation and rotation motions

computed from the previous steps as the observed visual

features i.e.,
s(t) = [sv, sω]

� (30)

where, sv = [τx τy τz]
�

are the estimated translations, and

sω = uθ̂ is the rotation feature with u being the axis and

θ̂ being the estimated angle of rotation. This can simply be

[α β γ]�. Since Z is not used, we approximate it to be

zero. By using such features, the resulting control can allow

us to decouple the control of rotation and translation. Once

visual features are obtained, the final objective is to drive the

positioning stage to the desired location i.e., s∗ = [01×5]
�

.

Thus, the error to be regulated is given by

e =

[
ev
eω

]
5×1

= s− s∗ =
[
τx τy uθ̂

]�
(31)

If we consider the problem of error minimization as an

optimization problem, the primary goal will be to minimize

the cost function C given by

C = e�e = τ2x + τ2y + θ̂2 (32)

Similar to the conventional visual servoing approaches, the

goal image I∗ is defined by teaching, where the positioning

stage is moved to a desired position and the image is acquired.

This image remains as the reference image until the process

is converged and its Fourier transformations will be used

during the correlation process for estimating the motion. Once,

the target is defined, the main goal of the controller is to

regulate the cost function given by (32) from an unknown

initial position. When C is minimum, the current position

corresponds to the desired position. To visually reflect this cost

function, a set of images are acquired by moving the platform

around the target position. The cost is then computed offline

using these images and is shown in the Fig. 4(a). For smooth

convergence, the obtained cost function has been regularized

using a B-spline function of order two as shown in Fig. 4(b).

Upon observing the shape of cost function it is clear that the

proposed method provides satisfactory convergence, which can

be seen as a result of its robustness to intensity, brightness and

contrast variations and image noise.

The positioning task can be accomplished by iteratively up-

dating the velocity. This requires the relationship between time

variation of visual features ṡ and the camera instantaneous

velocity v = [υ ω]
�

, which is given by

ṡ =

[
ṡv
ṡω

]
= Lf

[
υ
ω

]
(33)

where, Lf is a 5 × 5 interaction matrix. As the motion

estimation can be decoupled, we can have a decomposed

interaction matrix i.e., Lf =

[
Lv 0
0 Lω

]
where Lv is a 2× 2
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Fig. 4. (a) Obtained cost (b) fitted cost using second order B-splines.

Fig. 5. Control block diagram depicting the decoupled Fourier-based nanopo-
sitioning scheme. (dotted lines represent rotation processing)

matrix to link linear velocities and Lω is a 3 × 3 matrix to

link angular velocities. Such type of strategy allows us to

control the platform translation and rotation independently. In

this work, we consider Lv = I and Lw is given by (34) [33]

Lw = I− θ

2
[u]× +

(
1− sinc θ

sinc2 θ
2

)
[u]2×. (34)

As a matter of stability, Lw can be singular only when θ =
2π. To improve the convergence, in this work we implement

an adaptive gain λa that varies with the variance of error σe

as given by

λa =
σe

Λ
(35)

where, Λ is a positive value allows to adjust the gain. To

improve the controller performance, a non-linear control in-

spired from Levenberg-Maquardt optimization technique has

been used in this work. The final control law to regulate the

positioning stage velocity is given by

v = −λa (H+ diag(H))
−1

Lᵀ
fe

cVp (36)

where, H = Lᵀ
fLf is the Hessian matrix and cVp is the

transformation matrix from camera frame Rc to positioning

stage frame Rp. The overall control block diagram for nanopo-

sitioning is shown in Fig. 5.

As the used positioning platform is driven by PZT actuators,

it requires voltage commands for generating the displacements.

For this purpose, the obtained velocities are converted to the

platform displacements d(x,y) using

d(x,y) = vavgt (37)

where, vavg = v0+vcur

2 is the average velocity, v0 is initial

velocity, vcur is the current velocity and t is the measured
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Fig. 6. Experimental set-up architecture (inset) mounted piezo-positioning
platform inside the SEM vacuum chamber.

sampling time. Later, these displacements are mapped to the

respective channel voltages using our displacement-voltage

model explained in [25].

F. Stability analysis

The stability of the control law given by (36) can be

discussed using Lyapunov’s second method for stability. For

this purpose, let us consider the following Lyapunov function

candidate

L(ϕ) = 1

2
‖ e(t) ‖2 (38)

where, ϕ = e(t) and L(ϕ) is positive definite i.e., L(ϕ) ≥
0 ∀ ϕ. The first derivative of (38) is given by

L̇ = e�ė (39)

Using ė = Lv we get,

L̇ = e�Lv (40)

By substituting for v, we get

L̇ = −λe�LL�e = −λe�e (41)

⇒ L̇ < 0 ∀ e �= 0, λa > 0 (42)

From (42), for all λa > 0, the system is asymptotically stable

in the task space.

III. EXPERIMENTAL SET-UP

The experimental set-up used for this work is shown in

the Fig. 6. It consists of a JEOL JSM 820 SEM, an image

acquisition system (DISS5 from Point electronic GmbH), a

3 degrees of freedom (X,Y, Z) open-loop piezo positioning

platform (TRITOR 100 from Piezosystem Jena GmbH) and

two computers. The positioning platform is mounted inside

SEM vacuum chamber and is controlled using a 3 channel

piezo-controller NV 40/3. The maximum possible motion on

all axes is up to 100 μm with a resolution of 0.2 nm. The

primary computer (PC 1: Intel Pentium 4, CPU 2.24 GHz

and 512 MB of RAM) running image server is connected to

Fig. 7. Experimental samples: (a) microscale calibration sample fabricated at
FEMTO-ST institute (b) artificially generated image of periodic crosses using
Artimagen library (c) silicon micropart.

the SEM control electronics and imaging system. It is solely

responsible for controlling the microscope and transfer sec-

ondary electron images to client. The work computer running

image client (PC 2: Intel Core 2 Duo, CPU 3.16 GHz, and

3.25 GB of RAM) communicates with the primary one over

TCP/IP. The control server which is also running on PC-2

uses the received images (via client) to compute control and

to generate voltage commands to the platform controller via

serial port (RS 232). Apart from this, a graphical user interface

(APROS3) program (that runs from the work computer) has

been developed to control the platform movements manually

as well as to monitor the overall process. All the software

programs are developed in C++ and matrix computations are

performed using ViSP (Visual Servoing Platform) library [34].

2D and spherical Fourier transforms are performed using

FFTW [35] and SOFT [31] libraries, respectively.

IV. EXPERIMENTAL VALIDATIONS

A. Task Description

Nanopositioning studied in this work uses two different real-

world samples: a gold on silicon calibration sample containing

multiple chessboard patterns (Fig. 7(a)) and silicon microparts

(Fig. 7(c)) of dimensions 10×500×10 μm3. Additionally, we

use artificially generated SEM images of periodic crosses by

Artimagen library [36] for simulation experiments (Fig. 7(b)).

Since, the experimental positioning platform does not features

any rotational degrees of freedom, angular positioning is

demonstrated by means of simulations. For planar translational

positioning, the samples are arbitrarily placed on the piezo-

positioning platform and the main objective is to position

them automatically at the desired location by controlling the

platform’s movement. For demonstration, the desired location

has been selected by an operator using APROS3. Once the

desired location is selected, the platform moves back to its

initial position from where the servoing starts. For all experi-

ments, the SEM secondary electron images of size 512× 512
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Fig. 8. Variation of (a) angular velocities (wx, wy , wz) (b) cost during the
task.

TABLE I
ESTIMATED ANGLES OF ROTATION FOR VARIOUS AXIS.

α (◦) β (◦) γ (◦)

True Estimated True Estimated True Estimated

15 14.932 -15 -15.201 70 69.971
8 8.17 -8 -7.181 30 30.007
3 -2.646 3 2.83 -5 -4.98

pixels are used. Real-time images for translation control are

generated using an acceleration voltage of 15 kV.

B. Simulation Results: Rotation Control

The first simulation experiment using artificially generated

images with Artimagen is performed to validate the behavior

of rotational control. The blur in the tilted images is modeled

using a Gaussian function, based on which the focusing

method explained in [28] is simulated to estimate the kernel

depth. Initial rotations considered are 7◦, 12◦ and 20◦ for

α, β and γ, respectively. Fig. 8 show the evolution of angular

velocities and the overall cost. From the obtained results, it

can be seen that the algorithm converges successfully to the

desired position and a smooth convergence of cost-function is

observed.

The second experiments are performed to evaluate the

accuracy in estimating the rotations. Table I summarizes the

known and computed angles around various axes using the

proposed method. From the obtained results, it can be seen that

the planar rotation γ can be computed more accurately than α
and β. This is due to the effect of orthographic projection and

coarse estimation of kernel depth. For real-world scenarios,

this phenomenon may raise additional challenges for visual

control of rotations around X and Y .

C. Real-time Validations: Translation Control

In this subsection, the experimental results concerning the

planar positioning task using the piezo-positioning platform

are presented. Tests are performed at different operating con-

ditions; optimal as well as the more challenging and special

cases such as unstable imaging conditions, binary mask as de-

sired image, high quality desired image and repeated textured

object with high noise are presented here. Each experiment

has been performed 10 times with different goal positions and

out of them; three trials (minimum, medium and maximum

displacements) are shown. Additionally, all the real-world

experiments are visualized in the provided supplementary

video.
1) At Optimal Conditions: These experiments are con-

ducted to validate the proposed method using optimal scan

rates that balance the image acquisition speed and the level of

noise. Scan speed used is 720 ns/pixel (oversampling rate4

of 8) which provides a frame rate of 2.2 frames per second.

Magnification is fixed to ×1200 in order to have one complete

micropart in the field of view. The images shown in Fig. 9(a)-

(d) illustrate the positioning task. Fig. 9(a) and Fig. 9(b) show

the desired and initial positions of micropart, respectively.

Fig. 9(c) and Fig. 9(d) depict, respectively the error (I − I∗)

at initial and final positions during the task. Platform voltages

(for x and y channels) and the positioning error variations

are shown in the corresponding plots of condition-1. Obtained

results show that the positioning task has been successfully

accomplished. However, because of the effect of variable gain

and the low frame rate (compared to the optical systems), the

system converges faster when the distance is more.
2) At noisy conditions: Second tests are performed to

position the microparts using the images acquired with an

increased raster scanning speed. Normally in SEM imaging,

high scanning rates during image acquisition lead to the

increased noise levels in images [12]. The main goal of this

test is to check the method’s efficiency in reaching the desired

position under noisy conditions. For this test a scan speed

of 180 ns/pixel (maximum allowed) that provides a frame

rate of 3.1 frames per second has been used. Fig. 9(e)-(h)

illustrates the positioning process during this test. The voltage

and the cost variations are shown in the corresponding plots of

condition-2. Despite having high amount of noise, the desired

position has been reached successfully (Fig. 9(d)).
3) At high magnification: These experiments are performed

to position the microparts at high magnification. Simulta-

neously, the method is also validated with increased scan

speed at the selected magnification. The magnification and

the scan speed used for this test are ×5000 and 360 ns/pixel,
respectively. The sequence of images shown in the Fig. 9(i)-

(l) demonstrates the positioning task. Final error during the

process has been shown in Fig. 9(d). The voltage and cost

variations are shown in the corresponding plots of condition-

3. As can be seen from the obtained results, the control law

converges to the desired position.
4) At Unstable Conditions: These sets of experiments are

conducted at unstable conditions such as extreme variations in

the image intensities. With SEM, these variations are produced

due to the induced charging and carbon contamination of the

sample surface. Besides, the imaging contrast and brightness

are never constant. The main objective of this test is to validate

the proposed method’s robustness to the occurred disturbances

during the positioning process. For this test a scan speed of

4Oversampling rate is a parameter modified using DISS5 to change the
scan speed. It adjusts the amount of analog to digital conversions per pixel.
Thus, the final image signal-to-noise ratio can be modified.



9

Fig. 9. Nanopositioning at three different conditions: 1) Optimal 2) noisy 3) increased magnification. Column wise: 1) desired image 2) initial image in the
positioning task 3) initial error and 4) final error. Voltage and cost variations throughout the process for each condition has been shown.

360 ns/pixel (oversampling rate of 8) that provides a frame

rate of 2.2 frames per second has been used. The magnification

is fixed to ×1200. In this case, the desired image (Fig. 10(a))

has been obtained with optimum brightness and contrast. After

having moved the platform to its initial position, the contrast

and the brightness values are changed manually throughout the

process. Fig. 10(b) shows initial image during this task, where

the contrast and brightness are increased. The channel voltage

and cost-function variations are shown in the corresponding

plots of condition-4. From the obtained results, it can be

seen that the control law converged to the desired position

despite having modified operating conditions. It is mainly due

to the robustness of Fourier-based method to image noise and

intensity variations.

5) Using High Quality Desired Image: These sets of ex-

periments are conducted to check the method’s efficiency in

positioning when a high quality image is used as a desired

image. The desired image shown in Fig. 10(e) has been

obtained with a scan speed of 5.8 μs/pixel. Before initiating

the control, the scan speed has been increased to 360 ns/pixel.
From Fig. 10(f), it can be seen that the noise level increased

predominantly in the initial image when compared to the

desired image. Fig. 10(g) and Fig. 10(h) depict, respectively

the initial and the final error during the positioning task.

The channel voltage and cost variations are shown in in the

corresponding plots of condition-5. From the obtained results,

it is clear that the positioning task has been successfully

accomplished. Table II summarizes the final positioning errors

with different quality images. Interestingly, it has been found

that the positioning error reduced with an increase in the

quality of the desired image.

6) Using a Mask as a Desired Image: These sets of

experiments are performed using a binary mask of the object

as a desired image. The objective is to demonstrate the

TABLE II
POSITIONING ERRORS WITH DIFFERENT QUALITY IMAGES.

Oversamp. rate
scan speed
(μs/pixel)

error-x (pixels) error-y (pixels)

24 4.3 0.65 0.81
32 5.8 0.48 0.69
48 8.6 0.33 0.51
64 11.5 0.26 0.39

positioning task using minimal information. Moreover, it also

benefits in automatic positioning of an object in between

the gripper fingers during a handling task without using a

known desired image. In other words, it removes teaching step

defining desired image, which is one of the major problems

of visual servoing. For this test, the binary mask (Fig. 10(i))

of the micropart has been obtained by intensity thresholding.

For demonstration, the four corner points of the mask region

are supplied using mouse clicks. Fig. 10(i)-(l) shows the

positioning task. In spite of having more than 60% discrepant

pixels in the desired image, the goal position has been reached

successfully. The only limitation that has been observed is that

the poor performance of method in case of having repeated

patterns similar to the shape of mask.

7) Using Sample with Repeated Pattern: The final sets of

experiments are conducted to demonstrate the method’s perfor-

mance when operating in a scene containing repeated patterns,

heavy textures and high level of noise. With SEM, image

noise increases with increase in scan speed. A scan speed of

180 ns/pixel (maximum allowed with an oversampling rate of

2) that provides a frame rate of 3.1 frames per second has been

used. Calibration sample is used for this test. Fig. 11(a) and

Fig. 11(b) show the initial image and final error, respectively

and Fig. 11(c) and (d) illustrates the variable variations during
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Fig. 10. Nanopositioning at three different conditions: 1) Unstable imaging conditions, 2) using high quality desired image and 3) artificial mask as desired
image. Column wise: 1) desired image 2) initial image in the positioning task 3) initial error and 4) final error. Voltage and cost variations throughout the
process for each condition has been shown.

the positioning process. From the obtained results, it can be

seen that despite having repeated patterns and high amount

of noise, the control law successfully converges to the desired

position. It clearly points out the proposed method’s robustness

towards the object and scene being viewed.

D. Positioning Accuracy

Since the used SEM does not have enough room (inside

vacuum chamber) for the external displacement measuring

devices like laser interferometers, the positioning accuracy has

been computed using the final positioning error obtained from

the image measurements. Even though, the estimated accuracy

is uncertain (due to the presence of image noise), it has been

counted to roughly demonstrate the method’s efficiency. With

real measuring devices, it might be more satisfactory as the

level of measuring noise is less in compared to the image

measurements. In the current case, it is computed from the

product of error pixels and the pixel dimension measured on

sample. The pixel dimension P on the sample is computed

using (43).

P =
D

G
[μm] (43)

where, D is the pixel dimension on the screen (constant) and

G is the magnification. With our system, the computed D
value is 212.3 for a screen size of 512 × 512 pixels. The

accuracies computed with different tests are summarized in

Table III along with their standard deviations over all 10 trails.

For simplicity, we denote the tests with case numbers: 1)

nominal conditions, 2) noisy conditions, 3) high magnifica-

tions, 4) unstable conditions, 5) high quality desired image,

6) binary mask as desired image. Besides, to evaluate the

method’s performance, two other parameters i.e., root mean

squared error (RMSE) and peak signal-to-noise ratio (PSNR)

Fig. 11. Nanopositioning of calibration sample. (a) Initial image (b) final
error (c) voltage and (d) cost variations.

are estimated. Both these parameters are computed using the

initially obtained desired image and the image obtained after

convergence i.e., the final image in the process. Since, the

latter three tests does not use a normal desired image, these

parameters are not estimated for them.

E. Performance Analysis

Due to the amount of theoretical calculations involved, it

is worth evaluating the method’s performance in real-time

applications and also in comparison with the well-known
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TABLE III
ANALYSIS OF METHOD’S POSITIONING ACCURACY.

Case
Accuracy (μm) Std. dev. (μm)

RMSE PSNR

x y x y

1 0.11 0.19 0.0248 0.0187 1.60 38.73
2 0.14 0.23 0.0108 0.0216 1.87 32.70
3 0.04 0.11 0.0061 0.0053 1.79 33.68
4 0.22 0.37 0.0147 0.0286 – –
5 0.09 0.13 0.0089 0.0127 – –
6 0.29 0.47 0.0497 0.0589 – –

TABLE IV
EVALUATION OF PROCESSING TIMES (milliseconds) FOR

VARIOUS METHODS.

Case Ours Flow-based SURF FAST

1 38 29 911 73
2 33 34 797(4) 49(2)
3 37 30 1063 65(5)
4 38 × × ×
5 36 34(5) 826(3) 71(4)
6 39 33 × ×
1 × indicate that the task failed all 6 times.
2 Value in (.) indicate the number of times the positioning task succeeded.

spatial processing methods like optical flow-based gradient

approach [20], SURF and FAST. In this section, we start by

analysing the computational cost involved with our method

and then show the speed comparisons. Summarizing our

approach, the major steps include: correlating two image

frequency spectra and computing the correlation peak. Sup-

pose, the shift between two images is P in each direction

and correlation is performed on two images of N × N. This

results in a total of P2 + P shift probables, out of whom

the final correlation output has to be computed. This can be

accomplished efficiently using fast Fourier transforms5 (FFT)

instead of the regular discrete Fourier transform (DFT) [35].

Main reason is, to compute a simple 1D DFT, it requires

O(N2) computations, and for 2D DFT it goes up to O(2N3).
Hence, it is computationally complex when dealing with large

images. This can be reduced using FFT to just O(N2 log2 N)
computations. In case of rotations, we used a lookup table-

based approach for estimating the kernel image depth to speed-

up the estimation process. Besides, relying on the fact of

motion decoupling, rotations and translated are processed in

parallel. The average total time taken to process one iteration

is measured to be 38 ms.
Various tests are performed to verify the processing per-

formance at previously mentioned 6 experimental conditions.

Table IV shows the overall time taken to process initial

iteration in the control process (on average of 6 runs). The

value in brackets suggest the number of times the task has been

succeeded out of the total 6 trials. It can be seen that local

feature tracking methods (SURF and FAST) has performed

poorly. Moreover, their processing speed is also affected by

the number of keypoints detected and tracked. Even though,

the optical flow-based method shown comparatively better

5FFT algorithms compute N-D DFT in successive lower order DFTS.

performance, it failed at times. In contrast to the spatial pro-

cessing methods, the presented method has exhibited reliable

performance. Some facts about the presented method can be

considered here: no need to measure or track local features,

phase differences are treated on equal basis, and invariant to

various disturbances.

V. CONCLUSION AND PERSPECTIVES

The problem of automatic nanopositioning inside a SEM

using visual servoing was studied in this paper. Considering

the problem of using visual feature tracking for SEM, we

presented a Fourier-based automatic nanopositioning scheme,

which operates by estimating the relative motion between

two images using their frequency spectral information. The

control strategy was designed to compensate this motion in

image space by controlling the positioning platform move-

ments. Rotational control was validated with simulations and

translational control was validated using an experimental set-

up containing the tungsten gun SEM equipped with a piezo-

positioning platform. From the obtained results, it appears that

the method is robust to different disturbances that occur in

a SEM-based environment. The future work will attempt to

control the positioning of a 3 degrees of freedom microactuator

(Kleindiek MM3A) containing a microgripper to manipulate

the micron sized silicon walls for surface characterization.
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