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Abstract— Prognostic and health management (PHM) 

systems are designed to predict impending faults and to 

determine remaining useful life of machinery. An efficient 

prognostic system can speed up fault diagnosis by providing an 

indication of what parts of the machinery are most likely to fail 

and will need maintenance in the near future. PHM systems for 

manufacturing industry have not been widely implemented 

despite the extensive research on PHM in academia, which is 

mostly due to high costs in both development and implementation 

of PHM solutions in industrial applications. In this paper, we are 

defined the predictive maintenance, prognostic and health 

management (PHM) architecture and present the state of the art 

of prognostic approaches and display the related works in this 

domain. After that we are proposed a new approach that is 

adapting cloud computing paradigm with PHM systems that is 

Prognostic as a Service to provide high readiness, easy-to-

configure, low cost and ondemand PHM services. We have 

presented our obtained results and its simulation. 
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I. INTRODUCTION 

 
It is well known that 99% of machine failures are preceded 

by some indicators [1]. Therefore, condition-based predictive 
maintenance is probably the most economical way to maintain 
machinery. Its idea is to allow the determination of machinery 
health in a real-time, online fashion. As such, faults can be 
predicted before they take place. Maintenance can then be 
scheduled as needed. Reported benefits of predictive 
maintenance include reduced downtime, lower maintenance 
costs, and reduction of unexpected catastrophic failures. [15] 
 

The objective of this paper is to define the predictive 
maintenance, prognostic and health management (PHM) 
architecture and present the state of the art of prognostic 
approaches and display the related works in this domain. After 
that we are proposed a new approach that is adapting cloud 
computing paradigm with PHM systems to provide high 
readiness, easy-to-configure, low cost and ondemand PHM 
services. We have presented our obtained results and its 
simulation. 
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II. PROGNOSTIC AND HEALTH MANAGEMENT 

(PHM) 
A. Maintenance Evolution 

The different maintenance concepts can be classified into 
three big categories, which are corrective maintenance, 
preventive maintenance, and predictive maintenance. The 
corrective maintenance is the maintenance that intervenes after 
the occurrence of failure in the system, whereas the preventive 
maintenance is realized when the system is currently 
functioning [2]. Predictive Maintenance is to predict when 
maintenance should be performed. The purpose of predictive 
maintenance is to repair systems before they fail. 

B. PHM Architecture 
 

Prognostics and diagnostics are the key players in service 
planning, maintenance and minimizing the down state of 
equipment. Diagnostics focuses on the detection, isolation and 
identification of failure when they occur whilst prognosis 
focuses on predicting failure before it occurs. Prognosis can be 
referred to as the ability to predict how much time is left or 
remaining useful life (RUL) before a failure occurs given an 
observed machine condition variable and past operational 
profile. The figure 1 presents the PHM architecture. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure1 – PHM Architecture [14] 



C. State-Of-The-Art of the prognostic approaches 
 

Various methods have been applied to the prognostic of 
degraded components. Generally, they are classified in three 
fundamental families: 

 

a. Prognostic Based on Models 
 

This approach is also called model-driven or physical 
model. As its name indicates, this approach family uses 
models that can be of two different types: 
 

- Equipment’s physics-based model 
 

- Mathematical models constructed by experimentation 
 

This "Physical model" is based on mathematical description 

of degradation process and on its level evolution using NDI 

monitoring (Non-Destructive Inspection). It is described to be 

more flexible and precise than the two other approaches. The 

degradation is then considered as a continuous variable whose 

evolution is characterized by a deterministic or a stochastic law. 

The concept of these methodologies is to make the constructed 

model evolve till a wanted future instant, from an initial 

degradation state and the future usage of the equipment [3]. The 

equipment is considered as faulty when the degradation variable 

reaches a predefined threshold in the case of an isotropic model, 

or a predefined surface in the case of non-isotropic model. These 

models can be: nonlinear equations [4], models defined by expert 

analysis [7], or even by physical models of chemical corrosion 

[5], of mechanical fatigue [6], etc. For some equipments and 

critical structures, it is necessary to estimate the initiation and the 

crack propagation. The models based on crack propagation are 

interested in the problems dealing with material properties, and 

they have evidently an important interest in prognostic, but they 

are usually adapted for a real-time treatment due to their big 

computational complexity [8]. A technique, among others, 

capable of predicting the slope of increase and the directions of 

the crack, is the simulation by decomposition in finite elements. 

The decomposition in finite elements is used to study the 

behaviour of an equipment in different disciplines such as 

thermodynamics, fluids mechanics, structures mechanics etc...The 

method of finite elements is based on the idea that a complex 

system can be subdivided into small parts called elements. Each 

element is completely defined by its geometry and its physical 

properties. The study of each element is then simpler than the 

study of the complete structure that they compose. Each element 

can be considered as a continuous part of the structure. The 

decomposition in finite elements converts a continuous structure 

into a system of algebraic equations or into ordinary differential 

equations. The solution of a problem using the theory of finite 

elements invokes methods of research of simultaneous solutions 

to the reaction of each element to charges, to constraints, and to 

the interaction among the adjacent elements. An example of the 

application of this theory is the prognostic for a system of 

transmission of a helicopter; it is presented in [7]. 
 
 

 

b. Prognostic Guided by Data 
 

This approach is also called Data-driven or evolutionary or 
trending or estimation based approach or artificial intelligence. 

 
In certain cases, it happens that we dispose of a database 

containing the history of scenario degradation/failure 
represented by a set of time series. These bases are given 
without the use of a physical model of equipment behaviour. 
The evolution of the degradation indicator is then realized 
with the help of a statistical method. Depending on the method 
used, three classes of approaches can be distinguished [9,10]: 
 

- The prognostic by trend analysis 
 

- The prognostic by learning 
 

- The prognostic by state estimation 
 

The data-based approaches require that the information 
extracted from sensors be sufficient in quality and quantity in 
order to evaluate the current state or the image of the current 
state of the system degradation. 
 

The concept of this approach consists of collecting 
information and data from the system and projecting them in 
order to predict the future evolution of some parameters, 
descriptors or features, and thus, predict the possible probable 
faults. Without being exhaustive, mathematical tools used in 
this approach are mainly those used by the artificial 
intelligence community, namely: temporal prediction series, 
trend analysis techniques, neuronal networks, neuro-fuzzy 
systems, hidden Markov models and dynamic Bayesian 
networks [4,7,9]. 
 

The advantage of this approach is that, for a well 
monitored system, it is possible to predict the future evolution 
of degradation without any need of prior mathematical model 
of the degradation. However, the results obtained by this 
approach suffer from precision, and are sometimes considered 
as local ones (for the case of neural networks and neuro-fuzzy 
methods). In addition, the monitoring system must be well 
designed to insure acceptable prognostic results. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure2 - Prognostic Technical Approaches [2] 
 

c. Prognostic Based on Experience 
 

This approach is called experience based, probability based, 

or statistical based prognostic approach. It is necessary where 



we cannot use the two previous approaches. It is based on a 
reliability function or on a Bayesian process where the 
parameters are taken from feedback experience or expert 
opinion. This prognostic approach consists of using 
probabilistic or stochastic models of the degradation 
phenomenon, or of the life cycle of the components, by taking 
into account the data and knowledge accumulated by 
experience during the whole exploitation period of the 
industrial system. [9] 

 

D. Remaining Useful Life (RUL) 
 

Predicting the remaining useful lifetime of industrial 

systems becomes currently an important aim for industrialists 
knowing that the failure, which can occur suddenly, is 

generally very expensive at the level of reparation, of 
production interruption, and is bad for reputation.  

RUL and its attributes are the outcome of prognostics and 
are used in prognostic assessment by applying appropriate 
metrics and additional criteria. There is a wide range of 
methods dealing with RUL computation and calculation. [8] 

 
III. CLOUD COMPUTING 

 
The definition of NIST (National Institut of Standards and 

Technology) is: 
 

“Cloud computing is a model for enabling ubiquitous, 
convenient, on-demand network access to a shared pool of 
configurable computing resources (e.g., networks, servers, storage, 
applications, and services) that can be rapidly provisioned and 
released with minimal management effort or service provider 

interaction.” 
 

“The interesting thing about cloud computing is that we’ve 
redefined cloud computing to include everything that we 
already do.” [Larry Illison, Oracle’s founder] 
 

This cloud model is composed of five essential 
characteristics, three service models, and four deployment 
models. 
 

a) characteristics of Cloud Computing  
There is five essential characteristics of cloud computing: [22]  

 On demand self-service: a consumer can request and 
receive access to a service without an administrator 
or

 Broad Network Access: cloud services should be 
easily accessed. Users should only be required to 
have a basic network connection to connect to 
services or applications.

 Resource pooling: it is accomplished using 
virtualization. Providers can host multiple virtual 
sessions on a single system.

 Rapid elacticity: it describes the ability of a cloud 
environment to easily grow to satisfy user demand.

 Measured services: cloud services must have the 
ability to measure usage. Services are measured 
according to the duration and the quantity of used 
resources. 

b) Service models of Cloud Computing 

 
 SaaS (Software as a Service): is a model of software 

deployment where an application is hosted as a 
service provided to customers across the internet. 
Gmail, Hotmail, SalesForce.com and Microsoft 
Office Online are some of the well-known SaaS 
products and providers. [20]

 PaaS (Platform as a Service): This refers to software 
and product development tools (e.g. application 
servers, database servers, portal servers, middleware, 
etc.) which clients lease so they can build and deploy 
their own applications for their specific use. Google 
App Engine and Windows Azure are examples of 
PaaS products and providers. [20]

 IaaS (Infrastructure as a Service): is essentially 
hardware devices, e.g. visualized servers, storage, 
network devices, etc. It generally refers to a 
virtualization environment where services enable the 
Cloud platforms and applications to connect and 
operate. Amazon Elastic Cloud Compute (EC2), 
VMWare are some of the IaaS products and 
providers. [20]  

There is another type of service that is defined recently  
 XaaS (Everything as a Service): EaaS or *aaS is a 

subset of cloud computing, according to Wikipedia, 
which calls EaaS “a concept of being able to call up 
re-usable, fine-grained software components across a 
network. [21] 

c) Deployment models of Cloud Computing 
 

 Private Cloud: The Cloud infrastructure is owned 
or leased by a single enterprise and is operated 
solely for that organization. [20]

 Public Cloud: The Cloud infrastructure is owned by 
an organization selling Cloud services to the 
general public or to a large industry group. [20]

 Community Cloud: The Cloud infrastructure is 
shared by several organizations and supports a 
specific community. [20]

 Hybrid Cloud: The Cloud infrastructure is 
composition of two or more Clouds such as private, 
community, or public that remains unique entities. 
[20]

 
IV. RELATED WORKS 

 
In [11], authors have presented a data-driven method 

for remaining useful life (RUL) prediction. The method learns 

the relation between acquired sensor data and end of lifetime 

(EOL) to predict the RUL. The proposed method extracts 

monotonic trends from offline sensor signals, which are used 

to build reference models. From online signals, the method 

represents the uncertainty about the status, using discrete 

Bayesian filter. The method predicts RUL of the monitored 

component using integrated method based on K-nearest 

neighbour (k-NN) and Gaussian process regression (GPR). 

The performance of the algorithm is demonstrated using two 

real data sets from NASA Ames prognostics data repository. 

The results show that the algorithm obtain good results for 

both application. 



In [12, 26, 27], authors have treated the problem how 

to build a prognostics system with no human intervention, 

neither a priori knowledge. The proposition is based on the use 

of a neuro-fuzzy predictor whose architecture is partially 

determined thanks to a statistical approach based on the 

Akaike information criterion. The last one has been introduced 

in order to provide a mathematical formulation of the principle 

of parsimony in the field of model construction [23]. This 

criterion enables to judge from the quality of fit of an 

estimator and can be used with prediction models. It consists 

in using a cost function in the learning phase in order to 

automatically generate an accurate prediction system that 

reaches a compromise between complexity and generalization 

capability.  
In [13], a cloud-based prognostics and health 

management system for manufacturing industry has been 

developed based on Watchdog Agent tools and the ideology of 

PHM as a Service. In addition to traditional data acquisition 

and management functions in a machine condition monitoring 

system, the cloud based PHM platform is able to further 

provide on-demand, customizable and low-cost data analysis 

service. Machinery data accumulated within the cloud system 

further enables more advanced services such as machine-to-

machine comparison, data mining and knowledge discovery.  
In [11, 16], authors deal with fault diagnosis and 

prognosis in dynamic systems by using static and dynamic 

bayesian networks. In the first case, static bayesian networks 

are used to compute the a posteriori probabilities of the most 

probable causes of an observed abnormal situation on the 

system (called evidence or observation). In the second case, 

dynamic Bayesian networks are used in order to take into 

account the systems dynamic and to predict its future 

behaviour according to its actual state and other exogenous 

variables or constraints. 
 

V. PROPOSED ARCHITECTURE 
 

The prognostic process in industrial maintenance is a 

main step to predict failure in machinery. In order to estimate 

the remaining useful life for a machine before a failure, many 

works in PHM domain have shown that to realize a reliable 

estimation, the necessity of: 

 

 Facilitate the maintenance access and the availability.

 Secure maintenance’s data

 Ensure the production continuity
 Maximize power of data processing

 Increase memory space of storage data

 Decentralize the sites involving in the PHM domain

 Share the experiences of PHM providers

 Personalize the PHM solutions

 Minimize the maintenance cost

 Improve the QoS

 
These requirements can be satisfied by the introduction of the 

cloud computing paradigm. This brings us to design and 
implement an architecture that defines a new approach that is 

Prognostic as a Service (prognostic-aaS). This approach will 

provide a suitable and efficient PHM solution as a service via 
internet, at the request of a client, in accordance with a SLA 
contract drawn up in advance to ensure a better quality of 

service and pay this service per use (pay as you go).  
This architecture is composed of three parts: 

 

 PHM-Client Side,

 PHM-Cloud Side,

 Communication module.

 

a) PHM-Client Side 
 
This side represents the consumer services offering by cloud 

providers (Prognostic as a Service), in general is the factory. 

In our approach we suppose to have many factories that are 

situated in many sites (zones) and which can communicate 

both between each others and the PHM-cloud side using 

several protocols (Http, Https, Ssh,…). According to this 

architecture the PHM-client benefits of a software application 

(in the case of Prognostic as a Service) that allows the 

management and supervising of the prognostic process. Also 

he benefits of characteristics of PHM-Cloud Side by sending 

the necessary data recovered from machines (or local 

Databases) to cloud databases and enjoy the PHM technical 

assistance. 

 

b) PHM-Cloud Side  
The Cloud PHM side is provider whose holds the 

infrastructure and tools to provide PHM services. It is a 

classical cloud architecture within several layers. It provides 

the necessary resources (software, platform and infrastructure) 

to accomplish complicated prognostic tasks. The virtual layer, 

and basing on the elasticity principle, allows a strong and real-

time PHM computing level. In this side, we have two actors: 

 

 Cloud Administrator: Represents the traditional 
cloud administrator [25], he has the complicated task 
of cloud management and monitoring. He deploys 
the available services (Prognostic SaaS, Prognostic 
PaaS, and Prognostic IaaS) to a Client (factory).



 General PHM Supervisor: He is responsible of the 
processing, supervision data, and prognostic phase. 
His task of monitoring guarantees the good 
prognostic process

 

c) Communication module  
The set of protocols and technics used to ensure the 

connection and the communication between the Client and the 

Cloud. The client sends the necessary data recovered from 

machines to databases in the PHM-Cloud Side, the general 

PHM supervisor treats recovered data using knowdge data 

calculate the RUL on the virtual machine with the selected 

method, and display the results to the client. 

 

The Figure 3 presents the proposed system’s architecture. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3. Main architecture of Prognostic as a Service 
 

VI. IMPLEMENTATION AND SIMULATION 

 

To test our approach, we used the following elements:  
1) Database:  We  used  PHM08  Challenge  Data  Set  of  

Aircraft Engine from NASA’s Prognostics Data Repository.  
Data sets consist of multiple multivariate time series. Each 

data set is further divided into training and test subsets. Each 

time series is from a different engine – i.e., the data can be 

considered to be from a fleet of engines of the same type. Each 

engine starts with different degrees of initial wear and 

manufacturing variation which is unknown to the user. The 

data are provided as a zip-compressed text file with 26 

columns of numbers, separated by spaces. Each row is a 

snapshot of data taken during a single operational cycle; each 

column is a different variable. [23] (Link: 

ti.arc.nasa.gov/tech/dash/pcoe/prognostic-data-repository/) 

 

2) Used method: To implement our approach, we used 

Data-driven prognostic approach and the Neuro-Fuzzy system, 

it is a combination between two computing tools: Artificial 

Neural Network and Fuzzy Logic. It is a data-driven approach 

that learns from historical data. There are different neuro-

fuzzy system architectures, in our experiment we used ANFIS 

system (Adaptative-Network-based Fuzzy Inference System) 

that is based on TAKAGI – SUGENO approch. This syntax is 

the major training routine for Sugeno-type fuzzy inference 

systems. anfis uses a hybrid 

 

learning algorithm to identify parameters of Sugeno-type 

fuzzy inference systems. It applies a combination of the least-

squares method and the backpropagation gradient descent 

method for training FIS membership function parameters to 

emulate a given training data set. anfis can also be invoked 

using an optional argument for model validation. The type of 

model validation that takes place with this option is a checking 

for model overfitting, and the argument is a data set called the 

checking data set. [MATLAB Help] 

 

3) Used structure model ANFIS: As shown in Figure 4, the 

used system is composed of 25 inputs with one output (RUL) 

and 17 MFs (membership functions) to each input. The MFs 

input type is Gaussian and the MFs output type is linear. 
 
 
 
 
 
 
 

 

 

 

Figure4. ANFIS Model Structure 



 
4) Cloud Infrastructure : The cloud infrastructure used 

during our experiment is the IaaS LINFI’s infrastructure 

(developped by the LINFI Laboratory at Biskra University). It 

is composed of many workstations (HP model Z820 with 

double processor, Intel Xeon E5-2640 6C 2,5GHz, 24GO 

RAM and a graphical card NVIDIA Quadro 4000 2GB), this 

infrastructure use DevStack software and kvm as supervisor. 
 
In this work, we developed a software prognostic a as Service 

which is composed of a client interface and several software to 
estimate the Remaining Useful Life. The Figure 5 presents the 
principle client interface and the role of each bottom. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure5. Principle client Interface 

 

 Training Data: select the training data file, generate FIS 
structure, and realize the training phase.

 Test Data: select test data file.
 Estimation RUL/ Training: estimate the RUL according 

to training data and display the real output and the 
estimated output.

 Estimation RUL/ Test: estimate the RUL according to 
test data and display the estimated output.

 Surface View: display the input and the output in three 
dimensions.

 RUL View: permit to view and estimate the data 
manually and graphically.

 Neuro-Fuzzy Editor: invoke the ANFIS Editor that we 
can see throw it the system structure.

 
In our experiment, there are 25 inputs, which are:  

 the first one is current age (ti),
 three are operational conditions

 21 are sensor measurements. 
The output of the network is the percentage residual life (Rl) of 
engine calculated using the equation 1: 

 

Rl= 
TimetoFailure  CurrentAge 

Equation 1 
TimetoFailure 

   
 
In this experiment, we have used a set of data (218 series) for 

the training step (see section IX.3). Each time series is from a 

different engine – i.e., the data can be considered to be from a 

fleet of engines of the same type. The figure 6 presents 4 

graphs of 4 engines. Each graph represented the both 

simulations real (blue line) and estimated (red line) RUL 

values versus time (life cycles) of one engine. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure6. Estimation of the RUL (RUL/Life Cycle) for 4 
engines 

 
The RUL is normalized between 0 and 1, which gives same 

order of magnitude variables to avoid numerical instability. 

The value 1 indicates that 100% life is remaining (compenent 

is new) and the unit is failed when the residual life percentage 

reaches the value 0. We can observe clearly the decreasement 

of the RUL that means the degradation of the engine. We can 

also observe that the estimated RUL values are close to the 

real ones with an uncertainty 0.060434 that is evaluated 

according to the equation 2.  

MSE= 

1 
i

N
1 (ti   ai ) 

2 
Equation2 N     

Where, ti= Predicted value, ai= Actual value, N= Number of 

data points.  
The figure 7 shows a graph of many engines that is 
represented the simulation of the RUL values versus data. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure7.Estimation
.
 of the RUL (RUL/Data) for many engines 

 
In Figure 8, a 3D scheme of RUL versus (engine number and 
lifecycle) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE8. 3D SHEME 

 
 

 
VII. CONCLUSION 

 
In this paper, we have presented our design of Prognostic as a 

Service. It is an architecture that it introduces the cloud 

paradigm in the PHM domain. We have tested our approach 

using Neuro-Fuzzy system for a first validation. The next step 

of this topic will be the test of our architecture within several 

RUL estimation methods on real Cloud infrastructure like 

Amazon EC2. 
 

REFERENCES 
 
[1] M. El Koujok. "Contribution au pronostic industriel : intégration de la 

confiance à un modèle prédictif", Université Franche-Comité : Thèse de 
Doctorat, 2010. 

 
[2] A. MULLER, "Contribution à la maintenance prévisionnelle des 

systèmes de production par la formalisation d'un processus de 

pronostic", Thèse de doctorat, Université Henri Poincaré - Nancy I, 
France, Juin 2005.  

[3] Y. XIANG and Y. LIU, "Efficient Probabilistic Methods for Real-time 
Fatigue Damage Prognosis,"Annual Conference of the Prognostic and 
Health Management Society", 2010. 

 
[4] X. GUAN, R. JHA, and Y. LIU, "Trans-dimensional MCMC for Fatigue 

Prognosis Model Determination, Updating, and Averaging," Annual 
Conference of the Prognostic and Health Management society, 2010. 

 
[5] A. ABOU JAOUDE, H. NOURA, K. EL-TAWIL, S. KADRY, and M. 

OULADSINE, "Analytic Prognostic Model for Stochastic Fatigue of 
Petrochemical Pipelines," Australian Control Conference (AUCC 2012), 
Sydney, Australia, November 15-16, 2012. 

 
[6] J. LEE, "Measurement of machine performance degradation using a 

neural network model. Computers in Industry", 30(3): 193-209, 1996. 
 
[7] R. PATRICK-ALDACO: A Model Based Framework for Fault 

Diagnosis and Prognosis of Dynamical Systems with an Application to 
Helicopter Transmissions. Thèse de doctorat, Georgia Institute of 
Technology, USA, 2007. 

 
[8] C. Y. Yin, H. Lu, M. Musallam, C. Bailey, and C. M. Johnson, "A 

prognostic assessment method for power electronics modules," in 
Electronics System-Integration Technology Conference, 2008. ESTC 
2008. 2nd, 2008, pp. 1353-1358. 

 
[9] O.E. VASILE: Contribution au pronostic de défaillance par réseau 

neuro-flou: maitrise de l'erreur de prédiction. Thèse de doctorat, UFR de 
Sciences et Techniques de l'Université de Franche-Comté, 2008. 

 
[10] J. MADSEN, D. GHIOCEL, D. GORSICH, D. LAMB, and D. 

NEGRUT,"A Stochastic Approach to Integrated Reliability Prediction," 
University of Wisconsin-Madison, June 4, 2009 

 
[11] A. Mosallam, K. Medjaher and N. Zerhouni, "Integrated Bayesian 

Framework for Remaining Useful Life Prediction", University of 
Franche-Comté Besançon, France, 2014 IEEE 

 
[12] M. El-Koujok, R. Gouriveau, N. Zerhouni, "A Neuro-Fuzzy Self Built 

System For Prognostics: a Way To Ensure Good Prediction Accuracy by 
Balancing Complexity and Generalization", FEMTO-ST Institute 
Besançon, France, "IEEE Prognostics & System Health Management 
Conference, PHM 2010 

 
[13] J. Lee, S. Yang, E. Lapira, H. Kao, A. Yen, "Methodology and 

Framework of a Cloud-Based Prognostics and Health Management 
System for Manufacturing Industry", Chemical Engineering 
Transactions, 33, 205-210, 2013 

 
[14] K. Medjaher, D. A. Tobon-Mejia, N. Zerhouni, "Pronostic de 

défaillances guidé par les données : application à l’usure des outils de 
coupe", Journée du GT S3, Novembre 2011, ENSAM, Paris 

 
[15] C.-C. Lin · H.-Y. Tseng, "A neural network application for reliability 

modelling and condition-based predictive maintenance", Int Adv Manuf 
Technol 174–179 2005 

 
[16] K. Medjaher, A. Mechraoui, N. Zerhouni, "Diagnostic et pronostic de 

défaillances par réseaux bayésiens", 4èmes Journées Francophones sur 
les Réseaux Bayésiens, JFRB'2008, Lyon, France 2008  

[17] M. Xia, T. Li, Y. Zhang, and C. W. de Silva, "Closed-loop Design 

Evolution of Engineering System using Condition Monitoring through 
Internet of Things and Cloud Computing", Computer Networks (2016), 
doi:10.1016/j.comnet.2015.12.016 

 
[18] J. Lee, J. Ni, D. Djurdjanovic, H. Qiu, H. Liao, "Intelligent prognostics 

tools and e-maintenance", Computers in Industry 57 (2006) 476–489 
 
[19] X. Zhou, K. Huang, L. Xi, J. Lee , "Preventive maintenance modeling 

for multi-component systems with considering stochastic failures and 
disassembly sequence", Reliability Engineering and System Safety 142 
(2015)231–237 

 
[20] Z. Mahmood, R. Hill, "Cloud Computing for Enterprise Architectures", 

Springer London Dordrecht Heidelberg New York, e-ISBN 978-
1-4471-2236-4, pages 7-8-9 

 
[21] R. Jennings, "Cloud Computing with the Windows Azure Platform", 

2009, Wiley Publishing, Indiana ISBN: 978-0-470-50638-7, page 13 
 
[22] L. Sadek. Terrissa, "INFORMATIQUE MOBILE et NUAGIQUE", 

cours de Master1, LINFI laboratory, 2014-2015. 
 
[23] A. Saxena, K. Goebel, "PHM08 Prognostics Data Challenge Dataset", 

International Conference on PHM08. 2008. 



[24] D. Wu, M. J. Greer, D. W. Rosen, D. Schaefer, "Cloud manufacturing: 
Strategic vision and state-of-the-art", Journal of Manufacturing Systems 
32 Published by Elsevier (2013) 564– 579 

[25] L. Sadek Terrissa and S. Ayad, "Towards a new cloud robotics 
approach," Mechatronics and its Applications (ISMA), 2015 10th 
International Symposium on, Sharjah, 2015, pp. 1-5. 
doi: 10.1109/ISMA.2015.7373467 

[26] W.Q. Wang, M.F. Golnaraghi, F. Ismail: Prognosis of Machine Health 
Condition using Neuro-fuzzy Systems, Mechanical Systems and Signal 
Processing, Vol. 18, No. 4, July 2004, pp. 813 – 831. 

[27] R. Gouriveau, M. El Koujok, N. Zerhouni, "Spécification d'un système 
neuro-flou de prédiction de défaillances à moyen terme", Rencontres 
Francophones sur la Logique Floue et ses Applications, LFA'2007., Nov 
2007, Nîmes, France. 1, pp.65-72  


