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Partial stabilization of input-output contact systems on a
Legendre submanifold

Hector Ramirez ∗, Bernhard Maschke † and Daniel Sbarbaro ‡

Abstract—This paper addresses the structure preserving stabilization
by output feedback of conservative input-output contact systems, a class
of input-output Hamiltonian systems defined on contact manifolds. In the
first instance, achievable contact forms in closed-loop and the associated
Legendre submanifolds are analysed. In the second instance the stability
properties of a hyperbolic equilibrium point of a strict contact vector
field are analysed and it is shown that the stable and unstable manifolds
are Legendre submanifolds. In the third instance the consequences for
the design of stable structure preserving output feedback are derived:
in closed-loop one may achieve stability only relatively to some invariant
Legendre submanifold of the closed-loop contact form and furthermore
this Legendre submanifold may be used as a control design parameter.
The results are illustrated along the paper on the example of heat transfer
between two compartments and a controlled thermostat.

I. INTRODUCTION

In this brief paper we address the stabilization by output-feedback
of a class of input-output contact systems [22] which are the gen-
eralization of input-output Hamiltonian systems defined on contact
manifolds. Actually we shall consider a class of these systems, called
conservative input-output contact systems, in the sense that they
leave invariant a Legendre submanifold, often associated with the
thermodynamic properties of the system. These nonlinear control
systems have been introduced in the context of modelling of open
irreversible thermodynamical systems [4] and further developed in
[5], [23] [20]. Finally, the analysis of the feedback equivalence to
a contact system, in general with respect to a different closed-loop
contact form, has led to the definition of input-output contact systems
[22].

The main result presented in this paper consists in the global
stability analysis of the closed-loop contact system obtained by the
structure preserving output feedback suggested in [22], yielding the
proof that one may achieve only partial stability with respect to some
Legendre submanifold rendered invariant by the feedback. Therefore
it will be proven that a hyperbolic equilibrium point of a strict
contact vector field has a stable and unstable submanifold which
are Legendre submanifolds, extending the local results in [6], [21],
[13]. The paradigmatical example of the 2 cells exchanging heat, the
second one connected to a thermostat, is used to illustrate the results
along the paper.

The paper is organized as follows. In Section II we recall the
definition of conservative input-output contact systems and present
the example. The section III consists firstly in a reminder of the
family of feedback control which preserve the contact structure along
[22], secondly in an analysis of the closed-loop contact form and the
associated Lagrangian submanifolds. Section IV presents the main
results of the paper, the stability analysis of a hyperbolic equilibrium

∗ FEMTO-ST, UMR CNRS 6174, département AS2M, Université de
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point of a strict contact vector field and the consequence for the
control design. Finally in Section V some closing remarks and lines
of future work are given. In the appendix the main definitions related
to contact manifolds and contact vector fields are given.

II. CONSERVATIVE INPUT-OUTPUT CONTACT SYSTEMS

In this section we shall briefly recall the definition and main
properties of input-output contact systems. Their state space are
contact manifolds which arise from the formalization of the geometric
structure of the Thermodynamic Phase Space [1], [10] elaborated
from Gibbs’ geometric definition of Equilibrium Thermodynamics
[7]. On this contact manifold reversible and irreversible thermody-
namic processes may be described by a dynamical system defined
by a contact vector field, leaving invariant the contact geometry
[15], [8]. Nonlinear control systems which express the dynamics of
open Irreversible Thermodynamic Systems and preserve the contact
structure, have been defined as Hamiltonian control systems on
contact manifolds first in [4] and further elaborated in [5], [23], [13,
sec.3].1 Input-output contact Hamiltonian systems, which differ from
the previous ones by the definition of the output, have been defined
in the context of the feedback equivalence preserving the contact
structure in [22]2

A. Input-output contact systems

Consider a differentiable manifold M equipped with a contact
form θ and denote by x̃ = [x0, x, p]

> ∈ R × Rn × Rn a set of
canonical coordinates (the reader is refereed to the Appendix and the
references therein for the reminders on contact manifolds and vector
fields). On this contact manifold, we shall consider the following
class of nonlinear control systems adapted to the contact structure.

Definition 2.1: [20], [22] A (single) input - (single) output contact
system on the contact manifold (M, θ), affine in the scalar input
u ∈ Lloc

1 (R+) is defined by the two functions K0 ∈ C∞(M),
called the internal contact Hamiltonian, Kc ∈ C∞(M) called the
interaction (or control) contact Hamiltonian, and the state and output
equations

dx̃

dt
= XK0 +XKcu, y = Kc(x̃) (1)

where XK0 and XKc are the contact vector fields of (M, θ)
generated by the contact Hamiltonians K0 and Kc respectively.

Models of irreversible thermodynamic systems belong to a subclass
of contact systems [4], [5], [23], called conservative input-output
contact systems.

Definition 2.2: [4] A conservative input-output contact system
with respect to the Legendre submanifold L is an input-output contact
system with the internal, respectively control, contact Hamiltonians
K0, respectively Kc, satisfying the two conditions:

(i) they are invariants of the Reeb vector field, satisfying (19)

iEdK0 = iEdKc = 0 (2)

(ii) they satisfy the invariance condition (23)

K0

∣∣
L = 0, Kc

∣∣
L = 0 (3)

The reader may find the detailed justification in the context of
Irreversible Thermodynamics and examples in [4], [5], [23]. For the
sake of clarity, let us recall some interpretation of these definitions.

1The formulation of Thermodynamic systems has led to an extensive
publication activity which is not discussed here and in the context of system’s
theory, we refer the reader to the discussion in [5], [23, sec.3].

2They are the analogue of the input-output Hamiltonian systems [2], [26],
[24], [12] developed for mechanical systems and defined on symplectic
manifolds associated with the conjugated position-momentum pairs.
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The condition (2) amounts, in a set of canonical coordinates, to
assume that the Hamiltonian functions do not depend on the x0
coordinate which is the coordinate of the total energy (or entropy)
of the system and is satisfied for physical models. The condition (3)
says that the drift and control vector fields should leave invariant some
distinguished Legendre submanifold representing the thermodynamic
properties of the physical system and defined by the total energy of
the system (or any Legendre transformation of it)3.

Finally it may be noted that the contact Hamiltonian functions may
be constructed as the virtual power associated with the reversible and
irreversible phenomena inducing the systems dynamics [4], [23]4.

B. Paradigmatic example: two compartments exchanging heat

We shall illustrate the results of this paper with the example
of two compartments only exchanging a heat flow through a heat
conducting wall and one of them exchanging a heat flow with
the environment (see the detailed presentation in [23]). The Ther-
modynamic Phase Space R5 3 (x0, x1, x2, p1, p2)>, consists of
the coordinates of the total internal energy x0, the coordinates of
the entropies x = (x1, x2)> and the coordinates p = (p1, p2)>

of the temperatures of the two compartments. The thermodynamic
properties of the system are described by the total internal energy
U(x1, x2) = U1(x1) +U2(x2), sum of the internal energies of each
subsystem and satisfied on the Legendre submanifold LU generated
by U ,

LU :


x0 = U (x1, x2)

x = [x1, x2]>

p =
[
∂U
∂x1

, ∂U
∂x2

]>
= [T1 (x1) , T2 (x2)]>

 (4)

where ∂U
∂xi

= Ti(xi) are the temperatures of each compartment with

Ti(xi) = T0 exp
(
xi
ci

)
, where T0 and ci are some constants [3]. The

dynamics of the two compartments may be described by the input-
output contact system defined by the internal and control contact
Hamiltonians

K0 = −Rp>JT − (T2 − p2)λe
p2
T2
, Kc = e

−λe

(
p2
T2
−1

)
− 1 (5)

where λ, λe > 0 denote Fourier’s heat conduction coefficients of the
internal and external walls respectively, the controlled input u(t) ∈
R+ is the temperature of the external heat source and R(x, p) =

λ
(
p1−p2
T1T2

)
and J = [ 0 −1

1 0 ]. The actual physical systems’ dynamic
is described by the restriction to the Legendre submanifold LU of
the global input-output contact system, where it reduces to the 2-
dimensional nonlinear control system consisting of the two entropy
balance equations[
ẋ1
ẋ2

]
= λ

(
1
∂U
∂x2

− 1
∂U
∂x1

)[
0 −1
1 0

] [ ∂U
∂x1
∂U
∂x2

]
+ λe

[
0

1
∂U
∂x2

− 1
u

]
u.

(6)

III. STRUCTURE PRESERVING FEEDBACK AND CLOSED-LOOP

INVARIANT LEGENDRE SUBMANIFOLDS

In this section we firstly recall the class of structure preserving
feedback of input-output contact systems according to [20], [22]

3Some authors consider nonlinear control systems which do leave invariant
the Legendre submanifold defining the thermodynamic properties of the
system but are not defined by contact vector fields and do not leave invariant
the contact structure [9].

4There exist an alternative representation where the total entropy function
of the system is used to define the Thermodynamic properties and the contact
Hamiltonian has the dimension of a rate of entropy [5], [6].

and secondly, we shall analyse some properties of the closed-
loop system regarding the closed-loop contact form as well as its
Legendre submanifolds. We conclude by illustrating some results on
the example of the two cells exchanging heat flows.

A. Structure preserving feedback of input-output contact systems

Let recall briefly the conditions under which the closed-loop
system obtained by state-feedback remains a contact vector field
defined with respect to a contact form [20], [22].

Proposition 3.1: [20], [22] Consider an input-output contact sys-
tem according to the Definition 2.1. The closed-loop system dx̃

dt
=

XK0 + α (x̃)XKc with state-feedback α ∈ C∞(M), is a contact
system defined with respect to the closed-loop contact form θd

θd = θ + dF (7)

with F ∈ C∞(M) such that iEF = 0, if and only if there exist
a real function Φ ∈ C∞(R) such that the feedback is an output
feedback

α = Φ′(y) (8)

where Φ′ is the derivative of Φ and the following matching equation
between the function Φ and F is satisfied5

XK0(F ) + Φ′(y)[Kc +XKc(F )]− Φ(y) = cF , cF ∈ R (9)

Then the closed-loop vector field X = XK0 + Φ′(y)XKc is a strict
contact vector field with respect to θd generated by the Hamiltonian

K = K0 + Φ(y) + cF (10)

and will be denoted hereafter by X̂K .
Remark 3.1: In canonical coordinates, the assumption that F is an

invariant of the Reeb vector field E, means that, in a set of canonical
coordinates, the function F depends only on the variables (x, p) and
the closed-loop contact form θd admits then canonical coordinates
[22] (x′0, x, p) with x′0 = x0 + F (x, p).

Notice that, similarly to the case of input-output Hamiltonian
systems defined with respect to a Poisson structure [26], [24], the
structure preserving feedback is an output feedback, i.e. a function
of the control contact Hamiltonian. The (control) function Φ shapes
the closed-loop contact Hamiltonian in a very similar manner as for
the feedback of input-output Hamiltonian systems [26] or the Casimir
method for port-Hamiltonian systems [19].

Unlike for input-output Hamiltonian systems, but resembling to the
control of port-Hamiltonian systems in the IDA-PBC method [19],
[18], the closed-loop vector field is a contact vector field with respect
to a different geometrical structure, defined by the closed-loop contact
form θd (7). As in the IDA-PBC method, the geometric structure,
i.e. the closed-loop contact structure (7) and the closed-loop contact
Hamiltonian (10) are related by a matching equation. This matching
equation (9) may equivalently be written as〈
XK0 + (Φ′ ◦Kc)XKc , dF

〉
+ (Φ′ ◦Kc)Kc −Φ ◦Kc = 0, (11)

where 〈 , 〉 denotes the pairing between vector fields and 1-forms on
M. Choosing a function Φ (that is using it as the control design
parameter), the matching equation defines a linear first-order PDE in
the function F , which may be treated using classical methods such
as the method of characteristics [17].

5Note that the constant cF is actually an integration constant [22] and may
be arbitrarily chosen.
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B. Characterization of the closed-loop system

In the first instance, we shall prove that, while the open- and
closed-loop contact forms are different, their Reeb vector fields are
equal.

Corollary 3.2: Under the assumptions of Proposition 3.1, the Reeb
vector field E associated with the open loop contact form θ is equal
to the Reeb vector field associated with the closed-loop contact form
θd defined in (7).

Proof: Remind that it has been proven in [22] that if F is an
invariant of the Reeb vector field E of θ, then the closed-loop contact
form θd, defined in (7), is a contact form. Note firstly that the fact
that the difference of the contact form is exact: θd−θ = dF , implies
that dθd = dθ and hence iEdθd = iEdθ = 0 by (17). Secondly note
that, as F is an invariant of the Reeb vector field E (i.e. satisfies
(19)), one has iEθd = iE (θ + dF ) = iEθ = 1, hence, according to
Definition A.2, the vector field E is also the Reeb vector field of the
closed-loop contact form θd.

In the second instance, we shall show that, under the assumptions
of the Proposition 3.1, the Legendre submanifolds for the open- and
the closed-loop contact forms may be different. Therefore we use the
Definition A.4 which defines Legendre submanifolds using the field
of contact elements.

Proposition 3.3: Under the conditions of Proposition 3.1 and
assuming that ker dF is of dimension 2n almost everywhere, the
fields of contact elements6 are different in open- and closed-loop:
ker θd 6= ker θ.

Proof: Indeed, from the definition of the closed-loop contact
form (7), for any vector field X of M: θd (X) = θ (X) + iXdF
Hence, ker θd = ker θ implies ker θ ⊂ ker dF . With the regularity
condition on the function F that ker dF is of dimension 2n almost
everywhere, then ker θ = ker dF which contradicts the fact that the
Reeb vector field satisfies iEθ = 1 according to the Definition A.2
and that iEdF = 0 by the assumptions of the Proposition 3.1.

On the other hand, the intersection of the distribution ker θ∩ker θd
is a distribution of dimension (2n− 1) at least, and from the
preceding proposition it is hence exactly of dimension (2n− 1). As
a consequence, it is the generic case that the open-loop Legendre
submanifold L of a conservative contact system is also a Legendre
submanifold of the closed-loop contact form (7)7. In conclusion,
according to the Proposition 3.1, a structure preserving feedback
control (8) is an output feedback of the input-output contact system
and is parametrized by a real function Φ which shapes the closed-loop
contact Hamiltonian (10). If moreover, one desires that the closed-
loop system is a conservative contact system (as physical models
are), then the function Φ should be such that the closed-loop contact
Hamiltonian (10) vanishes on some desired Legendre submanifold
with respect to the closed-loop contact form (7).

C. Paradigmatic example: structure preserving output feedback

Following the Proposition 3.1, any structure preserving feedback
is expressed as the output feedback (8). Using the expression of the
control contact Hamiltonian in (5), it may be seen that any structure
preserving output feedback α = Φ′(y) is a function of (x2, p2) only
and is hence only a function of the co-state p2 and the temperature of
the second compartment which is the only one in direct contact with
the environment. In the sequel we shall express the output feedback
as follows:

α (x2, p2) = Φ′ ◦Kc (x2, p2)
.
= β

(
λe
p2 − T2

T2

)
(12)

6see the Definition A.4
7Then, according to the expression of the closed-loop contact Hamiltonian

(10), the invariance condition (23) implies that Φ(0) = −cF .

with the real function β (ξ) = Φ′
(
eξ − 1

)
. Assume moreover that

there exists a function Φ which satisfies the conditions of Proposition
3.1 and such that the closed-loop system leaves invariant some
Legendre submanifold LUd defined with respect to some generating
function Ud (x) in some canonical coordinates of the closed-loop
contact form (7) (see remark 3.1). Then, considering the restriction
of the closed-loop system to the invariant Legendre submanifold LUd ,
the feedback (12) becomes a function of the two extensive variables
(the entropy variables) only:

u (x1, x2) = α (x2, p2)|
p2=

∂Ud
∂x2

(x1,x2)
=

β

(
λe

∂Ud
∂x2

(x1, x2)− T2 (x2)

T2 (x2)

)
(13)

which may be interpreted as a nonlinear function of a “virtual”
entropy flux into the compartment 2 induced by a control temperature
∂Ud
∂x2

(x1, x2) defined by the closed-loop Legendre submanifold. As-
signing the closed-loop Legendre submanifold may be interpreted
as shaping the apparent thermodynamic properties of the system
composed of the 2 compartments and the thermostat with control
temperature in closed-loop with the state-feedback (13).

IV. PARTIAL STABILIZATION BY FEEDBACK EQUIVALENCE TO A

CONSERVATIVE CONTACT SYSTEM

This section presents the main result of this paper, namely the
mathematical justification of the control objectives presented in [6],
[21], that in closed-loop the system is a conservative system which is
stable on some invariant Legendre submanifold. The section mainly
consists in deriving some mathematical results on the stability of equi-
libria of strict contact vector fields, needed to determine stabilizing
structure preserving controllers of input-output contact systems. In the
first instance we recall and precise some results on the equilibrium
points of a contact system and in the second instance we present
novel results on their stability properties. Finally we conclude with
the consequences for the control objectives for structure preserving
control of input-output contact systems.

A. Equilibria of a contact system and restriction of the contact system

Let us first recall the conditions for the existence of an equilibrium
point of a strict contact vector field.

Proposition 4.1: [11, p. 322] Consider a contact manifold (M, θ)
and a strict contact vector field XK generated by the contact
Hamiltonian K ∈ C∞ (M). Then a point x̃∗ ∈M is an equilibrium
point of the contact system defined by

d

dt
x̃ = XK (x̃) (14)

if and only if it satisfies K (x̃∗) = 0 and dK|x̃∗ = 0.
Remark 4.1: In [6] the Proposition 4.1 was expressed in canonical

coordinates using the expression (20). In a set of canonical coordi-
nates (x0, x, p) ∈ R×Rn×Rn, a point (x∗0, x

∗, p∗) is an equilibrium
point of a strict contact vector field if and only if it is a zero
and a critical point of the contact Hamiltonian K, that is, satisfies:
K(x∗0, x

∗, p∗) = 0 and ∂K
∂x

(x∗0, x
∗, p∗) = ∂K

∂p
(x∗0, x

∗, p∗) = 0.
Now assuming that there exists a zero of the vector field, implies

that the set S = K−1 (0) is not empty. Furthermore all equilibria of
the contact system (14) belong to S. In the sequel we shall make the
following regularity assumption on the contact Hamiltonian K.

Assumption 1: The set S = K−1 (0) is a differentiable manifold
of constant dimension 2n.

In the sequel we shall prove that the contact vector field XK leaves
invariant the submanifold S = K−1 (0), as a particular case of the
following result.
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Lemma 4.2: The contact vector field XK with contact Hamiltonian
K being an invariant of the Reeb vector field, leaves any submanifold
K−1 (c), c ∈ R invariant.

Proof: Indeed using the Definition A.3 of the Jacobi bracket and
its expressions in (21), one has

LXKK = iXKdK = [K,K]θ +K iEdK = K iEdK

the contact Hamiltonian is an invariant of the Reeb vector field, that
is: iEdK = 0, hence LXKK = 0. The contact Hamiltonian is an
invariant of the contact system, hence the submanifold S = K−1 (c)
too.

Remark 4.2: Note also that according to the definition of con-
servative contact vector fields (i.e. leaving invariant a Legendre
submanifold LU ) the Proposition A.4 states that LU ⊂ S.

It follows that an equilibrium point of a strict contact vector field
(14) cannot be asymptotically stable. Therefore in the sequel we shall
discuss its stability relatively to the restriction of the contact vector
field to the submanifold S = K−1 (0).

B. About the stability of equilibria points relatively to S = K−1 (0)

In this subsection, we shall analyze the stability properties of the
restriction, denoted by XK |S = X̄K , of the contact vector field XK
to the submanifold S = K−1 (0).

Proposition 4.3: Let x̃∗ ∈ S be an hyperbolic critical point of the
restriction X̄K of the strict contact vector field on the submanifold
S = K−1 (0). The stable manifold S+ ({x̃∗}) and the unstable
manifold S− ({x̃∗}) are Legendre submanifolds of (M, θ).

Proof: By assumption, the vector field X̄K is complete. There-
fore denoting by ϕt the integral flow of X̄K one has

θ (s)
(
X̄K (s)

)
= θ (ϕt (s))

(
ϕt (s)∗ X̄K (s)

)
∀s ∈ S+ ({x̃∗}) , t ∈ R+.

As the vector field X̄K generates an orbit converging to the equilib-
rium point x̃∗, limt→+∞ ϕt (s)∗ X̄K(s) = 0, hence

θ (s)
(
X̄K(s)

)
= 0, ∀s ∈ S+ ({x̃∗}) , X̄K(s) ∈ TsS+ ({x̃∗})

(15)
As a consequence, the stable manifold S+ ({x̃∗}) is an integral
manifold of θ and, according to Proposition A.3, is of dimension
less or equal than n. It may be shown with similar arguments (but
reversing the time limit) that the unstable manifold S− ({x̃∗}) also
satisfy (15), hence is an integral manifold of θ and has dimension less
or equal than n. As the equilibrium point is assumed to be hyperbolic,
the stable and unstable submanifolds have complementary dimensions
in S = K−1 (0) which by assumption has dimension 2n. Hence both
the stable and unstable submanifolds have the maximal dimension n
and, according to Proposition A.3, are Legendre submanifolds.

This proposition is the global version of the local stability results
given in [6], [21] by considering the Jacobian DXK of the strict
contact field XK at an equilibrium point expressed in some canonical
coordinates.

Lemma 4.4: Under the conditions of Proposition 4.1, let us con-
sider an equilibrium state (x∗0, x

∗, p∗) of the contact vector field XK .
Then zero is eigenvalue of DXK and the remaining 2n eigenvalues
are symmetrical with respect to the imaginary axis.

Proof: Since ∂K
∂x0

(x0, x, p) = 0, the Jacobian is given by

DXK =


0
(
∂>K
∂x
− p∗> ∂2K

∂x∂p

)
−p∗> ∂

2K
∂p2

0 − ∂2K
∂x∂p

− ∂
2K
∂p2

0 ∂2K
∂x2

(
∂2K
∂x∂p

)>
 . (16)

According to Lemma 4.1, ∂K
∂x

(x∗0, x
∗, p∗) = 0 and denoting A =

∂2K
∂x∂p

(x∗0, x
∗, p∗), B = B> = ∂2K

∂p2
(x∗0, x

∗, p∗), C = C> =

∂2K
∂x2

(x∗0, x
∗, p∗), the characteristic polynomial of DXK may be

evaluated by using cofactor expansion with respect to the first column
and the properties of the determinant of block matrices [14].

det (DXK − λI) = −λdet
([
−(A+ λI) −B

C (A− λI)>

])
,

= λdet (A− λI)> det
(

(A+ λI)−B(A− λI)−>C
)
,

= λdet (A+ λI) det
(

(A− λI)> − C(A+ λI)−1B
)
,

where the inverse matrices (A−λI)−1 and (A+λI)−1 are computed
for values of λ different than the eigenvalues of A or their opposite.
It follows that λ = 0 is always an eigenvalue (corresponding to the
invariance of the manifold S) and that the remaining 2n eigenvalues
are symmetrical with respect to the imaginary axis.

It may be observed that these results are the extension to contact
manifolds of the stability properties of Hamiltonian systems defined
on symplectic manifolds [27, Lemma 1], [25, chap. 8].

C. Consequences for structure preserving stabilizing control

The first consequence of the Proposition 4.3 is the a posteriori jus-
tification of the stabilization objectives presented in [6], [21]. Indeed
it shows that, under the assumptions of Proposition 3.1, nothing more
may be achieved in closed-loop by a structure preserving feedback,
than that the system is a conservative contact system which is stable
only on some invariant Legendre submanifold. Furthermore it shows
the existence of such a stable invariant Legendre submanifold for
any hyperbolic equilibrium of the closed-lop systems obtained by
structure preserving feedback. Note that the restriction of the output
feeedback (8) to the stable invariant Legendre submanifold in closed-
loop, may then be expressed as a state-feedback of any coordinates of
the stable closed-loop submanifold being interpretable as for instance
the intensive variables or the extensive variables of the system.

The second and most important consequence is that the control
problem is completely parametrized by the stable Legendre submani-
fold which may serve as design parameter for the structure preserving
stabilizing control and that it is totally equivalent to the use of the
function Φ as design parameter. This leads to formulate the following
control problem.

Definition 4.1: An output feedback of an input-output contact
system of Definition 2.1 which is structure preserving according to
Proposition 3.1, is said partially stabilizing the point x̃∗ ∈ M with
respect to some Legendre submanifold Ld ⊂M (with respect to the
closed-loop contact form θd) and containing x̃∗, if the closed-loop
system admits the point x̃∗ as hyperbolic equilibrium point and Ld
is its stable submanifold.

One way to proceed for the control design is the following. Once
the family of structure preserving output feedbacks is characterized
according to the Proposition 3.1, one chooses some Legendre sub-
manifold Ld for the closed-loop system and then use the invariance
condition as additional conditions on the function Φ characterizing
the closed-loop contact form (7) and the output feedback. Finally it
remains to choose a solution Φ such that the stability on the Legendre
submanifold is satisfied [20, sec. 4.3].

D. Paradigmatic example: stable feedback

Consider again the example of the two cells exchanging heat and
let us select a stabilizing controller among the structure preserving
stabilizing controllers defined in the subsection III-C: Φ (y) with y =
Kc (T2, p2) according to (5). In the first instance, let us choose the
most simple desired closed-loop submanifold Ld generated by the
function

Ud(x1, x2) = (x1 + x2)T ∗



5

where T ∗ is a desired temperature. It follows, according to the
Definition (22), that the closed-loop intensive variables, which may
be interpreted as virtual temperatures, are equal and constant: pd =
∂Ud
∂x

(x) =
[
T ∗ T ∗

]>. In the second instance, using the expression
of the contact Hamiltonians (5), we check the invariance condition
of the Legendre submanifold Ld: K0

∣∣
Ld

+ Φ(y)
∣∣
Ld

= −cF and we
obtain the condition

−λe(T2 − T ∗)
T ∗

T2
+ Φ(y)

∣∣
LUd

= 0.

with cF = 0. This implies that on LUd , Φ(y)
∣∣
LUd

= λe(T2−T ∗)T
∗

T2
.

And one may find a Φ that satisfies the invariance condition as follows

Φ(y) = T ∗ ln(y + 1) = λe(T2 − p2)
T ∗

T2

with the restriction to the closed-loop Legendre submanifold be-
ing Φ(y)

∣∣
Ld

= λe(T2 − T ∗)T
∗

T2
. The state feedback on the

whole Thermodynamic Phase Space is, according to Proposition 3.1:

α (x2, p2) = Φ′(y) = T∗

y+1
= T ∗e

λe

(
p2
T2
−1

)
and the actual control

is its restriction to the closed-loop Legendre submanifold Ld :

u (x2) = Φ′(y)
∣∣
Ld

= T ∗e
λe

(
T∗
T2
−1

)
.

In this case the function β defining the nonlinear control (12) is
β (ζ) = T ∗eζ . In the third instance, it remains to be checked that
the submanifold Ld is indeed the stable submanifold. This may be
done using local arguments at the equilibrium point or directly on
the entropy balance equations (6) as (x1, x2) are coordinates for
the open-loop as well as for the closed-loop system. Consider the
function V (x1, x2) = 1

2

∑2
i=1(Ui − U∗i )2 where U∗i = Ui (x∗i )

with T ∗ = ∂Ui
∂xi

(x∗i ): it has a global strict minimum at (x∗1, x
∗
2).

Furthermore its differential is:
[

∂V
∂x1
∂V
∂x2

]
=
[
(U1−U∗1 )T1(x1)

(U2−U∗2 )T2(x2)

]
and one

obtains
dV

dt
= λ

(
1
T2
− 1

T1

)(
− (U1 − U∗1 )T1T2 + (U2 − U∗2 )T2T1

)
− λe

(
U2 − U∗2

)(
T2 − T ∗e

λe

(
T∗

T2
−1

))

= −cλ (T1 − T2)2 − cλe
(
T2 − T ∗

)(
T2 − T ∗e

λe

(
T∗

T2
−1

))
Where it has been assumed that the two gases have the same proper-
ties and that: Ui = c exp

(
xi
c

)
= cTi. The Lyapunov stability follows

by nothing that (T2−T ∗
) (
T2 − T ∗ exp

(
λe
(
T∗

T2
− 1
)))

≥ 0, with
equality only if T1 = T2 = T ∗.

V. CONCLUSIONS

Contact systems are Hamiltonian systems defined on contact
manifolds and arise from the modelling of open thermodynamical
systems in an analogous way as Hamiltonian systems defined on
symplectic manifolds arise from the models of mechanical systems.
In this paper we have addressed the problem of the design of sta-
bilizing nonlinear control laws for conservative input-output contact
systems. These conservative input-output systems are control systems
defined on contact structure which leave invariant some Legendre
submanifold and often arise from the formulation of the dynamics of
irreversible thermodynamic systems on the complete thermodynamic
Phase Space [4][5], [23]. We have considered structure preserving
nonlinear control of these systems suggested in [22] in the sense
it uses the feedback equivalence of the closed-loop system on the
complete Thermodynamic Phase Space, which may again be defined
as a contact system however with respect to some different contact
structure.

In this paper the class of achievable closed-loop contact forms have
been characterized with respect to their Reeb vector field which is
shown to be equal to the Reeb vector field of the open-loop contact
form. Furthermore the set of Legendre submanifolds associated with
the achievable closed-lop contact form have been characterized. The
main result concerns the stability in closed-loop and therefore it has
firstly been shown that a hyperbolic equilibrium point of a strict
contact vector field has a stable and unstable submanifold which
are Legendre submanifolds. As a consequence, and under some
mild regularity assumptions on the closed-loop contact Hamiltonian,
it has been shown that the asymptotic stabilizing control laws
of input-output contact systems are parametrized by the Legendre
submanifolds (actually their generating functions) of the feedback
equivalent conservative contact system. This has been illustrated
on the paradigmatic example of the two cells exchanging heat and
connected to a thermostat where the control laws are parametrized
by a potential function which may be interpreted as a virtual internal
energy associated with the thermostat.

Future work will address the application of such control design
to systems related to applications in Chemical Engineering such as
the Continuous Stirred Tank Reactor but also to the generalization to
the dynamic control laws where the closed-loop system is no more
conservative, that is using the feedback equivalence to more general
contact systems defined with respect to vector fields which are not
necessarily strict.

APPENDIX

In this appendix we briefly recall the main definitions and prop-
erties of contact geometry used in this paper; the reader is referred
to the following textbooks for a detailed exposition [10],[1, app. 4.]
and [11, chap. 5] which is our main reference. We shall consider
systems defined on state-spaces which are contact manifolds, that
are (2n+ 1)-dimensional differentiable manifolds M3 x̃ equipped
with a contact form. We denote by X (M) its set of vector fields and
by Λ (M) its set of 1-forms.

Definition A.1: A contact structure on a 2n + 1-dimensional dif-
ferentiable manifold M is defined by a 1-form θ of constant class
(2n + 1) satisfying θ ∧ (dθ)n 6= 0, where ∧ denotes the wedge
product, d the exterior derivative and (·)n the n-th power of the
exterior product. The pair (M, θ) is then called a (strict) contact
manifold, and θ a contact form.

According to Darboux’s Theorem there exists, locally, a set of
canonical coordinates x̃ = (x0, x, p) ∈ R× Rn × Rn of M where
the contact form θ is given by

θ = dx0 −
n∑
i=1

pidxi.

Definition A.2: The Reeb vector field E associated with the contact
form θ is the unique vector field satisfying

iEθ = 1, iEdθ = 0, (17)

called interior product) of a differential form by the vector field E. In
canonical coordinates the Reeb vector field is expressed as E = ∂

∂x0
.

There is a distinguished set of vector fields associated with the
contact structure (M, θ), i.e. which are infinitesimal automorphisms
of the contact structure, called contact vector fields.

Proposition A.1: A (smooth) vector field X on the contact mani-
fold M is a contact vector field with respect to a contact form θ if
and only if there exists a smooth function ρ ∈ C∞(M) such that

LXθ = ρθ, (18)



6

where LX · denotes the Lie derivative with respect to the vector field
X . When the ρ = 0, the contact vector field is called a strict contact
vector field.
It may be shown that contact vector fields are uniquely defined by
smooth real functions.

Proposition A.2: The map Ω(X) = iXθ defines an isomorphism
from the vector space of contact vector fields in the space of smooth
real functions on the contact manifold.
The real function K generating a contact vector field X is obtained by
K = Ω(X) = iXθ and is called contact Hamiltonian. The contact
vector field generated by the function K is denoted in this paper
by XK = Ω−1(K), where Ω−1 is the inverse of the isomorphism
defined in Proposition A.2. Finally the function ρ of (18) is given
by ρ = iEdK where E is the Reeb vector field. When the contact
vector field XK is strict then its contact Hamiltonian K satisfies

iEdK = 0 (19)

i.e., K is a first integral of the Reeb vector field or in canonical
coordinates ∂K

∂x0
= 0. The expression of a contact vector field, in any

set of canonical coordinates is

XK =

K0
0

+

0 0 −p>
0 0 −In
p In 0

 ∂K
∂x0
∂K
∂x
∂K
∂p

 , (20)

where In denotes the identity matrix of order n. It should be
mentioned that the isomorphism Ω also defines a Lie algebraic
function, called the Jacobi bracket.

Definition A.3: [11, pp. 319-320] The Jacobi bracket [f, g]θ of
two differentiable functions f and g, is defined by

[f, g]θ = Ω
([

Ω−1 (f) ,Ω−1 (g)
])

= iXf dg − g iEdf
= −iXgdf + f iEdg

(21)

Furthermore the contact form defines a set of distinguished subman-
ifolds, the isotropic and Legendre submanifolds [11, p. 312, 383].

Definition A.4: An isotropic submanifold of a (2n + 1)-
dimensional contact manifold (M, θ) is an integral submanifold
L ⊂M of ker θ called field of contact elements [11, p. 322].

We shall use the following Proposition.
Proposition A.3: A Legendre submanifold is an isotropic subman-

ifold of a (2n+1)-dimensional contact manifold (M, θ), of maximal
dimension, equal to n.
In some set of canonical coordinates, the Legendre submanifold is
defined by a generating function U ∈ C∞ (Rn) as follows

LU =

{
x0 = U(x), x = x, p =

∂U

∂x
(x), x ∈ Rn

}
. (22)

Contact vector fields may satisfy an additional condition, namely that
they leave some Legendre submanifold invariant.

Proposition A.4: [16] Let L be a Legendre submanifold. Then XK
is tangent to L if and only if K vanishes on L, i.e., L ⊂ K−1(0)
which may be stated as follows

K
∣∣
L = 0 (23)

where ·|L denotes the restriction to L.
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