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Abstract: An infinite dimensional formulation of IPHS is proposed for a general class of mass
and heat diffusion processes. The structure of the system is derived from the expression of
the internal entropy creation, and just as for the lumped case the IPHS structure is expressed
as a function of the distributed thermodynamic driving forces and a positive definite function
containing the thermodynamic parameters of the different diffusion processes. The distributed
thermodynamic driving forces are expressed as the evaluation of the internal energy density and
entropy density on a pseudo-Poisson bracket defined by the skew-adjoint differential operator
defining the coupling between the different energy domains. This is analogous to the case of
lumped IPHS, where the pseudo-Poisson bracket is defined not by differential operators but by
constant (canonical) skew-symmetric matrices.
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1. INTRODUCTION

Irreversible port-Hamiltonian system (IPHS) were pro-
posed in Ramirez et al. (2013a) as an extension of port-
Hamiltonian systems (PHS) (Maschke and van der Schaft,
1992; Maschke et al., 1992) towards the structural rep-
resentation of irreversible thermodynamics. For processes
described by lumped models it has been shown that the
formalism encompasses a large and general class of irre-
versible thermodynamic systems, such as heat-exchangers,
chemical reactions, chemical reaction networks and cou-
pled mechanic-thermodynamic systems such as the gas-
piston (Ramirez et al., 2013b). Different to representations
which seek to encode the dynamics of irreversible ther-
modynamic systems by a differential geometric structure,
such as GENERIC (Grmela and Öttinger, 1997; Öttinger
and Grmela, 1997) or contact systems (Hermann, 1973;
Mrugala et al., 1991; Mruga la, 1993; Eberard et al., 2007),
the aim of the IPH formulation is to encode the dynamics
with a pseudo-PH control structure. Indeed, using the def-
inition of the availability function (Keenan, 1951; Alonso
and Ydstie, 2001; Alonso et al., 2002) the IPHS structure
has recently been employed to exploit the thermodynamic
properties of irreversible processes to derive non-linear
passivity based controllers (Ramirez et al., 2016).

This paper presents the first extension of IPHS towards
irreversible thermodynamic processes modeled as infinite
dimensional systems. More specifically the process of non-
isothermal mass diffusion, i.e., simultaneous diffusion of
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heat and mass, is considered and an infinite dimensional
IPH representation is proposed. To this end a pseudo-PH
structure constructed from the expression of the internal
entropy creation and the distributed thermodynamic force
is derived. It is shown that this structure is similar to the
lumped case, begin the main difference that the pseudo-
Poisson brackets defining the distributed thermodynamic
driving forces are defined by skew-adjoint differential op-
erators. The paper is organized as follows. In Section 2 the
definition and main properties of IPHS are presented and
the finite dimensional IPH models of the heat and mass
diffusion processes are derived. In Section 3 the infinite
dimensional IPHS modeling the heat equation and the
complete diffusion process is presented. Finally in Section
we give some concluding remarks and comments on future
work.

2. IRREVERSIBLE PORT-HAMILTONIAN SYSTEMS

Irreversible port-Hamiltonian systems (IPHS) have been
defined in Ramirez et al. (2013a) as an extension of port-
Hamiltonian systems (PHS) for the purpose of represent-
ing not only the energy balance but also the entropy
balance, essential in thermodynamic systems.

Definition 1. (Ramirez et al., 2013a) An input affine IPHS
is defined by the dynamic equation and output relation

ẋ = R
(
x, ∂U∂x

)
J
∂U

∂x
(x) + g

(
x, ∂U∂x

)
v,

y = g>
(
x, ∂U∂x

) ∂U
∂x

(x)

(1)

where x(t) ∈ Rn is the state vector, the smooth func-
tions U(x) : Rn → R and S(x) : Rn → R represent,



respectively, the internal energy (the Hamiltonian) and the
entropy functions, J ∈ Rn×n is a constant skew-symmetric
structure (interconnection) matrix of the Poisson bracket
(Maschke et al., 1992) acting on any two smooth functions
Z and G as:

{Z,G}J =
∂Z

∂x

>
(x)J

∂G

∂x
(x). (2)

The real function R = R
(
x, ∂U∂x

)
is composed by the

product of a positive definite function γ and the Poisson
bracket between the entropy and the energy functions:

R
(
x, ∂U∂x

)
= γ

(
x, ∂U∂x

)
{S,U}J ,

with γ
(
x, ∂U∂x

)
: Rn → R, γ ≥ 0, a non-linear positive

function. The input map is defined by g
(
x, ∂U∂x

)
∈ Rn×m

with the input v(t) ∈ Rm a time dependent function.

The drift dynamic in (1) is defined by a non-linear relation
between the time derivative ẋ of the state (extensive) vari-
ables and ∂U

∂x , characterized by the modulating function

R
(
x, ∂U∂x

)
, which explicitly depends on the co-energy (in-

tensive) variables ∂U
∂x . The balance equations of the total

energy and entropy functions of IPHS express the first
and second principles of irreversible Thermodynamics: the
conservation of energy and the irreversible creation of
entropy due to irreversible phenomena. By skew-symmetry
of J , the balance equation of the internal energy, which is
a convex function,

dU

dt
= y>v, (3)

expresses that the system (1) is a lossless dissipative
systems with (energy) supply rate y>v (Willems, 1972).
The balance equation of the entropy function is given by

dS

dt
= R

(
x, ∂U∂x ,

∂S
∂x

) ∂S
∂x

>
J(x)

∂U

∂x
+
∂S

∂x

>
g
(
x, ∂U∂x

)
v

= γ
(
x, ∂U∂x

)
{S,U}2J +

(
g>
(
x, ∂U∂x

) ∂S
∂U

∂U

∂x

)>
v.

= γ
(
x, ∂U∂x

)
{S,U}2J + y>s v.

(4)

where ys = ∂S
∂U y is an entropy conjugated output. By

Definition 1 the first term is positive: γ
(
x, ∂U∂x

)
{S,U}2J =

σ
(
x, ∂U∂x

)
≥ 0. For irreversible thermodynamic systems,

this term represents the internal entropy production and
its positivity expresses the second principle of Thermo-
dynamics. The second term in (4) corresponds to the
definition of an entropy supply rate. For further details
on IPHS and its thermodynamic interpretation we refer
the reader to Ramirez et al. (2013a).

We shall first introduce the two fundamental phenomena
that describe non-isothermal mass diffusion: namely the
diffusion of heat and mass. These processes are described
as exchangers of heat, respectively mass. We shall in a first
instance consider them separately and investigate their
IPH representation in finite dimensions.

2.1 The heat exchanger

Consider two simple thermodynamic systems, indexed by
1 and 2 (for instance two ideal gases), which may interact
only through a conducting wall. The dynamic of this
system is given by the following equation

[
Ṡ1

Ṡ2

]
= λ


T2(S2)

T1(S1)
− 1

T1(S1)

T2(S2)
− 1

+ λe

 0
Te(t)

T2(S2)
− 1

 (5)

where S1 and S2 (resp. T1 and T2) are the entropies (resp.
the temperatures) of subsystem 1 and 2, Te(t) is the time
dependent (controlled) temperature of the environment
and λ > 0 (resp. λe > 0) denotes Fourier’s heat conduction
coefficient of the heat conducting wall between the two
compartments (resp. between compartement 2 and the
environment). This system may be written as[
ẋ1
ẋ2

]
= λ

(
1
∂U
∂x2

− 1
∂U
∂x1

)[
0 −1
1 0

] [ ∂U
∂x1
∂U
∂x2

]
+λe

 0
1
∂U
∂x2

− 1

u

u,
where x = [S1, S2], U(x1, x2) = U1(x1) + U2(x2) is the
internal energy of the overall system, sum of the internal
energies of each subsystem, u(t) the controlled input that
corresponds to the external temperature Te(t) with ∂U

∂xi
=

Ti(xi). The system admits a IPH representation, which is
given by (Ramirez et al., 2013a)

ẋ = R(x, T )JT (x) + g(T, u(t))u(t), (6)

with

R(x, T (x)) = λ
(

1
T2
− 1

T1

)
, (7)

J =
[
0 −1
1 0

]
(where, for the sake of keeping a physical

interpretation we denote ∂U
∂x = T (x) = [T1(x1), T2(x2)]T )

and with input map defined by g = λe

[
0

1

∂U
∂x2

− 1
u

]
. The

system (6) indeed fulfils the Definition 1. The total entropy
of the system is given by the sum of the entropies of
each compartments S (x) = x1 + x2. The Poisson bracket
{S,U}J is then simply the difference of temperatures
between the compartments

{S,U}J =
∂S

∂x

>
J
∂U

∂x
=

[
1
1

]> [
0 −1
1 0

] [
T1
T2

]
= T1 − T2.

It may be noted immediately that the bracket is indeed
the driving force of the heat conduction. Then one may
identify the expression of the modulating function (7) and
obtain

γ =
λ

T1T2
.

Since the heat conduction coefficient satisfy λ > 0, as well
as the temperatures T1 > 0 and T2 > 0, then the condition
γ > 0 is also satisfied. The term g(T )u defines the entropy
flow generated by the interaction of subsystem 2 and the
external heat source and depends on the heat conduction
coefficient λe between them.

2.2 The mass exchanger

Let us now consider a closed system consisting of two
compartments, a and b, of equal temperature T , one with
chemical potential µa and mole number na, and the other
with chemical potential µb and mole number nb. They
are connected through a permeable wall with diffusion
coefficient L. The flow of particles from one part to the
other is given by the balance equation (Kondepudi and
Prigogine, 1998)

dna
dt

= −dnb
dt



The change of moles goes from the part with highest
chemical potential to the one with lowest, i.e., the ther-
modynamic force which drives the diffusion process is the
chemical potential difference µb−µa, hence the flux is given
by fn = L

T (µb − µa) and the dynamic of the mole number
balance is

dna
dt

=
L

T
(µb − µa)

dnb
dt

= −L
T

(µb − µa)

The system dynamic is completed with the entropy bal-
ance, which is given by the internal entropy production
due to the diffusion (Kondepudi and Prigogine, 1998)

dS

dt
= σ = − 1

T

∑
a,b

fn(µb − µa) =
L

T 2
(µb − µa)2.

We may identify the IPHS structure from the entropy
production. Indeed, since the the modulating term Rn
is composed by a positive definite function γn and the
thermodynamic driving force µb − µa, we have Rn =
L
T 2 (µb−µa) with with {S,U}J = (µb−µa) and γ = L

T 2 > 0,
which implies

Jn =

[
0 0 1
0 0 −1
−1 1 0

]
.

Hence, by defining as state vector x = [na, nb, S], and
as Hamiltonian the internal energy such that ∂U

∂x =

[µa, µb, T ]>, we have the following IPHS representation of
the discrete diffusion process,

ẋ = RnJn
∂U

∂x
.

3. THE DIFFUSION PROCESS AS A DISTRIBUTED
IPHS

In this section we extend the IPH formulation of finite
dimensional thermodynamic systems (1) to boundary con-
trolled port Hamiltonian systems defined on a 1D spatial
domain i.e. z ∈ (a, b). The n state variables are now
defined on real Hilbert spaces and the internal energy
u(x) and the entropy s(x) are smooth functions of the
state variables. We denote by x ∈ X((a, b),Rn) the vector

of state variables, U(t) =
∫ b
a
u(z, t)dz the total internal

energy and S(t) =
∫ b
a
s(z, t)dz the total entropy functions.

The co-state variables e(z, t) are derived from the internal
energy considering the variational derivative as defined in
Maschke and van der Schaft (2005), i.e.,

e(z, t) =
δU

δx
=
∂u

∂x
,

this equality being valid as u is a function of x only. Let J
now be a formally skew adjoint differential operator. We
generalize the Poisson bracket (2) to infinite dimensional
systems by defining a pseudo Poisson bracket as in () for
any smooth functions Z and G as:

{Z,G}J =
δZ

δx

>
(x)J

(
δG

δx
(x)

)
=
∂Z

∂x

>
(x)J

(
∂G

∂x
(x)

)
We shall frequently omit arguments in the function when
they are obvious for the sake of simplifying the presenta-
tion.

3.1 The heat equation

We shall follow Duindam et al. (2009) and assume that
the heat diffusion is over a 1D spatial domain and in
a first instance consider only one physical domain, the
thermal and its dynamics. The conserved quantity is the
density of internal energy, denoted by u(t, z), an extensive
thermodynamic variable which satisfies the conservation
law

∂u

∂t
= − ∂

∂z
fQ (8)

where fQ(t, z) is the flux variable, here the heat flux
across the section at z. The heat flux itself arises from the
thermodynamic non-equilibrium and is defined by some
phenomenological law, for instance defined according to
Fouriers law by

fQ(t, z) = −λ(u, z)
∂

∂z
T (u, z) (9)

where λ(u, z) denotes the heat conduction coefficient and
T denotes the temperature of the medium, the intensive
thermodynamic variable of the thermal domain. Actu-
ally the axioms of the Irreversible Thermodynamics near
equilibrium, decompose the preceding relation by saying
that the flux variable is a function of the thermodynamic
driving force F (t, z) = ∂

∂zT (t, z) which characterizes the
non-equilibrium condition. The conservation law (8) and
the constitutive relation (9) are completed by taking into
account the thermodynamic properties of the medium,
which provides a relation between the driving force F
and the conserved quantity u. The thermodynamic prop-
erties are given by Gibbs relation which (Kondepudi and
Prigogine, 1998), under the assumption that there is no
exchange of matter and that the volume of the medium is
constant, reduces to du = Tds, where s is the entropy of
the medium which is also an extensive variable. Due to the
irreversibility of thermodynamic processes, the tempera-
ture is strictly positive (Kondepudi and Prigogine, 1998)
in such a way that one may choose equivalently the internal
energy or the entropy as thermodynamical potential. Just
as for the lumped case, we shall consider the internal
energy u = u(s) as thermodynamic potential function,
and in this case Gibbs relation defines the temperature as
intensive variable conjugated to the (extensive variable)
entropy by: T = du

ds (s). This leads to write the following
entropy balance equation (Duindam et al., 2009)

∂s

∂t
= − 1

T

∂

∂z
fQ = − ∂

∂z
fS + σ

∂s

∂t
=

∂

∂z

(
λ

T

∂T

∂z

)
+

λ

T 2

(
∂T

∂z

)2 (10)

where fS denotes the flux of entropy through the section
at the point z

fS =
1

T
fQ = −λ 1

T

∂

∂z
T (11)

and σ denotes the irreversible entropy creation and is given
by

σ = − 1

T

∂T

∂z
fS =

λ

T 2

(
∂T

∂z

)2

(12)

Finally the flux of entropy may be written as a func-
tion characterizing the irreversible phenomenon of heat
conduction fS = − λ

T F in terms of the generating force

F = ∂T
∂z

du
ds (s), which itself depends on the differential of



the internal energy function characterizing the thermody-
namic properties of the medium.

Let us look at (10) in some more details. The first term in
(10) is related to the entropy flux through the boundaries
of the system, hence it is related to the boundary variables,
i.e., with the inputs and outputs of the system. The second
term, the internal irreversible entropy production σ, is
related with the internal dynamics, i.e., the drift dynamics.
Hence, as just as in the finite dimensional case it is possible
to identify (12) with a modulating function and a bracket
defining the thermodynamic driving force.

Proposition 2. The distributed heat equation can be writ-
ten as the distributed IPHS

∂s

∂t
= RsJs

∂u

∂s
+

∂

∂z

(
Rs

∂u

∂s

)
(13)

where
Rs = γs

(
s, ∂u∂s , z

)
{S,U}Js

with Js = ∂
∂z , γs = 1

T 2λ
(
s, ∂u∂s , z

)
and {S,U}Js = ∂T

∂z . The
input and output of the system are defined, respectively
as

v =


(
Rs

∂u

∂s

)
(t, b)(

Rs
∂u

∂s

)
(t, a)

 , y =

 ∂u

∂s
(t, b)

−∂u
∂s

(t, a)

 (14)

Proof: By direction inspection it is observed that (13)
is equivalent to the entropy balance (10). It is direct to
verify that (12) is equal to Rs{S,U}2Js and that fs =

− ∂
∂z

(
− λ
T
∂T
∂z

)
= ∂

∂z

(
Rs

∂u
∂s

)
. The overall energy balance

can be derived using the local entropy balance,

dU

dt
=

∫ b

a

du

dt
dz

=

∫ b

a

(
∂u

∂s

)>(
∂s

∂t

)
dz

=

∫ b

a

(
∂u

∂s

)>(
Rs(T, z)J

∂u

∂s
+

∂

∂z

(
Rs

∂u

∂s

))
dz,

an integrating by parts this can be written as

dU

dt
=

∫ b

a

∂

∂z

((
∂u

∂s

)>
Rs

∂u

∂s

)
dz

= y>v

where (14) has been used. Hence, convexity of the internal
energy function U , the system is a lossless dissipative
system. �

Having derived an IPH formulation of the heat equation we
shall now proceed to propose a formulation of simultaneous
diffusion of mass and heat as IPHS.

3.2 The complete diffusion process

Let us now consider a distributed diffusion process of one
component. The number of mole balance is characterized
by the diffusion process, while the internal entropy cre-
ation is due to the irreversible diffusion process and heat
conduction. The number of moles and entropy balances
are given by (Kondepudi and Prigogine, 1998)

∂n

∂t
= − ∂

∂z
(fn)

∂s

∂t
= − ∂

∂z
(fs) + σs + σn

(15)

where fn = −L
T
∂µ
∂z corresponds to the number of mole

flux, fs = − λ
T
∂T
∂z to the entropy flux, σs the internal

entropy production due to heat conduction and σn the
internal entropy production due to irreversible diffusion.
The entropy production terms are defined respectively as

σs = − 1

T
fs
∂T

∂z
=

λ

T 2

(
∂T

∂z

)2

(16)

σn = − 1

T
fn
∂µ

∂z
=

L

T 2

(
∂µ

∂z

)2

(17)

Since there are two internal entropy production terms,
each due to a different thermodynamic driving force,
we expect to have two different modulating functions
R
(
x, ∂U∂x

)
in the IPHS representation. This is for instance

the case of coupled chemical reaction networks (Ramirez
et al., 2014) where each individual reaction contributes
with an entropy creation term. From the entropy creation
terms we may identify

Rs = γs{S,U}Js =
λ

T 2

(
∂T

∂z

)
(18)

Rn = γn{S,U}Jn =
L

T 2

(
∂µ

∂z

)
(19)

As for the lumped case we may identify the functions γs
and γn and the matrices Js and Jn since the thermody-
namic driving forces are respectively {S,U}Js = ∂T

∂z and

{S,U}Jn = ∂µ
∂z . Hence we have

γs =
λ

T 2
Js =

[
α(x) 0

0 1

]
∂

∂z

γn =
L

T 2
Jn =

[
β(x) 1

1 0

]
∂

∂z

with α(x) and β(x) state dependent functions which do not
affect the evaluation of the brackets {S,U}Js and {S,U}Jn
since ∂S

∂x = [0 1]>. Notice that if α and β are constants
then the brackets are Poisson brackets, if α and β are state
dependent then the brackets are possible pseudo-Poisson
brackets. The functions α and β can however not depend
on the co-energy variables since that would destroy the
linearity of the brackets. The dynamic equations (15) can
be written as

ẋ =

λ

T 2

∂T

∂z

[
−Lλ 0
0 1

]
∂

∂z

∂U

∂x
+

L

T 2

∂µ

∂z

[
0 1
1 0

]
∂

∂z

∂U

∂x

− ∂

∂z

[
−fn
−fs

]
, (20)

Hence we identify α = −Lλ and β = 0. Now, from (17) and
(16) we may make the following identification

σs = − 1

T
fs
∂T

∂z
= Rs

∂T

∂z
(21)

σn = − 1

T
fn
∂µ

∂z
= Rn

∂µ

∂z
(22)

which imply, since Rs and Rn are scalars, that



fs = −RsT = −Rs
∂u

∂s
(23)

fn = −RnT = −Rn
∂u

∂s
. (24)

Hence, the system (20) may be written as the IPHS

ẋ = (RsJs +RnJn)
∂u

∂x
+

∂

∂z

([
Rn
Rs

]
∂u

∂s

)
.

We observe, in analogy to the finite dimensional case, that
the IPHS structure accounts for the irreversible entropy
creation. The transport phenomena, which are related
to the boundary values of the PDE, are also related
to the IPHS structure. This is expected in the infinite
dimensional case since the transport phenomena not only
relate to the boundary values but also to the transport
within the domain. Before generalizing this model to m
species we assume the following.

Assumption 3. Assume that the heat conduction coeffi-
cient λ and that the diffusion coefficients of each species Li,
where i denotes a specie, are only functions of the states,
i.e., of the entropy or the mole number of each specie.

The previous assumption establish that the λ and Li do
not depend explicitly on the co-energy variables, i.e., on
the intensive variables. We generalize the IPH formulation
in the following Proposition.

Proposition 4. Consider a diffusion process involving m
species, described by the following set of equations

∂ni
∂t

= − ∂

∂z
(fni) , i = 1, . . . ,m

∂s

∂t
= − ∂

∂z
(fs) + σs +

n∑
i=1

σni .
(25)

Define as state vector x = [n1, . . . , nm, s], as inputs the
extensive variables evaluated at the boundaries and as
outputs the incoming and outcoming flows of matter and
entropy evaluated at the boundaries, respectively,

v =

∂u∂x (t, a)

∂u

∂x
(t, b)

 , y =

[
fn(t, a)
−fn(t, b)

]
(26)

with fn = [fn1
, . . . , fnm

, fs]
>. Then the diffusion process

can be written as the infinite dimensional IPHS

∂x

∂t
=

(
RsJs +

m∑
i=1

RniJni

)
∂U

∂x
+

∂

∂z

(
R
∂u

∂s

)
(27)

where Rni
= γni

{S,U}Jni
, γni

= Li

T 2 ,

Jn1
=


0 · · · 1
0 · · · 0
...

. . .
...

1 · · · 0

 ∂

∂z
, Jn2

=


0 · · · · · · 0

0
. . . · · · 1

...
...

. . .
...

0 1 · · · 0

 ∂

∂z
,

Jn3
, . . . , Jnm−1

, Jnm
=


0 · · · · · · 0

0
. . .

...
...

...
...

. . . 1
0 · · · 1 0

 ∂

∂z
,

Rs = γs{S,U}Js , with γs = λ
T 2 ,

Js =



−L1

λ 0 · · · · · · 0

0 −L2

λ

...
...

...
...

...
. . .

... 0
...

... · · · −Lm

λ 0
0 · · · · · · 0 1


∂

∂z
,

and R ∈ Rm, R = [Rn1 . . . Rnm Rs]
>

a vector containing
all the modulating functions. Furthermore, the system
is conservative with respect to the total internal energy

U =
∫ b
a
u(x, z)dz and the set of inputs and outputs (26).

Proof: It is straightforward to verify that (27) is equiva-
lent to (25). Indeed, by nothing that ∂u

∂x = [µ1, . . . , µm, T ]>

and developing the first term in (27) we have(
RsJs +

m∑
i=1

Rni
Jni

)
∂U

∂x
= 0

m∑
i=1

Rni
{s, u}Jni

+Rs{s, u}Js

 =

 0
m∑
i=1

γni
{s, u}2Jni

+ γs{s, u}2Js

 =

 0
m∑
i=1

σni
+ σs

 , (28)

which together with the second term in (27) gives (25).
From (28) it is also observed that the total internal entropy
production σ =

∑m
i=1 σni + σs is completely determined

by the IPHS structure. The diffusion coefficients Li and
the thermal conductivity coefficient λ are by assumption
constant or state dependent, i.e., non co-state depen-
dent, thus the operators Jni(·) and Js(·) are formally
skew-symmetric, and hence the brackets {s, u}Jni

and

{s, u}Js define (pseudo)-Poisson brackets. Furthermore,

{s, u}Jni
= ∂µi

∂z and {s, u}Js = ∂T
∂z , which correspond,

respectively, to the thermodynamic driving forces of the
mass diffusions and the heat diffusion. Since Li > 0 and
λ > 0 the functions γni

> 0 and γs > 0, hence the
modulating functions Rni

and Rs are defined accordingly
to the Definition 1. The total variation of entropy with
respect to time is given by

Ṡ =

∫ b

a

∂s

∂t
dz =

∫ b

a

σdz +

∫ b

a

∂

∂z

(
Rs

∂u

∂s

)
dz

=

∫ b

a

σdz +

(
Rs

∂u

∂s
(b, t)−Rs

∂u

∂s
(a, t)

)
=

∫ b

a

σdz +

(
λ(t, b)

T (t, b)

∂T

∂z
(b, t)− λ(t, a)

T (t, a)

∂T

∂z
(a, t)

)
.

The variation of the total energy with respect to time is

U̇ =

∫ b

a

∂u

∂t
dz =

∫ b

a

∂u

∂x

> ∂x

∂t
dz

=

∫ b

a

∂u

∂x

>
 0
m∑
i=1

Rni

∂µi

∂z +Rs
∂T
∂z

+
∂u

∂x

> ∂

∂z

(
R
∂u

∂s

)
dz

where we have used (28). Since in the first term of the
integral only the last term of ∂u

∂x is not multiplied by zero,
the previous equation can be written as



U̇ =

∫ b

a

∂u

∂s
R>

∂

∂z

(
∂u

∂x

)
+
∂u

∂x

> ∂

∂z

(
R
∂u

∂s

)
dz

=

∫ b

a

∂

∂z

(
∂u

∂x

>
R
∂u

∂s

)
dz

=
∂u

∂x

>
R
∂u

∂s
(t, b)− ∂u

∂x

>
R
∂u

∂s
(t, a)

where we have used integration by parts. Using the defi-
nition of the inputs and outputs (26) and noticing that

y =

[
fn(t, a)
−fn(t, b)

]
=

−R∂u

∂s
(t, a)

R
∂u

∂s
(t, b)

 .
the total energy balance is finally given by

u̇ = y>v,

and by convexity of the internal energy U , is a lossless
dissipative systems with (energy) supply rate y>v. �

4. CONCLUSION

An infinite dimensional formulation of IPHS has been
proposed for a general class of mass and heat diffusion
processes. The structure of the system is derived from the
expression of the internal entropy creation, and just as
for the lumped case the IPHS structure is expressed as a
function of the distributed thermodynamic driving forces
and a positive definite function containing the thermody-
namic parameters of the different diffusion processes. It is
interesting to remark that the distributed thermodynamic
driving forces are expressed as the evaluation of the in-
ternal energy density and entropy density on a pseudo-
Poisson bracket defined by the skew-adjoint differential
operator defining the coupling between the different energy
domains. This is analogous to the case of lumped IPHS,
where pseudo-Poisson bracket is not defined by differen-
tial operators but by constant (canonical) skew-symmetric
matrices. Future work will study the incorporation of
convection and reaction phenomena and the extension of
passivity based control techniques to infinite dimensional
IPHS.
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