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Abstract: Energy based approaches have proven to be specially well suited for the modeling
and control of mechanical systems. Among these approaches the port-Hamiltonian framework
presents interesting properties for the structural modeling of complex systems and for the
design of non-linear controllers using passivity. In this paper we use this framework to model a
typical micro-robotic contact scenario and to propose a simple but effective globally stabilizing
controller. The model and the controller take into account the transitions from a non-contact
to a contact state (and the inverse) by the introduction of a non-linear (switching) contact
element. A one degree of freedom experimental micro-robotic setup is used to test and illustrate
the results.
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1. INTRODUCTION

At micro-scale there are several challenges that make
the control particularly difficult to address: predominance
of contact and surface forces over volume forces (such
as weight), the lack of precise models, the dependency
to environment conditions (temperature, humidity, light,
etc), the parameter uncertainties, the difficulty of sensor
integration and low signal to noise ratio. All these factors
increase the complexity of modeling and control and may
cause instabilities in the dynamic behavior of the system.
In applications where contact interaction exists, such as
in micro-assembly (Clévy et al., 2011) or mechanical
ADN manipulation (Boudaoud et al., 2013), the problem
of switching between contact and non-contact scenarios
appears. These systems are frequently modeled as hybrid
systems (Carloni et al., 2007). The switching between
contact and non-contact scenarios can induce instability
in closed-loop and proofs of global stability are often not
considered. In such systems, controlling both the force and
the position is often required, (Komati et al., 2013; Xu,
2015), which requires to integrate both force and position
sensors into the micro-systems, a task not always simple
at the considered scale.

In this paper the port-Hamiltonian framework is used
to systematically model a typical micro-robotic contact
scenario. The port-Hamiltonian system (PHS) handles the
contact scenarios by introducing a switching variable in the
dynamic model, similarly to the case of power-converters
(Batlle et al., 2008; Ortega et al., 2001). The PHS is
then instrumental to derive a passivity based controller
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which accounts for the switching between contact and
non-contact scenarios in the stability proof. The proposed
controller can be derived and interpreted in the frame
of Interconnection and Damping Assignement - Passivity
Based Control (IDA-PBC) (Ortega et al., 2002). The
control law is simple and only requires to measure position
and velocity of the micro-robotic actuator. It is inherently
robust since its a passivity based controller, which is
an advantage in the case of micro-applications where
parameters are often hard to estimate. An interesting
feature of the approach is that the stability proof reduces
to a polynomial equation, which could open perspectives
in terms of robust analysis or approximated solutions.
A typical 1-DOF micro-robotic experimental set-up is
finally used to test and illustrate the control. The paper
is organized as follows, Section 2 presents the contact
scenario and the model in terms of a switching variable.
Section 3 presents the port-Hamiltonian model. Section 4
the derivation of the passivity based controller and Section
5 the experimental results. Finally Section 6 gives some
conclusion and comments on future work.

2. MODEL OF A 1-DOF CONTACT SCENARIO

The system under study is a micro-robot with an in-
tegrated sensorized end-effector. This micro-robot comes
into contact with a flexible environment, considered as a
compliant beam. The microrobot is modeled as a double
mass-spring-damper (one for the actuation and other for
sensing) and the flexible environment is modeled as a mass-
spring-damper system. The concept is shown in Figure 1
and the model in Figure 2.

The study of contact scenario is especially important at
the microscale where surface and contact forces can be-



Fig. 1. Actuator (grey) end-effector (red), compliant beam
(blue)
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Fig. 2. The mechanical model including the contact ele-
ment

come predominant. In the literature several models have
been developed for microscale contact, most of them in-
spired from macroscale models, such as Johnson-Kendall-
Roberts (JKR) Johnson (1987) and Derjaguin-Muller-
Toporov (DMT) Derjaguin et al. (1975) models. How-
ever, these are quasi-static models and combine van der
Waal, adhesion and electrostatic force models. Moreover,
they consider specific cases, favorable geometries such as
sphere/plane or cylinder/cylinder contacts, control of the
quantity of liquid at the interface of two objects etc. These
models lack the repeatably and are not able to exactly
model the contact of more complex contact cases (such
as plane/plane contact) due to the uncertainties and the
parameter uncertainty.

In this paper we refer to a macroscale approach to model
the contact extend it to the micro-robotic application
under consideration. We shall use a regularized approach,
also known as compliant formulation, which is assumes
that the contact force can be formulated as a continuous
function of the relative deformation between the compliant
surfaces of the contact bodie Marhefka and Orin (1999).
Within this framework, several models have been devel-
oped, and Hertz law’s (Hertz, 1896) which accounts for a
pure elastic force model remains the foundation for most
contact models encountered in engineering applications.
An alternative contact force approach that includes dis-
sipative effects during the contact process is the Kelvin-
Voigt model. This force model considers a linear spring in
conjunction with a linear damper and can be expressed as
(Khulief and Shabana, 1987):

Fi = ki(q3 − q2) + di(q̇3 − q̇2)

where Fi denotes the contact (interaction) force, ki the
contact stiffness, bi the contact damping coefficient and q2
and q3 refer to the relative displacements of subsystems
2 and 3, respectively, of Figure 2. Hunt and Crossley
(Hunt and Crossley, 1975) showed that the linear spring-
damper model does not represent the physical nature
of energy transformations during the contact. Instead,
they represented the contact force by the Hertz force-

deformation law with a nonlinear viscous-elastic element
as:

Fi = ki(q3 − q2)n + χ(q3 − q2)n(q̇3 − q̇2) (1)

where n is a constant between 1 and 2 and χ is called the
hysteresis damping factor. In general, the contact force can
be represented by the sum of an elastic and a friction force

Fi = Fk + Fd

where Fk and Fd represents, respectively, the forces in-
duced by elasticity and the friction. To take into account
the contact scenario we introduce a switching variable.

Definition 1. The switching variable s is subject to the
following rule:

s =

{
1 if q2 ≥ q3
0 if q2 < q3

According to the previous definition the value s = 0
indicates that a contact exists wherever s = 1 that it
doesn’t. Notice that the switch is treated as a discrete
input to the system. This is the most simple manner to
take into account the contact between the end-effector and
the compliant beam since it follows a simple logical rule.
Using the switching variable to define (2) we have

Fi(s) = sFk + sFd. (2)

We shall make the following assumptions on the nature of
the elastic and dissipative forces.

Assumption 2. The energy stored in the contact element
is characterized by Fk and satisfies

W = s

∫
Fi(z)dz ≥ 0. (3)

The dissipative force is proportional to the velocity differ-
ence of the elements in contact

Fd(s) = di(q2, q3, s)(q̇3 − q̇2), with di(s) = sdi (4)

The energy stored in the contact spring is positive (or
zero if no deformation) since it corresponds to the physical
energy stored by the elastic deformation effect.

3. A PORT-HAMILTONIAN DESCRIPTION

Consider the model of the actuator in Figure 2, it corre-
sponds to a mass-spring-damper system described by the
dynamic equations

q̇1 =
p1
m1

ṗ1 = −k1q1 − b1
p1
m1

+ Fs

(5)

where q1 is the relative position,, pi the momentum of
the mass and where Fs represents the force applied by
the end-effector on the actuator. The dynamic model
(5) is derived from the generalized Kirchkoff’s relations
(Newton’s law) together with the formalization of the
constitutive relations of each component, characterized by
the definition of the energy of the conservative components
(mass and spring) and the dissipated power of the resistive
elements (damper). It is possible to write (5) as a linear
relation between flows (q̇1, ṗ1) and efforts (k1q1, p1

m1
)[

q̇1
ṗ1

]
=

[
0 1
−1 −d1

][k1q1
p1
m1

]
+

[
0
1

]
Fs

by formalizing Kirchkoff’s relations by a power preserving
geometric structure. Define J = −J> =

[
0 1
−1 0

]
, R =



RT =
[
0 0
0 d0

]
≥ 0 and g = [ 01 ], which represent respectively,

the topology (geometric structure), the dissipation and the
input map of the system. A port-Hamiltonian representa-
tion (Maschke and van der Schaft, 1992) of (5) is then
given by

ẋ1 = (J −R)
∂H1

∂x1
+ gFs

y = g>
∂H1

∂x′

Ḣ1 = −∂H1

∂x1

>
R
∂H1

∂x1
+ y>1 u1

(6)

where x1 = [q1, p1] is the state vector, H1 = 1
2k1q

2
1 +

1
2m1

p21 the Hamiltonian function. and y1 = p1

m1
is the

output, which is conjugated to the input u1 = Fs. The
time variation of energy depends only on the presence of
energy dissipating elements and the exchange with the
environment through the input and output. Hence, by
construction, if the Hamiltonian is bounded from below
as in the case of a mechanical system, a PHS is passive
and thus a stable system (Willems, 1972). This property
is very important for modeling of complex systems and
for the synthesis of Lyapunov based non-linear controllers
(van der Schaft, 2000).

One of the features of PHS is that since they are defined
with respect to power conjugated inputs and outputs,
the power preserving interconnection of PHS renders the
interconnected system PHS. Let us use this feature on the
complete system described in Figure 2. The total energy
is given by

H =
k1
2
q21 +

k2
2

(q2 − q1)2 +
k3
2
q23 +W (q2, q3, s)

+
p21

2m1
+

p22
2m2

+
p23

2m3
. (7)

where qi and pi, i = 1, 2, 3, represents the relative positions
and momentum of each subsystem. The port-Hamiltonian
model of the total system can then be deduced by in-
terconnecting the subsystems through their conjugated
inputs and outputs (van der Schaft, 2000). Taking as state
vector x = [q1, q2, q3, p1, p2, p3] we obtain the following
representation


q̇1
q̇2
q̇3
ṗ1
ṗ2
ṗ3

 = (J −R)



k1q1 − k2 (q2 − q1)

k2(q2 − q1) +
∂W

∂q2
(s)

k3q3 +
∂W

∂q3
(s)

p1
m1p2
m2p3
m3


+


0
0
0
1
0
0

u (8)

with J =

(
0 I
−I 0

)
, R =

(
0 0
0 D(s)

)
with

D =

(
d1 + d2 −d2 0
−d2 d2 + di(s) −di(s)

0 −di(s) d3 + di(s)

)
(9)

and conjugated output y = p1

m1
. The dynamic contribution

of the contact element appears in the gradient of the
Hamiltonian (as an effort) and as a (non-linear) damping

coefficient in the dissipation matrix R. This is consistent
with the physical interpretation: at the moment of a
contact some energy is stored due to the elastic property
of the deformation of the materials, and some energy is
irreversible dissipated due to irreversible thermodynamic
transformation of the matter. Notice that the matrix D(s)
depends on the switching variable, but no matter which
switching position it always remains positive definite, i.e.,
D(s) > 0, for s = 0 and s = 1. The time derivative of the
total energy is given by

Ḣ = −∂H
∂x

>
R
∂H

∂x
+ y>u

Ḣ = −
[ p1

m1

p3

m3

p3

m3

]
D(s)

 p1

m1p2

m2p3

m3

+ y>u

This implies: i) that the system is dissipative with mini-
mum at H(0) = 0, and ii) that the system cannot gener-
ate instantaneous energy due to the switching (contact).
Indeed, it follows from the previous derivative that the
energy is at all moment bounded by the initial energy in
the system. The first remark is just a consequence of the
PH structure. The second remark is important since it
implies that the system remains PH (and hence passive)
for any switching sequence. This is similar to the case of
power-converters (Ortega et al., 2001; Batlle et al., 2008),
with the difference that in our case the switching explicitly
appears in the energy balance.

4. STABILIZATION BY PASSIVITY BASED
CONTROL

The control objective is to control the gripping force
which at equilibrium is proportional to the q3 coordinate,
F ∗3 = k3q

∗
3 , where ()∗ demotes equilibrium configurations.

To stabilize an arbitrary equilibrium x∗, we may proceed
to shape the closed-loop Hamiltonian function or to change
the complete structure of the closed-loop system such
that is Lyapunov stable with respect to a shaped closed-
loop Hamiltonian. A classical technique in passivity based
control for PHS is the celebrated energy shaping control
by the Casimir method (Ortega et al., 2001). This method
consists in finding the geometric invariants of the closed-
system, considering the controller as a PH control system.
This permits to compute a control that renders the closed-
loop system a PHS with respect to a shaped Hamiltonian
function. For our case it is straightforward to verify that
using the Casimir method we are only able to shape the
closed-loop Hamiltonian in the q1 coordinate, which is not
enough since the desired closed-loop equilibrium is of the
form x∗ = [q∗1 , q

∗
2 , q
∗
3 , 0, 0, 0], i.e., it is required to shape the

Hamiltonian in all the q coordinates.

Proposition 3. If the matching equation

Wd = W (s) + f(q1) + k2aq1q2 − k2aq22
− k2d(q∗1 − q∗2)q2 + k3dq

∗
3q3 − k3aq23 + c (10)

subject to

Wd ≥ 0, Wd = 0 if x = x∗ (11)

is satisfied, with Wd(s) = sWd a desired closed-loop
contact function, kid = ki +kia , i = 1, 2, 3 desired stiffness
coefficients, f(q1) an arbitrary function of q1 and c a
constant, then the control u = β(x, x∗), with



β = k1q
∗
1 − k1a(q1 − q∗1) + k2(q∗1 − q∗2)

+ k2a((q2 − q∗2)− (q1 − q∗1))− ∂Wd

∂q1
(12)

asymptotically stabilizes the closed-loop system at x = x∗

Proof. Consider the following closed-loop Hamiltonian
function

Hd =
k1d
2

(q1 − q∗1)2 +
k2d
2

((q2 − q∗2)− (q1 − q∗1))2

+
k3d
2

(q3 − q∗3)2 +Wd(q1, q2, q3, q
∗
1 , q
∗
2 , q
∗
3 , s)

+
p21

2m1
+

p22
2m2

+
p23

2m3

Taking the time derivative of Hd along the trajectories of
(8) gives

Ḣd = p1

m1
(−k1q∗1 + k1a(q1 − q∗1)− k2(q∗1 − q∗2))

+ p1

m1

(
−k2a((q2 − q∗2)− (q1 − q∗1)) + ∂Wd

∂q1
+ u
)

+ p2

m2
(k2(q∗1 − q∗2) + k2a((q2 − q∗2)− (q1 − q∗1)))

+ p2

m2

(
−∂W

∂q2
(s) + ∂Wd

∂q2

)
+ p3

m3

(
−k3q∗3 + k3a(q3 − q∗3)− ∂W

∂q3
(s) + ∂Wd

∂q3

)
− d1

(
p1

m1

)2
− d2

(
p1

m1
− p2

m2

)2
− di(s)

(
p2

m2
− p3

m3

)2
− d3

(
p3

m3

)2

(13)

We observe from (13) that Hd ≤ 0 and Hd = 0 only at
x = x∗ if the following conditions are satisfied

− k1q∗1 + k1a(q1 − q∗1)− k2(q∗1 − q∗2)

− k2a((q2 − q∗2)− (q1 − q∗1)) + ∂Wd

∂q1
+ u = 0 (14)

k2(q∗1 − q∗2) + k2a((q2 − q∗2)− (q1 − q∗1))

− ∂W
∂q2

(s) + ∂Wd

∂q2
= 0 (15)

−k3q∗3 + k3a(q3 − q∗3)− ∂W
∂q3

+ ∂Wd

∂q3
(s) = 0 (16)

together with the conditions on Wd given in (11). Con-
dition (14) gives the control (12), while conditions (15)
and (16) correspond to matching conditions (Ortega et al.,
2002) of the control design problem. Integrating (15) and
(16) we obtain (10). Finally, by applying LaSalle’s in-
variance principle on region around x∗ we conclude that
β(x, x∗) asymptotically stabilizes the closed-loop system
at x = x∗.

Equation (10) is a polynomial equation if the model of
contact element and f(q1) are polynomial functions, with
f(q1), k2a , k3a and c to be determined such that Wd

satisfies (11). Notice that we are imposing Wd = 0 at
x = x∗, but we are not imposing any condition onWd when
there is no contact. Since Wd is the desired contact energy
function it is a degree of freedom in the control design to
impose or not Wd = 0 when s = 0. The contribution to the
control action of Wd is only through the term ∂Wd

∂q1
. Hence,

if Wd = Wd(q1, q2) the control action is independent of the
model of the contact element.

From (13) we observe that any dissipative term of the form
dd(x) p1

m1
, with dd(x) > 0 a positive function of x, adds

additional dissipation to the closed-loop system without
changing the matching equation (10). Hence the most

general control which asymptotically stabilizes the closed-
loop system with respect to the closed-loop Hamiltonian
Hd is

u = β(x, x∗)− dd(x) p1

m1
. (17)

The proposed control can be interpreted in terms of
(parametrized) Interconnection and Damping Assignment
- Passivity Based Control (IDA-PBC) (Ortega et al., 2001,
2002). Indeed, the matching condition (10) and the control
(17) render the closed-loop system in PHS format

ẋ = (J −Rd)
∂Hd

∂x
(18)

with closed-loop energy balance

Ḣd = −∂Hd

∂x

>
Rd

∂Hd

∂x

where Rd =

(
0 0
0 D(s) +Dd

)
with

Dd =

(
dd(x) 0 0

0 0 0
0 0 0

)
(19)

Its important to remark that the matching equations (15)-
(16) reduce to one algebraic polynomial equation. This is
an important relaxation since the cornerstone in IDA-PBC
design methods are the matching conditions which gener-
ally correspond to semi-linear partial differential equations
(PDEs). For the class of system under study, considering
polynomial contact elements, the matching conditions is a
polynomial equation.

Notice that until now no assumption has been made on
the form of W except for that W ≥ 0 and W = 0 if the
systems are not in contact, i.e., s = 1. In the following
subsection we shall compute the control (17) for a specific
choice of contact element.

4.1 PBC for a class of contact elements

In this subsection we will consider a simple model of the
contact, in order to compute the solutions analytically. A
classical contact spring-dashpot Gilardi and Sharf (2002)
model shall be used to characterize the contact

Fi = ski(q3 − q2) + sdi

(
p3

m3
− p2

m2

)
with ki and di positive constants. The energy of the
contact spring is then simply given by

W =
1

2
kis(q3 − q2)2 (20)

Let us consider the matching condition (10) for this model.

Wd =
1

2
kis(q3−q2)2+f(q1)+k2a(q1−(q∗1−q∗2))q2−k2aq22

− k2(q∗1 − q∗2)q2 + k3dq
∗
3q3 − k3aq23 + c.

To simplify the previous equation we chose f(q1) = k2a =
k3a = 0 to obtain

Wd =
1

2
kis(q3 − q2)2 − k2(q∗1 − q∗2)q2 + k3q

∗
3q3 + c. (21)

From the equilibrium conditions of the dynamical system
(8) we have that

ski(q
∗
3 − q∗2) + k3q

∗
3 = 0,

ski(q
∗
3 − q∗2) + k2(q∗1 − q∗2) = 0.



Using these relations in (21) and completing squares we
obtain

Wd =
1

2
kis((q3 − q∗3)− (q2 − q∗2))2

with c = (q∗3 − q∗2)2. The control law is derived from (17)
and is for this case

u = k1q
∗
1 − k1a(q1 − q∗1) + k2(q∗1 − q∗2)− dd(x) p1

m1
, (22)

and renders the closed-loop system a PHS as in (18) with
respect to the closed-loop energy function

Hd =
k1d
2

(q1 − q∗1)2 +
k2
2

((q2 − q∗2)− (q1 − q∗1))2

+
k3
2

(q3 − q∗3)2 +
1

2
kis((q3 − q∗3)− (q2 − q∗2))2

+
p21

2m1
+

p22
2m2

+
p23

2m3

The control tuning parameters (see (22)) are the added
stiffness k1a > 0 in the first spring (q1 coordinate) and the
added dissipation function dd(x) > 0 which acts on the p1
coordinate. Notice that the control action does not depend
on the contact element since W = W (q2, q3).

Remark 4. A very simple contact model has been used to
compute an exact solution for (10). However, since (10)
is of polynomial nature we can expect to use polynomial
fitting algorithms to compute approximated solutions of
Wd and evaluate the robustness of the approximated
solutions in terms of LMIs for instance. This is the subject
of study of ongoing work.

5. EXPERIMENTAL RESULTS

To test the robustness of the controller the set-up of Figure
3 was implemented in a laboratory environment. We refer
the reader to Komati et al. (2013) for a detailed description
of the set-up. A glass micro-structure with 300µm of
thickness was used as the passive compliant environment
and it was attached to a fixed base. A Femto-Tools force
sensing probe FT-S270 attached to a positioning stage,
with a sensing range of 2mN, was used as end-effector.
The end-effector comprises a probe of 3mm of length
and 50µm of thickness, that moves along the X direction
according to Figure 3. The displacement is measured with
a capacitive sensor. The maximal contact surface between
the end-effector and the environment is 50µm × 50µm.
The positioning stage is a PXY D12 - piezo XY scan
positioner from PiezoSystemJena with a travel range of
200µm. It has an internal capacitive sensor to measure the
displacement of the stage along its two axis. A Keyence
laser sensor is used to measure the displacement of the
compliant beam. The positioning stage was controlled and
the force and the position feedback were acquired through
a dSPACE1104 board.

The parameters of the experimental set-up were iden-
tified following the procedure of Komati et al. (2013)
and are summarized in Table 1. The comparison between
the open-loop step-response is shown in Figure 4. The
input was chosen such that the system experienced non-
contact/contact transitions. The positions q1 and q3 and
the force F3 = k3q3 are measured in experiments and
compared to the simulation model. The experimental set-
up presents more oscillations compared to the simulations

Fig. 3. Experimental setup of the contact scenario

Parameter Value

k1 1.01

d1 0.013

m1 6.27× 10−5

k2 1170

d2 0.001

m2 1.05× 10−7

k3 47

d3 0.001

m3 1× 10−6

ki 327.5

di 1× 10−4

L2 8 µm

L3 20 µm

Table 1. Parameters of the micro-process
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Fig. 4. Open-loop step-responses of q1, q3 and F3. Super-
index s denotes simulations

and this difference is mostly produced by the damping
element in the contact-element of the model.

For the control the reference of the system is the value
q∗3 which is calculated to achieve a desired force F ∗3 .
The force reference is calculated using the static relation
F ∗3 = k3q

∗
3 . Figure 5 shows the closed-loop response. A

reference q∗3 is applied to the system at t = 0.05s, then the
robot’s end-effector starts to move towards contact until
t = 0.06s where q2 becomes greater or equal to q3 which
switches the closed-loop model to the contact case. A force
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Fig. 5. Closed-loop step-responses of q1, q3 and F3. Super-
index s denotes simulations

appears due to the contact and the force oscillates for
around 400ms around the reference force. The experiment
shows that even though a very simple switching rule was
chosen closed-loop model accounts for the the contact
phenomenon. The control was implemented as in (22), i.e.,
without using the measures of q3 and F3. Nevertheless,
provided that the stiffness of the compliant beam is suffi-
ciently well estimated the controller manages to follow the
desired force reference with small error. Its interesting to
mention that a very simple solution for the contact model
has been used in the derivation of the control law. The
closed-loop system remains stable since passivity based
controllers are inherently robust. However, a measure of
robustness is desired, particularly for micro-robotic appli-
cations where parameter uncertainties are high. This is the
subject of ongoing work.

6. CONCLUSION

The port-Hamiltonian framework has been used to sys-
tematically model a typical micro-robotic contact scenario.
The PHS handles the contact scenarios by introducing a
switching variable in the dynamic model, similarly to the
case of power-converters. The PHS has been instrumental
to derive a globally stabilizing passivity based controller
which accounts for the switching between contact and
non-contact. The proposed controller can be derived and
interpreted in the frame of IDA-PBC. Within that frame,
the matching condition of this control problem is given
as a polynomial equation, which is an interesting feature
since it could be studied using tools from convex analysis.
The control law is simple and only requires to measure
position and velocity of the micro-robotic actuator. An 1-
DOF micro-robotic experimental set-up was used to test
the controller. Ongoing work is studying the robustness of
the controller and the addition of adaptive control action.
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(2013). Automated guiding task of a flexible micropart
using a two-sensing-finger microgripper. IEEE Transac-
tions on Automation, Science and Engineering, 10(3),
515–524. doi:10.1109/TASE.2013.2241761.

Marhefka, D. and Orin, D. (1999). A compliant contact
model with nonlinear damping for simulation of robotic
systems. IEEE Transactions on Systems, Man and
Cybernetics - Part A: Systems and Humans, 29, 566572.

Maschke, B. and van der Schaft, A.J. (1992). Port-
controlled Hamiltonian systems: modelling origins and
systemtheoretic properties. Proceedings of the Interna-
tional Symposium on Nonlinear Control Systems De-
sign, NOLCOS’92, Bordeaux, France, June.

Ortega, R., van der Schaft, A., Maschke, B., and Escobar,
G. (2002). Interconnection and damping assignment
passivity based control of port-controlled Hamiltonian
systems. Automatica, 38, 585–596.

Ortega, R., van der Schaft, A.J., Mareels, I., and Maschke,
B. (2001). Putting energy back in control. Control
Systems Magazine, 21, 18–33.

van der Schaft, A.J. (2000). L2-Gain and Passivity
Techniques in Nonlinear Control.

Willems, J. (1972). Dissipative dynamical systems part
I: General theory. Archive for Rational Mechanics and
Analysis, 45, 321–351.

Xu, Q. (2015). Robust impedance control of a com-
pliant microgripper for high-speed position/force reg-
ulation. IEEE Transactions on Industrial Electronics,
62(2), 1201–1209. doi:10.1109/TIE.2014.2352605.


